Upload P2 - Secom Notebook - Mercury.ipynb
Browse files- P2 - Secom Notebook - Mercury.ipynb +93 -191
P2 - Secom Notebook - Mercury.ipynb
CHANGED
@@ -15,18 +15,14 @@
|
|
15 |
{
|
16 |
"attachments": {},
|
17 |
"cell_type": "markdown",
|
18 |
-
"metadata": {
|
19 |
-
"slideshow": {
|
20 |
-
"slide_type": "skip"
|
21 |
-
}
|
22 |
-
},
|
23 |
"source": [
|
24 |
"#### **Import the data**"
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
"metadata": {
|
31 |
"slideshow": {
|
32 |
"slide_type": "skip"
|
@@ -53,7 +49,7 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {
|
58 |
"slideshow": {
|
59 |
"slide_type": "skip"
|
@@ -64,7 +60,7 @@
|
|
64 |
"data": {
|
65 |
"application/mercury+json": {
|
66 |
"allow_download": true,
|
67 |
-
"code_uid": "App.0.40.24.1-
|
68 |
"continuous_update": false,
|
69 |
"description": "Recumpute everything dynamically",
|
70 |
"full_screen": true,
|
@@ -96,7 +92,7 @@
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
-
"execution_count":
|
100 |
"metadata": {
|
101 |
"slideshow": {
|
102 |
"slide_type": "skip"
|
@@ -138,7 +134,7 @@
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
-
"execution_count":
|
142 |
"metadata": {
|
143 |
"slideshow": {
|
144 |
"slide_type": "skip"
|
@@ -195,7 +191,7 @@
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
-
"execution_count":
|
199 |
"metadata": {
|
200 |
"slideshow": {
|
201 |
"slide_type": "skip"
|
@@ -290,7 +286,7 @@
|
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
-
"execution_count":
|
294 |
"metadata": {
|
295 |
"slideshow": {
|
296 |
"slide_type": "skip"
|
@@ -341,7 +337,7 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"metadata": {
|
346 |
"slideshow": {
|
347 |
"slide_type": "skip"
|
@@ -419,7 +415,7 @@
|
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "code",
|
422 |
-
"execution_count":
|
423 |
"metadata": {
|
424 |
"slideshow": {
|
425 |
"slide_type": "skip"
|
@@ -485,9 +481,21 @@
|
|
485 |
" return df_imputed\n"
|
486 |
]
|
487 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
{
|
489 |
"cell_type": "code",
|
490 |
-
"execution_count":
|
491 |
"metadata": {},
|
492 |
"outputs": [],
|
493 |
"source": [
|
@@ -507,6 +515,7 @@
|
|
507 |
" selected_columns = X_train.columns[selected_feature_indices]\n",
|
508 |
" X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
|
509 |
" print('Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape)\n",
|
|
|
510 |
" return X_train_filtered, selected_columns\n",
|
511 |
" \n",
|
512 |
" if method == 'none':\n",
|
@@ -515,6 +524,7 @@
|
|
515 |
" print('Shape of the training set after no feature selection: ', X_train_filtered.shape)\n",
|
516 |
" feature_selection_var = 'none'\n",
|
517 |
" selected_features = X_train_filtered.columns\n",
|
|
|
518 |
" return X_train_filtered, selected_features \n",
|
519 |
" \n",
|
520 |
" if method == 'lasso':\n",
|
@@ -567,7 +577,7 @@
|
|
567 |
},
|
568 |
{
|
569 |
"cell_type": "code",
|
570 |
-
"execution_count":
|
571 |
"metadata": {
|
572 |
"slideshow": {
|
573 |
"slide_type": "skip"
|
@@ -585,8 +595,6 @@
|
|
585 |
" from imblearn.over_sampling import SMOTE\n",
|
586 |
" sm = SMOTE(random_state=42)\n",
|
587 |
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
588 |
-
" print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
|
589 |
-
" print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
|
590 |
" imbalance_var = 'smote'\n",
|
591 |
" return X_train_res, y_train_res\n",
|
592 |
" \n",
|
@@ -594,8 +602,6 @@
|
|
594 |
" from imblearn.under_sampling import RandomUnderSampler\n",
|
595 |
" rus = RandomUnderSampler(random_state=42)\n",
|
596 |
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
597 |
-
" print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
|
598 |
-
" print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
|
599 |
" imbalance_var = 'random_undersampling'\n",
|
600 |
" return X_train_res, y_train_res\n",
|
601 |
" \n",
|
@@ -603,8 +609,6 @@
|
|
603 |
" from imblearn.over_sampling import RandomOverSampler\n",
|
604 |
" ros = RandomOverSampler(random_state=42)\n",
|
605 |
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
606 |
-
" print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
|
607 |
-
" print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
|
608 |
" imbalance_var = 'rose'\n",
|
609 |
" return X_train_res, y_train_res\n",
|
610 |
" \n",
|
@@ -612,8 +616,6 @@
|
|
612 |
" if method == 'none':\n",
|
613 |
" X_train_res = X_train\n",
|
614 |
" y_train_res = y_train\n",
|
615 |
-
" print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
|
616 |
-
" print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
|
617 |
" imbalance_var = 'none'\n",
|
618 |
" return X_train_res, y_train_res\n",
|
619 |
" \n",
|
@@ -638,7 +640,7 @@
|
|
638 |
},
|
639 |
{
|
640 |
"cell_type": "code",
|
641 |
-
"execution_count":
|
642 |
"metadata": {
|
643 |
"slideshow": {
|
644 |
"slide_type": "skip"
|
@@ -727,7 +729,7 @@
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
-
"execution_count":
|
731 |
"metadata": {
|
732 |
"slideshow": {
|
733 |
"slide_type": "skip"
|
@@ -741,13 +743,12 @@
|
|
741 |
"\n",
|
742 |
"def evaluate_models(model='random_forest'):\n",
|
743 |
" print('Have the duplicates been removed?', drop_duplicates_var)\n",
|
744 |
-
" print('
|
745 |
-
" print('
|
746 |
-
" print('
|
747 |
-
" print('
|
748 |
-
" print('
|
749 |
-
" print('
|
750 |
-
" print('What is the imbalance treatment?', imbalance_var)\n",
|
751 |
"\n",
|
752 |
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
753 |
" evaluation_score_append = []\n",
|
@@ -816,7 +817,7 @@
|
|
816 |
},
|
817 |
{
|
818 |
"cell_type": "code",
|
819 |
-
"execution_count":
|
820 |
"metadata": {
|
821 |
"slideshow": {
|
822 |
"slide_type": "skip"
|
@@ -830,17 +831,17 @@
|
|
830 |
"yes",
|
831 |
"no"
|
832 |
],
|
833 |
-
"code_uid": "Select.0.40.16.25-
|
834 |
"disabled": false,
|
835 |
"hidden": false,
|
836 |
"label": "Drop Duplicates",
|
837 |
-
"model_id": "
|
838 |
"url_key": "",
|
839 |
"value": "yes",
|
840 |
"widget": "Select"
|
841 |
},
|
842 |
"application/vnd.jupyter.widget-view+json": {
|
843 |
-
"model_id": "
|
844 |
"version_major": 2,
|
845 |
"version_minor": 0
|
846 |
},
|
@@ -854,18 +855,18 @@
|
|
854 |
{
|
855 |
"data": {
|
856 |
"application/mercury+json": {
|
857 |
-
"code_uid": "Text.0.40.15.28-
|
858 |
"disabled": false,
|
859 |
"hidden": false,
|
860 |
"label": "Missing Value Threeshold",
|
861 |
-
"model_id": "
|
862 |
"rows": 1,
|
863 |
"url_key": "",
|
864 |
"value": "80",
|
865 |
"widget": "Text"
|
866 |
},
|
867 |
"application/vnd.jupyter.widget-view+json": {
|
868 |
-
"model_id": "
|
869 |
"version_major": 2,
|
870 |
"version_minor": 0
|
871 |
},
|
@@ -879,18 +880,18 @@
|
|
879 |
{
|
880 |
"data": {
|
881 |
"application/mercury+json": {
|
882 |
-
"code_uid": "Text.0.40.15.31-
|
883 |
"disabled": false,
|
884 |
"hidden": false,
|
885 |
"label": "Variance Threshold",
|
886 |
-
"model_id": "
|
887 |
"rows": 1,
|
888 |
"url_key": "",
|
889 |
"value": "0",
|
890 |
"widget": "Text"
|
891 |
},
|
892 |
"application/vnd.jupyter.widget-view+json": {
|
893 |
-
"model_id": "
|
894 |
"version_major": 2,
|
895 |
"version_minor": 0
|
896 |
},
|
@@ -904,18 +905,18 @@
|
|
904 |
{
|
905 |
"data": {
|
906 |
"application/mercury+json": {
|
907 |
-
"code_uid": "Text.0.40.15.34-
|
908 |
"disabled": false,
|
909 |
"hidden": false,
|
910 |
"label": "Correlation Threshold",
|
911 |
-
"model_id": "
|
912 |
"rows": 1,
|
913 |
"url_key": "",
|
914 |
"value": "1",
|
915 |
"widget": "Text"
|
916 |
},
|
917 |
"application/vnd.jupyter.widget-view+json": {
|
918 |
-
"model_id": "
|
919 |
"version_major": 2,
|
920 |
"version_minor": 0
|
921 |
},
|
@@ -935,17 +936,17 @@
|
|
935 |
4,
|
936 |
5
|
937 |
],
|
938 |
-
"code_uid": "Select.0.40.16.38-
|
939 |
"disabled": false,
|
940 |
"hidden": false,
|
941 |
"label": "Outlier Removal Threshold",
|
942 |
-
"model_id": "
|
943 |
"url_key": "",
|
944 |
"value": "none",
|
945 |
"widget": "Select"
|
946 |
},
|
947 |
"application/vnd.jupyter.widget-view+json": {
|
948 |
-
"model_id": "
|
949 |
"version_major": 2,
|
950 |
"version_minor": 0
|
951 |
},
|
@@ -966,17 +967,17 @@
|
|
966 |
"minmax",
|
967 |
"robust"
|
968 |
],
|
969 |
-
"code_uid": "Select.0.40.16.46-
|
970 |
"disabled": false,
|
971 |
"hidden": false,
|
972 |
"label": "Scaling Variables",
|
973 |
-
"model_id": "
|
974 |
"url_key": "",
|
975 |
"value": "none",
|
976 |
"widget": "Select"
|
977 |
},
|
978 |
"application/vnd.jupyter.widget-view+json": {
|
979 |
-
"model_id": "
|
980 |
"version_major": 2,
|
981 |
"version_minor": 0
|
982 |
},
|
@@ -996,17 +997,17 @@
|
|
996 |
"knn",
|
997 |
"most_frequent"
|
998 |
],
|
999 |
-
"code_uid": "Select.0.40.16.50-
|
1000 |
"disabled": false,
|
1001 |
"hidden": false,
|
1002 |
"label": "Imputation Methods",
|
1003 |
-
"model_id": "
|
1004 |
"url_key": "",
|
1005 |
"value": "mean",
|
1006 |
"widget": "Select"
|
1007 |
},
|
1008 |
"application/vnd.jupyter.widget-view+json": {
|
1009 |
-
"model_id": "
|
1010 |
"version_major": 2,
|
1011 |
"version_minor": 0
|
1012 |
},
|
@@ -1027,17 +1028,17 @@
|
|
1027 |
"pca",
|
1028 |
"boruta"
|
1029 |
],
|
1030 |
-
"code_uid": "Select.0.40.16.55-
|
1031 |
"disabled": false,
|
1032 |
"hidden": false,
|
1033 |
"label": "Feature Selection",
|
1034 |
-
"model_id": "
|
1035 |
"url_key": "",
|
1036 |
-
"value": "
|
1037 |
"widget": "Select"
|
1038 |
},
|
1039 |
"application/vnd.jupyter.widget-view+json": {
|
1040 |
-
"model_id": "
|
1041 |
"version_major": 2,
|
1042 |
"version_minor": 0
|
1043 |
},
|
@@ -1057,17 +1058,17 @@
|
|
1057 |
"undersampling",
|
1058 |
"rose"
|
1059 |
],
|
1060 |
-
"code_uid": "Select.0.40.16.59-
|
1061 |
"disabled": false,
|
1062 |
"hidden": false,
|
1063 |
"label": "Imbalance Treatment",
|
1064 |
-
"model_id": "
|
1065 |
"url_key": "",
|
1066 |
"value": "none",
|
1067 |
"widget": "Select"
|
1068 |
},
|
1069 |
"application/vnd.jupyter.widget-view+json": {
|
1070 |
-
"model_id": "
|
1071 |
"version_major": 2,
|
1072 |
"version_minor": 0
|
1073 |
},
|
@@ -1090,17 +1091,17 @@
|
|
1090 |
"decision_tree",
|
1091 |
"xgboost"
|
1092 |
],
|
1093 |
-
"code_uid": "Select.0.40.16.64-
|
1094 |
"disabled": false,
|
1095 |
"hidden": false,
|
1096 |
"label": "Model Selection",
|
1097 |
-
"model_id": "
|
1098 |
"url_key": "",
|
1099 |
"value": "random_forest",
|
1100 |
"widget": "Select"
|
1101 |
},
|
1102 |
"application/vnd.jupyter.widget-view+json": {
|
1103 |
-
"model_id": "
|
1104 |
"version_major": 2,
|
1105 |
"version_minor": 0
|
1106 |
},
|
@@ -1208,7 +1209,7 @@
|
|
1208 |
},
|
1209 |
{
|
1210 |
"cell_type": "code",
|
1211 |
-
"execution_count":
|
1212 |
"metadata": {
|
1213 |
"slideshow": {
|
1214 |
"slide_type": "skip"
|
@@ -1234,12 +1235,8 @@
|
|
1234 |
"Number of missing values after imputation: 0\n",
|
1235 |
"Number of missing values before imputation: 6954\n",
|
1236 |
"Number of missing values after imputation: 0\n",
|
1237 |
-
"
|
1238 |
-
"
|
1239 |
-
" pass/fail\n",
|
1240 |
-
"0 1097\n",
|
1241 |
-
"1 78\n",
|
1242 |
-
"dtype: int64\n"
|
1243 |
]
|
1244 |
}
|
1245 |
],
|
@@ -1266,9 +1263,16 @@
|
|
1266 |
"X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
|
1267 |
"X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
|
1268 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1269 |
"# treat imbalance in the training set using the function oversample\n",
|
1270 |
"\n",
|
1271 |
-
"X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment,
|
1272 |
"\n"
|
1273 |
]
|
1274 |
},
|
@@ -1286,7 +1290,7 @@
|
|
1286 |
},
|
1287 |
{
|
1288 |
"cell_type": "code",
|
1289 |
-
"execution_count":
|
1290 |
"metadata": {
|
1291 |
"slideshow": {
|
1292 |
"slide_type": "skip"
|
@@ -1324,7 +1328,7 @@
|
|
1324 |
},
|
1325 |
{
|
1326 |
"cell_type": "code",
|
1327 |
-
"execution_count":
|
1328 |
"metadata": {
|
1329 |
"slideshow": {
|
1330 |
"slide_type": "slide"
|
@@ -1336,125 +1340,23 @@
|
|
1336 |
"output_type": "stream",
|
1337 |
"text": [
|
1338 |
"Have the duplicates been removed? yes\n",
|
1339 |
-
"
|
1340 |
-
"
|
1341 |
-
"
|
1342 |
-
"
|
1343 |
-
"What is the scaling method? none\n",
|
1344 |
-
"What is the imputation method? mean\n",
|
1345 |
-
"What is the imbalance treatment? none\n"
|
1346 |
]
|
1347 |
},
|
1348 |
{
|
1349 |
-
"
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
" }\n",
|
1360 |
-
"\n",
|
1361 |
-
" .dataframe thead th {\n",
|
1362 |
-
" text-align: right;\n",
|
1363 |
-
" }\n",
|
1364 |
-
"</style>\n",
|
1365 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1366 |
-
" <thead>\n",
|
1367 |
-
" <tr style=\"text-align: right;\">\n",
|
1368 |
-
" <th></th>\n",
|
1369 |
-
" <th>Model</th>\n",
|
1370 |
-
" <th>Accuracy</th>\n",
|
1371 |
-
" <th>Precision</th>\n",
|
1372 |
-
" <th>Recall</th>\n",
|
1373 |
-
" <th>F1-score</th>\n",
|
1374 |
-
" </tr>\n",
|
1375 |
-
" </thead>\n",
|
1376 |
-
" <tbody>\n",
|
1377 |
-
" <tr>\n",
|
1378 |
-
" <th>0</th>\n",
|
1379 |
-
" <td>random_forest</td>\n",
|
1380 |
-
" <td>0.93</td>\n",
|
1381 |
-
" <td>0.0</td>\n",
|
1382 |
-
" <td>0.0</td>\n",
|
1383 |
-
" <td>0.0</td>\n",
|
1384 |
-
" </tr>\n",
|
1385 |
-
" </tbody>\n",
|
1386 |
-
"</table>\n",
|
1387 |
-
"</div>"
|
1388 |
-
],
|
1389 |
-
"text/plain": [
|
1390 |
-
" Model Accuracy Precision Recall F1-score\n",
|
1391 |
-
"0 random_forest 0.93 0.0 0.0 0.0"
|
1392 |
-
]
|
1393 |
-
},
|
1394 |
-
"metadata": {},
|
1395 |
-
"output_type": "display_data"
|
1396 |
-
},
|
1397 |
-
{
|
1398 |
-
"data": {
|
1399 |
-
"text/html": [
|
1400 |
-
"<div>\n",
|
1401 |
-
"<style scoped>\n",
|
1402 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1403 |
-
" vertical-align: middle;\n",
|
1404 |
-
" }\n",
|
1405 |
-
"\n",
|
1406 |
-
" .dataframe tbody tr th {\n",
|
1407 |
-
" vertical-align: top;\n",
|
1408 |
-
" }\n",
|
1409 |
-
"\n",
|
1410 |
-
" .dataframe thead th {\n",
|
1411 |
-
" text-align: right;\n",
|
1412 |
-
" }\n",
|
1413 |
-
"</style>\n",
|
1414 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1415 |
-
" <thead>\n",
|
1416 |
-
" <tr style=\"text-align: right;\">\n",
|
1417 |
-
" <th></th>\n",
|
1418 |
-
" <th>Model</th>\n",
|
1419 |
-
" <th>True Negatives</th>\n",
|
1420 |
-
" <th>False Positives</th>\n",
|
1421 |
-
" <th>False Negatives</th>\n",
|
1422 |
-
" <th>True Positives</th>\n",
|
1423 |
-
" </tr>\n",
|
1424 |
-
" </thead>\n",
|
1425 |
-
" <tbody>\n",
|
1426 |
-
" <tr>\n",
|
1427 |
-
" <th>0</th>\n",
|
1428 |
-
" <td>random_forest</td>\n",
|
1429 |
-
" <td>366</td>\n",
|
1430 |
-
" <td>0</td>\n",
|
1431 |
-
" <td>26</td>\n",
|
1432 |
-
" <td>0</td>\n",
|
1433 |
-
" </tr>\n",
|
1434 |
-
" </tbody>\n",
|
1435 |
-
"</table>\n",
|
1436 |
-
"</div>"
|
1437 |
-
],
|
1438 |
-
"text/plain": [
|
1439 |
-
" Model True Negatives False Positives False Negatives \\\n",
|
1440 |
-
"0 random_forest 366 0 26 \n",
|
1441 |
-
"\n",
|
1442 |
-
" True Positives \n",
|
1443 |
-
"0 0 "
|
1444 |
-
]
|
1445 |
-
},
|
1446 |
-
"metadata": {},
|
1447 |
-
"output_type": "display_data"
|
1448 |
-
},
|
1449 |
-
{
|
1450 |
-
"data": {
|
1451 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
|
1452 |
-
"text/plain": [
|
1453 |
-
"<Figure size 350x350 with 1 Axes>"
|
1454 |
-
]
|
1455 |
-
},
|
1456 |
-
"metadata": {},
|
1457 |
-
"output_type": "display_data"
|
1458 |
}
|
1459 |
],
|
1460 |
"source": [
|
|
|
15 |
{
|
16 |
"attachments": {},
|
17 |
"cell_type": "markdown",
|
18 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
19 |
"source": [
|
20 |
"#### **Import the data**"
|
21 |
]
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": 97,
|
26 |
"metadata": {
|
27 |
"slideshow": {
|
28 |
"slide_type": "skip"
|
|
|
49 |
},
|
50 |
{
|
51 |
"cell_type": "code",
|
52 |
+
"execution_count": 98,
|
53 |
"metadata": {
|
54 |
"slideshow": {
|
55 |
"slide_type": "skip"
|
|
|
60 |
"data": {
|
61 |
"application/mercury+json": {
|
62 |
"allow_download": true,
|
63 |
+
"code_uid": "App.0.40.24.1-rand0254d4eb",
|
64 |
"continuous_update": false,
|
65 |
"description": "Recumpute everything dynamically",
|
66 |
"full_screen": true,
|
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
+
"execution_count": 99,
|
96 |
"metadata": {
|
97 |
"slideshow": {
|
98 |
"slide_type": "skip"
|
|
|
134 |
},
|
135 |
{
|
136 |
"cell_type": "code",
|
137 |
+
"execution_count": 100,
|
138 |
"metadata": {
|
139 |
"slideshow": {
|
140 |
"slide_type": "skip"
|
|
|
191 |
},
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
+
"execution_count": 101,
|
195 |
"metadata": {
|
196 |
"slideshow": {
|
197 |
"slide_type": "skip"
|
|
|
286 |
},
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
+
"execution_count": 102,
|
290 |
"metadata": {
|
291 |
"slideshow": {
|
292 |
"slide_type": "skip"
|
|
|
337 |
},
|
338 |
{
|
339 |
"cell_type": "code",
|
340 |
+
"execution_count": 103,
|
341 |
"metadata": {
|
342 |
"slideshow": {
|
343 |
"slide_type": "skip"
|
|
|
415 |
},
|
416 |
{
|
417 |
"cell_type": "code",
|
418 |
+
"execution_count": 104,
|
419 |
"metadata": {
|
420 |
"slideshow": {
|
421 |
"slide_type": "skip"
|
|
|
481 |
" return df_imputed\n"
|
482 |
]
|
483 |
},
|
484 |
+
{
|
485 |
+
"attachments": {},
|
486 |
+
"cell_type": "markdown",
|
487 |
+
"metadata": {
|
488 |
+
"slideshow": {
|
489 |
+
"slide_type": "skip"
|
490 |
+
}
|
491 |
+
},
|
492 |
+
"source": [
|
493 |
+
"#### **Feature Selection**"
|
494 |
+
]
|
495 |
+
},
|
496 |
{
|
497 |
"cell_type": "code",
|
498 |
+
"execution_count": 105,
|
499 |
"metadata": {},
|
500 |
"outputs": [],
|
501 |
"source": [
|
|
|
515 |
" selected_columns = X_train.columns[selected_feature_indices]\n",
|
516 |
" X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
|
517 |
" print('Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape)\n",
|
518 |
+
" feature_selection_var = 'boruta'\n",
|
519 |
" return X_train_filtered, selected_columns\n",
|
520 |
" \n",
|
521 |
" if method == 'none':\n",
|
|
|
524 |
" print('Shape of the training set after no feature selection: ', X_train_filtered.shape)\n",
|
525 |
" feature_selection_var = 'none'\n",
|
526 |
" selected_features = X_train_filtered.columns\n",
|
527 |
+
" feature_selection_var = 'none'\n",
|
528 |
" return X_train_filtered, selected_features \n",
|
529 |
" \n",
|
530 |
" if method == 'lasso':\n",
|
|
|
577 |
},
|
578 |
{
|
579 |
"cell_type": "code",
|
580 |
+
"execution_count": 106,
|
581 |
"metadata": {
|
582 |
"slideshow": {
|
583 |
"slide_type": "skip"
|
|
|
595 |
" from imblearn.over_sampling import SMOTE\n",
|
596 |
" sm = SMOTE(random_state=42)\n",
|
597 |
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
|
|
|
|
598 |
" imbalance_var = 'smote'\n",
|
599 |
" return X_train_res, y_train_res\n",
|
600 |
" \n",
|
|
|
602 |
" from imblearn.under_sampling import RandomUnderSampler\n",
|
603 |
" rus = RandomUnderSampler(random_state=42)\n",
|
604 |
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
|
|
|
|
605 |
" imbalance_var = 'random_undersampling'\n",
|
606 |
" return X_train_res, y_train_res\n",
|
607 |
" \n",
|
|
|
609 |
" from imblearn.over_sampling import RandomOverSampler\n",
|
610 |
" ros = RandomOverSampler(random_state=42)\n",
|
611 |
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
|
|
|
|
612 |
" imbalance_var = 'rose'\n",
|
613 |
" return X_train_res, y_train_res\n",
|
614 |
" \n",
|
|
|
616 |
" if method == 'none':\n",
|
617 |
" X_train_res = X_train\n",
|
618 |
" y_train_res = y_train\n",
|
|
|
|
|
619 |
" imbalance_var = 'none'\n",
|
620 |
" return X_train_res, y_train_res\n",
|
621 |
" \n",
|
|
|
640 |
},
|
641 |
{
|
642 |
"cell_type": "code",
|
643 |
+
"execution_count": 107,
|
644 |
"metadata": {
|
645 |
"slideshow": {
|
646 |
"slide_type": "skip"
|
|
|
729 |
},
|
730 |
{
|
731 |
"cell_type": "code",
|
732 |
+
"execution_count": 108,
|
733 |
"metadata": {
|
734 |
"slideshow": {
|
735 |
"slide_type": "skip"
|
|
|
743 |
"\n",
|
744 |
"def evaluate_models(model='random_forest'):\n",
|
745 |
" print('Have the duplicates been removed?', drop_duplicates_var)\n",
|
746 |
+
" print('Missing values threshold is:', missing_values_threshold_var,' - Variance threshold is:,', variance_threshold_var,' - Correlation threshold is:', correlation_threshold_var)\n",
|
747 |
+
" print('Outlier removal threshold is:', outlier_var)\n",
|
748 |
+
" print('Scaling method is:', scale_model_var)\n",
|
749 |
+
" print('Imputation method is:', imputation_var)\n",
|
750 |
+
" print('Feature selection method is:', feature_selection_var)\n",
|
751 |
+
" print('Imbalance treatment method is:', imbalance_var)\n",
|
|
|
752 |
"\n",
|
753 |
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
754 |
" evaluation_score_append = []\n",
|
|
|
817 |
},
|
818 |
{
|
819 |
"cell_type": "code",
|
820 |
+
"execution_count": 113,
|
821 |
"metadata": {
|
822 |
"slideshow": {
|
823 |
"slide_type": "skip"
|
|
|
831 |
"yes",
|
832 |
"no"
|
833 |
],
|
834 |
+
"code_uid": "Select.0.40.16.25-rand2694baac",
|
835 |
"disabled": false,
|
836 |
"hidden": false,
|
837 |
"label": "Drop Duplicates",
|
838 |
+
"model_id": "d2be0f72c8ad4556970977c13a04a1c8",
|
839 |
"url_key": "",
|
840 |
"value": "yes",
|
841 |
"widget": "Select"
|
842 |
},
|
843 |
"application/vnd.jupyter.widget-view+json": {
|
844 |
+
"model_id": "d2be0f72c8ad4556970977c13a04a1c8",
|
845 |
"version_major": 2,
|
846 |
"version_minor": 0
|
847 |
},
|
|
|
855 |
{
|
856 |
"data": {
|
857 |
"application/mercury+json": {
|
858 |
+
"code_uid": "Text.0.40.15.28-rande1621478",
|
859 |
"disabled": false,
|
860 |
"hidden": false,
|
861 |
"label": "Missing Value Threeshold",
|
862 |
+
"model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
|
863 |
"rows": 1,
|
864 |
"url_key": "",
|
865 |
"value": "80",
|
866 |
"widget": "Text"
|
867 |
},
|
868 |
"application/vnd.jupyter.widget-view+json": {
|
869 |
+
"model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
|
870 |
"version_major": 2,
|
871 |
"version_minor": 0
|
872 |
},
|
|
|
880 |
{
|
881 |
"data": {
|
882 |
"application/mercury+json": {
|
883 |
+
"code_uid": "Text.0.40.15.31-rand4541ac63",
|
884 |
"disabled": false,
|
885 |
"hidden": false,
|
886 |
"label": "Variance Threshold",
|
887 |
+
"model_id": "be3aff94bc9946d283b7b34af9b61b1d",
|
888 |
"rows": 1,
|
889 |
"url_key": "",
|
890 |
"value": "0",
|
891 |
"widget": "Text"
|
892 |
},
|
893 |
"application/vnd.jupyter.widget-view+json": {
|
894 |
+
"model_id": "be3aff94bc9946d283b7b34af9b61b1d",
|
895 |
"version_major": 2,
|
896 |
"version_minor": 0
|
897 |
},
|
|
|
905 |
{
|
906 |
"data": {
|
907 |
"application/mercury+json": {
|
908 |
+
"code_uid": "Text.0.40.15.34-rand92107f0e",
|
909 |
"disabled": false,
|
910 |
"hidden": false,
|
911 |
"label": "Correlation Threshold",
|
912 |
+
"model_id": "20a2b896579147a4a8cf1f8593ca263c",
|
913 |
"rows": 1,
|
914 |
"url_key": "",
|
915 |
"value": "1",
|
916 |
"widget": "Text"
|
917 |
},
|
918 |
"application/vnd.jupyter.widget-view+json": {
|
919 |
+
"model_id": "20a2b896579147a4a8cf1f8593ca263c",
|
920 |
"version_major": 2,
|
921 |
"version_minor": 0
|
922 |
},
|
|
|
936 |
4,
|
937 |
5
|
938 |
],
|
939 |
+
"code_uid": "Select.0.40.16.38-randf6cb87b9",
|
940 |
"disabled": false,
|
941 |
"hidden": false,
|
942 |
"label": "Outlier Removal Threshold",
|
943 |
+
"model_id": "013f6eeb57534a49abd399f13c4814aa",
|
944 |
"url_key": "",
|
945 |
"value": "none",
|
946 |
"widget": "Select"
|
947 |
},
|
948 |
"application/vnd.jupyter.widget-view+json": {
|
949 |
+
"model_id": "013f6eeb57534a49abd399f13c4814aa",
|
950 |
"version_major": 2,
|
951 |
"version_minor": 0
|
952 |
},
|
|
|
967 |
"minmax",
|
968 |
"robust"
|
969 |
],
|
970 |
+
"code_uid": "Select.0.40.16.46-rand035a3a64",
|
971 |
"disabled": false,
|
972 |
"hidden": false,
|
973 |
"label": "Scaling Variables",
|
974 |
+
"model_id": "4c799a2109f0475dad281094174aff03",
|
975 |
"url_key": "",
|
976 |
"value": "none",
|
977 |
"widget": "Select"
|
978 |
},
|
979 |
"application/vnd.jupyter.widget-view+json": {
|
980 |
+
"model_id": "4c799a2109f0475dad281094174aff03",
|
981 |
"version_major": 2,
|
982 |
"version_minor": 0
|
983 |
},
|
|
|
997 |
"knn",
|
998 |
"most_frequent"
|
999 |
],
|
1000 |
+
"code_uid": "Select.0.40.16.50-rand1c821039",
|
1001 |
"disabled": false,
|
1002 |
"hidden": false,
|
1003 |
"label": "Imputation Methods",
|
1004 |
+
"model_id": "7c5bf031dc55488688a5878edb7cc55f",
|
1005 |
"url_key": "",
|
1006 |
"value": "mean",
|
1007 |
"widget": "Select"
|
1008 |
},
|
1009 |
"application/vnd.jupyter.widget-view+json": {
|
1010 |
+
"model_id": "7c5bf031dc55488688a5878edb7cc55f",
|
1011 |
"version_major": 2,
|
1012 |
"version_minor": 0
|
1013 |
},
|
|
|
1028 |
"pca",
|
1029 |
"boruta"
|
1030 |
],
|
1031 |
+
"code_uid": "Select.0.40.16.55-randf440b52a",
|
1032 |
"disabled": false,
|
1033 |
"hidden": false,
|
1034 |
"label": "Feature Selection",
|
1035 |
+
"model_id": "f2b440a394e6473dbcf3ab959393d76f",
|
1036 |
"url_key": "",
|
1037 |
+
"value": "lasso",
|
1038 |
"widget": "Select"
|
1039 |
},
|
1040 |
"application/vnd.jupyter.widget-view+json": {
|
1041 |
+
"model_id": "f2b440a394e6473dbcf3ab959393d76f",
|
1042 |
"version_major": 2,
|
1043 |
"version_minor": 0
|
1044 |
},
|
|
|
1058 |
"undersampling",
|
1059 |
"rose"
|
1060 |
],
|
1061 |
+
"code_uid": "Select.0.40.16.59-randd37e3f6b",
|
1062 |
"disabled": false,
|
1063 |
"hidden": false,
|
1064 |
"label": "Imbalance Treatment",
|
1065 |
+
"model_id": "59021cfbc5d8465ba0dae8da4581ba65",
|
1066 |
"url_key": "",
|
1067 |
"value": "none",
|
1068 |
"widget": "Select"
|
1069 |
},
|
1070 |
"application/vnd.jupyter.widget-view+json": {
|
1071 |
+
"model_id": "59021cfbc5d8465ba0dae8da4581ba65",
|
1072 |
"version_major": 2,
|
1073 |
"version_minor": 0
|
1074 |
},
|
|
|
1091 |
"decision_tree",
|
1092 |
"xgboost"
|
1093 |
],
|
1094 |
+
"code_uid": "Select.0.40.16.64-rand7458a327",
|
1095 |
"disabled": false,
|
1096 |
"hidden": false,
|
1097 |
"label": "Model Selection",
|
1098 |
+
"model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
|
1099 |
"url_key": "",
|
1100 |
"value": "random_forest",
|
1101 |
"widget": "Select"
|
1102 |
},
|
1103 |
"application/vnd.jupyter.widget-view+json": {
|
1104 |
+
"model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
|
1105 |
"version_major": 2,
|
1106 |
"version_minor": 0
|
1107 |
},
|
|
|
1209 |
},
|
1210 |
{
|
1211 |
"cell_type": "code",
|
1212 |
+
"execution_count": 116,
|
1213 |
"metadata": {
|
1214 |
"slideshow": {
|
1215 |
"slide_type": "skip"
|
|
|
1235 |
"Number of missing values after imputation: 0\n",
|
1236 |
"Number of missing values before imputation: 6954\n",
|
1237 |
"Number of missing values after imputation: 0\n",
|
1238 |
+
"Selected method is: lasso\n",
|
1239 |
+
"Shape of the training set after feature selection with LassoCV: (1175, 6)\n"
|
|
|
|
|
|
|
|
|
1240 |
]
|
1241 |
}
|
1242 |
],
|
|
|
1263 |
"X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
|
1264 |
"X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
|
1265 |
"\n",
|
1266 |
+
"# select the features using the function feature_selection\n",
|
1267 |
+
"\n",
|
1268 |
+
"X_train_selected, selected_features = feature_selection(input_feature_selection, X_train_imputed, y_train)\n",
|
1269 |
+
"\n",
|
1270 |
+
"X_train_selected = pd.DataFrame(X_train_selected, columns=selected_features)\n",
|
1271 |
+
"X_test_selected = X_test_imputed[selected_features]\n",
|
1272 |
+
"\n",
|
1273 |
"# treat imbalance in the training set using the function oversample\n",
|
1274 |
"\n",
|
1275 |
+
"X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_selected, y_train)\n",
|
1276 |
"\n"
|
1277 |
]
|
1278 |
},
|
|
|
1290 |
},
|
1291 |
{
|
1292 |
"cell_type": "code",
|
1293 |
+
"execution_count": null,
|
1294 |
"metadata": {
|
1295 |
"slideshow": {
|
1296 |
"slide_type": "skip"
|
|
|
1328 |
},
|
1329 |
{
|
1330 |
"cell_type": "code",
|
1331 |
+
"execution_count": null,
|
1332 |
"metadata": {
|
1333 |
"slideshow": {
|
1334 |
"slide_type": "slide"
|
|
|
1340 |
"output_type": "stream",
|
1341 |
"text": [
|
1342 |
"Have the duplicates been removed? yes\n",
|
1343 |
+
"Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
|
1344 |
+
"Outlier removal threshold is: none\n",
|
1345 |
+
"Scaling method is: none\n",
|
1346 |
+
"Imputation method is: mean\n"
|
|
|
|
|
|
|
1347 |
]
|
1348 |
},
|
1349 |
{
|
1350 |
+
"ename": "NameError",
|
1351 |
+
"evalue": "name 'feature_selection_var' is not defined",
|
1352 |
+
"output_type": "error",
|
1353 |
+
"traceback": [
|
1354 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
1355 |
+
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
1356 |
+
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\804542050.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_counts_output\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mevaluate_models\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput_model\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m# check if the model has already been evaluated and if not, append the results to the dataframe\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mevaluation_score_df\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_score_df\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
1357 |
+
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\293505729.py\u001b[0m in \u001b[0;36mevaluate_models\u001b[1;34m(model)\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Scaling method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mscale_model_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imputation method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimputation_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Feature selection method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeature_selection_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imbalance treatment method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimbalance_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
1358 |
+
"\u001b[1;31mNameError\u001b[0m: name 'feature_selection_var' is not defined"
|
1359 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1360 |
}
|
1361 |
],
|
1362 |
"source": [
|