erjonb commited on
Commit
d47ea45
·
1 Parent(s): 8fecf57

Upload P2 - Secom Notebook - Mercury.ipynb

Browse files
Files changed (1) hide show
  1. P2 - Secom Notebook - Mercury.ipynb +93 -191
P2 - Secom Notebook - Mercury.ipynb CHANGED
@@ -15,18 +15,14 @@
15
  {
16
  "attachments": {},
17
  "cell_type": "markdown",
18
- "metadata": {
19
- "slideshow": {
20
- "slide_type": "skip"
21
- }
22
- },
23
  "source": [
24
  "#### **Import the data**"
25
  ]
26
  },
27
  {
28
  "cell_type": "code",
29
- "execution_count": 42,
30
  "metadata": {
31
  "slideshow": {
32
  "slide_type": "skip"
@@ -53,7 +49,7 @@
53
  },
54
  {
55
  "cell_type": "code",
56
- "execution_count": 43,
57
  "metadata": {
58
  "slideshow": {
59
  "slide_type": "skip"
@@ -64,7 +60,7 @@
64
  "data": {
65
  "application/mercury+json": {
66
  "allow_download": true,
67
- "code_uid": "App.0.40.24.1-rand0e93859a",
68
  "continuous_update": false,
69
  "description": "Recumpute everything dynamically",
70
  "full_screen": true,
@@ -96,7 +92,7 @@
96
  },
97
  {
98
  "cell_type": "code",
99
- "execution_count": 44,
100
  "metadata": {
101
  "slideshow": {
102
  "slide_type": "skip"
@@ -138,7 +134,7 @@
138
  },
139
  {
140
  "cell_type": "code",
141
- "execution_count": 45,
142
  "metadata": {
143
  "slideshow": {
144
  "slide_type": "skip"
@@ -195,7 +191,7 @@
195
  },
196
  {
197
  "cell_type": "code",
198
- "execution_count": 46,
199
  "metadata": {
200
  "slideshow": {
201
  "slide_type": "skip"
@@ -290,7 +286,7 @@
290
  },
291
  {
292
  "cell_type": "code",
293
- "execution_count": 47,
294
  "metadata": {
295
  "slideshow": {
296
  "slide_type": "skip"
@@ -341,7 +337,7 @@
341
  },
342
  {
343
  "cell_type": "code",
344
- "execution_count": 48,
345
  "metadata": {
346
  "slideshow": {
347
  "slide_type": "skip"
@@ -419,7 +415,7 @@
419
  },
420
  {
421
  "cell_type": "code",
422
- "execution_count": 49,
423
  "metadata": {
424
  "slideshow": {
425
  "slide_type": "skip"
@@ -485,9 +481,21 @@
485
  " return df_imputed\n"
486
  ]
487
  },
 
 
 
 
 
 
 
 
 
 
 
 
488
  {
489
  "cell_type": "code",
490
- "execution_count": 50,
491
  "metadata": {},
492
  "outputs": [],
493
  "source": [
@@ -507,6 +515,7 @@
507
  " selected_columns = X_train.columns[selected_feature_indices]\n",
508
  " X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
509
  " print('Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape)\n",
 
510
  " return X_train_filtered, selected_columns\n",
511
  " \n",
512
  " if method == 'none':\n",
@@ -515,6 +524,7 @@
515
  " print('Shape of the training set after no feature selection: ', X_train_filtered.shape)\n",
516
  " feature_selection_var = 'none'\n",
517
  " selected_features = X_train_filtered.columns\n",
 
518
  " return X_train_filtered, selected_features \n",
519
  " \n",
520
  " if method == 'lasso':\n",
@@ -567,7 +577,7 @@
567
  },
568
  {
569
  "cell_type": "code",
570
- "execution_count": 51,
571
  "metadata": {
572
  "slideshow": {
573
  "slide_type": "skip"
@@ -585,8 +595,6 @@
585
  " from imblearn.over_sampling import SMOTE\n",
586
  " sm = SMOTE(random_state=42)\n",
587
  " X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
588
- " print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
589
- " print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
590
  " imbalance_var = 'smote'\n",
591
  " return X_train_res, y_train_res\n",
592
  " \n",
@@ -594,8 +602,6 @@
594
  " from imblearn.under_sampling import RandomUnderSampler\n",
595
  " rus = RandomUnderSampler(random_state=42)\n",
596
  " X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
597
- " print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
598
- " print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
599
  " imbalance_var = 'random_undersampling'\n",
600
  " return X_train_res, y_train_res\n",
601
  " \n",
@@ -603,8 +609,6 @@
603
  " from imblearn.over_sampling import RandomOverSampler\n",
604
  " ros = RandomOverSampler(random_state=42)\n",
605
  " X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
606
- " print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
607
- " print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
608
  " imbalance_var = 'rose'\n",
609
  " return X_train_res, y_train_res\n",
610
  " \n",
@@ -612,8 +616,6 @@
612
  " if method == 'none':\n",
613
  " X_train_res = X_train\n",
614
  " y_train_res = y_train\n",
615
- " print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
616
- " print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
617
  " imbalance_var = 'none'\n",
618
  " return X_train_res, y_train_res\n",
619
  " \n",
@@ -638,7 +640,7 @@
638
  },
639
  {
640
  "cell_type": "code",
641
- "execution_count": 52,
642
  "metadata": {
643
  "slideshow": {
644
  "slide_type": "skip"
@@ -727,7 +729,7 @@
727
  },
728
  {
729
  "cell_type": "code",
730
- "execution_count": 53,
731
  "metadata": {
732
  "slideshow": {
733
  "slide_type": "skip"
@@ -741,13 +743,12 @@
741
  "\n",
742
  "def evaluate_models(model='random_forest'):\n",
743
  " print('Have the duplicates been removed?', drop_duplicates_var)\n",
744
- " print('What is the missing values threshold %?', missing_values_threshold_var)\n",
745
- " print('What is the variance threshold?', variance_threshold_var)\n",
746
- " print('What is the correlation threshold?', correlation_threshold_var)\n",
747
- " print('What is the outlier removal threshold?', outlier_var)\n",
748
- " print('What is the scaling method?', scale_model_var)\n",
749
- " print('What is the imputation method?', imputation_var) \n",
750
- " print('What is the imbalance treatment?', imbalance_var)\n",
751
  "\n",
752
  " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
753
  " evaluation_score_append = []\n",
@@ -816,7 +817,7 @@
816
  },
817
  {
818
  "cell_type": "code",
819
- "execution_count": 54,
820
  "metadata": {
821
  "slideshow": {
822
  "slide_type": "skip"
@@ -830,17 +831,17 @@
830
  "yes",
831
  "no"
832
  ],
833
- "code_uid": "Select.0.40.16.25-rand98b210b9",
834
  "disabled": false,
835
  "hidden": false,
836
  "label": "Drop Duplicates",
837
- "model_id": "f2d0fb31478a477ea1b0d4c4aa80fb2e",
838
  "url_key": "",
839
  "value": "yes",
840
  "widget": "Select"
841
  },
842
  "application/vnd.jupyter.widget-view+json": {
843
- "model_id": "f2d0fb31478a477ea1b0d4c4aa80fb2e",
844
  "version_major": 2,
845
  "version_minor": 0
846
  },
@@ -854,18 +855,18 @@
854
  {
855
  "data": {
856
  "application/mercury+json": {
857
- "code_uid": "Text.0.40.15.28-randc77c765e",
858
  "disabled": false,
859
  "hidden": false,
860
  "label": "Missing Value Threeshold",
861
- "model_id": "f97f46b880e3434082498e1e720b0b65",
862
  "rows": 1,
863
  "url_key": "",
864
  "value": "80",
865
  "widget": "Text"
866
  },
867
  "application/vnd.jupyter.widget-view+json": {
868
- "model_id": "f97f46b880e3434082498e1e720b0b65",
869
  "version_major": 2,
870
  "version_minor": 0
871
  },
@@ -879,18 +880,18 @@
879
  {
880
  "data": {
881
  "application/mercury+json": {
882
- "code_uid": "Text.0.40.15.31-rand54dd8817",
883
  "disabled": false,
884
  "hidden": false,
885
  "label": "Variance Threshold",
886
- "model_id": "4839b45f7e9b483d9fb8ee7fc05f1e19",
887
  "rows": 1,
888
  "url_key": "",
889
  "value": "0",
890
  "widget": "Text"
891
  },
892
  "application/vnd.jupyter.widget-view+json": {
893
- "model_id": "4839b45f7e9b483d9fb8ee7fc05f1e19",
894
  "version_major": 2,
895
  "version_minor": 0
896
  },
@@ -904,18 +905,18 @@
904
  {
905
  "data": {
906
  "application/mercury+json": {
907
- "code_uid": "Text.0.40.15.34-rand811824bd",
908
  "disabled": false,
909
  "hidden": false,
910
  "label": "Correlation Threshold",
911
- "model_id": "10033d424ab949f7b51462e444e17ba7",
912
  "rows": 1,
913
  "url_key": "",
914
  "value": "1",
915
  "widget": "Text"
916
  },
917
  "application/vnd.jupyter.widget-view+json": {
918
- "model_id": "10033d424ab949f7b51462e444e17ba7",
919
  "version_major": 2,
920
  "version_minor": 0
921
  },
@@ -935,17 +936,17 @@
935
  4,
936
  5
937
  ],
938
- "code_uid": "Select.0.40.16.38-rand10d00d99",
939
  "disabled": false,
940
  "hidden": false,
941
  "label": "Outlier Removal Threshold",
942
- "model_id": "96b8980bceaf46459d9ec06c8fb7c818",
943
  "url_key": "",
944
  "value": "none",
945
  "widget": "Select"
946
  },
947
  "application/vnd.jupyter.widget-view+json": {
948
- "model_id": "96b8980bceaf46459d9ec06c8fb7c818",
949
  "version_major": 2,
950
  "version_minor": 0
951
  },
@@ -966,17 +967,17 @@
966
  "minmax",
967
  "robust"
968
  ],
969
- "code_uid": "Select.0.40.16.46-rand1bc79c9d",
970
  "disabled": false,
971
  "hidden": false,
972
  "label": "Scaling Variables",
973
- "model_id": "e7650cea7a834d588a995407052e1f2c",
974
  "url_key": "",
975
  "value": "none",
976
  "widget": "Select"
977
  },
978
  "application/vnd.jupyter.widget-view+json": {
979
- "model_id": "e7650cea7a834d588a995407052e1f2c",
980
  "version_major": 2,
981
  "version_minor": 0
982
  },
@@ -996,17 +997,17 @@
996
  "knn",
997
  "most_frequent"
998
  ],
999
- "code_uid": "Select.0.40.16.50-rand69ae31a0",
1000
  "disabled": false,
1001
  "hidden": false,
1002
  "label": "Imputation Methods",
1003
- "model_id": "652a64af16174970919183e6ab1c5b53",
1004
  "url_key": "",
1005
  "value": "mean",
1006
  "widget": "Select"
1007
  },
1008
  "application/vnd.jupyter.widget-view+json": {
1009
- "model_id": "652a64af16174970919183e6ab1c5b53",
1010
  "version_major": 2,
1011
  "version_minor": 0
1012
  },
@@ -1027,17 +1028,17 @@
1027
  "pca",
1028
  "boruta"
1029
  ],
1030
- "code_uid": "Select.0.40.16.55-rand148632f9",
1031
  "disabled": false,
1032
  "hidden": false,
1033
  "label": "Feature Selection",
1034
- "model_id": "9a1a199471314cd7a3363ea25d9d341a",
1035
  "url_key": "",
1036
- "value": "none",
1037
  "widget": "Select"
1038
  },
1039
  "application/vnd.jupyter.widget-view+json": {
1040
- "model_id": "9a1a199471314cd7a3363ea25d9d341a",
1041
  "version_major": 2,
1042
  "version_minor": 0
1043
  },
@@ -1057,17 +1058,17 @@
1057
  "undersampling",
1058
  "rose"
1059
  ],
1060
- "code_uid": "Select.0.40.16.59-rand3a34b3e3",
1061
  "disabled": false,
1062
  "hidden": false,
1063
  "label": "Imbalance Treatment",
1064
- "model_id": "358dd80171af4de2a944c3077b2f48d8",
1065
  "url_key": "",
1066
  "value": "none",
1067
  "widget": "Select"
1068
  },
1069
  "application/vnd.jupyter.widget-view+json": {
1070
- "model_id": "358dd80171af4de2a944c3077b2f48d8",
1071
  "version_major": 2,
1072
  "version_minor": 0
1073
  },
@@ -1090,17 +1091,17 @@
1090
  "decision_tree",
1091
  "xgboost"
1092
  ],
1093
- "code_uid": "Select.0.40.16.64-rand4b9cf5e0",
1094
  "disabled": false,
1095
  "hidden": false,
1096
  "label": "Model Selection",
1097
- "model_id": "8477ca5211bd4914861b3e48cda21c10",
1098
  "url_key": "",
1099
  "value": "random_forest",
1100
  "widget": "Select"
1101
  },
1102
  "application/vnd.jupyter.widget-view+json": {
1103
- "model_id": "8477ca5211bd4914861b3e48cda21c10",
1104
  "version_major": 2,
1105
  "version_minor": 0
1106
  },
@@ -1208,7 +1209,7 @@
1208
  },
1209
  {
1210
  "cell_type": "code",
1211
- "execution_count": 55,
1212
  "metadata": {
1213
  "slideshow": {
1214
  "slide_type": "skip"
@@ -1234,12 +1235,8 @@
1234
  "Number of missing values after imputation: 0\n",
1235
  "Number of missing values before imputation: 6954\n",
1236
  "Number of missing values after imputation: 0\n",
1237
- "Shape of the training set after no resampling: (1175, 445)\n",
1238
- "Value counts of the target variable after no resampling: \n",
1239
- " pass/fail\n",
1240
- "0 1097\n",
1241
- "1 78\n",
1242
- "dtype: int64\n"
1243
  ]
1244
  }
1245
  ],
@@ -1266,9 +1263,16 @@
1266
  "X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
1267
  "X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
1268
  "\n",
 
 
 
 
 
 
 
1269
  "# treat imbalance in the training set using the function oversample\n",
1270
  "\n",
1271
- "X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_imputed, y_train)\n",
1272
  "\n"
1273
  ]
1274
  },
@@ -1286,7 +1290,7 @@
1286
  },
1287
  {
1288
  "cell_type": "code",
1289
- "execution_count": 56,
1290
  "metadata": {
1291
  "slideshow": {
1292
  "slide_type": "skip"
@@ -1324,7 +1328,7 @@
1324
  },
1325
  {
1326
  "cell_type": "code",
1327
- "execution_count": 57,
1328
  "metadata": {
1329
  "slideshow": {
1330
  "slide_type": "slide"
@@ -1336,125 +1340,23 @@
1336
  "output_type": "stream",
1337
  "text": [
1338
  "Have the duplicates been removed? yes\n",
1339
- "What is the missing values threshold %? 80\n",
1340
- "What is the variance threshold? 0.0\n",
1341
- "What is the correlation threshold? 1.0\n",
1342
- "What is the outlier removal threshold? none\n",
1343
- "What is the scaling method? none\n",
1344
- "What is the imputation method? mean\n",
1345
- "What is the imbalance treatment? none\n"
1346
  ]
1347
  },
1348
  {
1349
- "data": {
1350
- "text/html": [
1351
- "<div>\n",
1352
- "<style scoped>\n",
1353
- " .dataframe tbody tr th:only-of-type {\n",
1354
- " vertical-align: middle;\n",
1355
- " }\n",
1356
- "\n",
1357
- " .dataframe tbody tr th {\n",
1358
- " vertical-align: top;\n",
1359
- " }\n",
1360
- "\n",
1361
- " .dataframe thead th {\n",
1362
- " text-align: right;\n",
1363
- " }\n",
1364
- "</style>\n",
1365
- "<table border=\"1\" class=\"dataframe\">\n",
1366
- " <thead>\n",
1367
- " <tr style=\"text-align: right;\">\n",
1368
- " <th></th>\n",
1369
- " <th>Model</th>\n",
1370
- " <th>Accuracy</th>\n",
1371
- " <th>Precision</th>\n",
1372
- " <th>Recall</th>\n",
1373
- " <th>F1-score</th>\n",
1374
- " </tr>\n",
1375
- " </thead>\n",
1376
- " <tbody>\n",
1377
- " <tr>\n",
1378
- " <th>0</th>\n",
1379
- " <td>random_forest</td>\n",
1380
- " <td>0.93</td>\n",
1381
- " <td>0.0</td>\n",
1382
- " <td>0.0</td>\n",
1383
- " <td>0.0</td>\n",
1384
- " </tr>\n",
1385
- " </tbody>\n",
1386
- "</table>\n",
1387
- "</div>"
1388
- ],
1389
- "text/plain": [
1390
- " Model Accuracy Precision Recall F1-score\n",
1391
- "0 random_forest 0.93 0.0 0.0 0.0"
1392
- ]
1393
- },
1394
- "metadata": {},
1395
- "output_type": "display_data"
1396
- },
1397
- {
1398
- "data": {
1399
- "text/html": [
1400
- "<div>\n",
1401
- "<style scoped>\n",
1402
- " .dataframe tbody tr th:only-of-type {\n",
1403
- " vertical-align: middle;\n",
1404
- " }\n",
1405
- "\n",
1406
- " .dataframe tbody tr th {\n",
1407
- " vertical-align: top;\n",
1408
- " }\n",
1409
- "\n",
1410
- " .dataframe thead th {\n",
1411
- " text-align: right;\n",
1412
- " }\n",
1413
- "</style>\n",
1414
- "<table border=\"1\" class=\"dataframe\">\n",
1415
- " <thead>\n",
1416
- " <tr style=\"text-align: right;\">\n",
1417
- " <th></th>\n",
1418
- " <th>Model</th>\n",
1419
- " <th>True Negatives</th>\n",
1420
- " <th>False Positives</th>\n",
1421
- " <th>False Negatives</th>\n",
1422
- " <th>True Positives</th>\n",
1423
- " </tr>\n",
1424
- " </thead>\n",
1425
- " <tbody>\n",
1426
- " <tr>\n",
1427
- " <th>0</th>\n",
1428
- " <td>random_forest</td>\n",
1429
- " <td>366</td>\n",
1430
- " <td>0</td>\n",
1431
- " <td>26</td>\n",
1432
- " <td>0</td>\n",
1433
- " </tr>\n",
1434
- " </tbody>\n",
1435
- "</table>\n",
1436
- "</div>"
1437
- ],
1438
- "text/plain": [
1439
- " Model True Negatives False Positives False Negatives \\\n",
1440
- "0 random_forest 366 0 26 \n",
1441
- "\n",
1442
- " True Positives \n",
1443
- "0 0 "
1444
- ]
1445
- },
1446
- "metadata": {},
1447
- "output_type": "display_data"
1448
- },
1449
- {
1450
- "data": {
1451
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
1452
- "text/plain": [
1453
- "<Figure size 350x350 with 1 Axes>"
1454
- ]
1455
- },
1456
- "metadata": {},
1457
- "output_type": "display_data"
1458
  }
1459
  ],
1460
  "source": [
 
15
  {
16
  "attachments": {},
17
  "cell_type": "markdown",
18
+ "metadata": {},
 
 
 
 
19
  "source": [
20
  "#### **Import the data**"
21
  ]
22
  },
23
  {
24
  "cell_type": "code",
25
+ "execution_count": 97,
26
  "metadata": {
27
  "slideshow": {
28
  "slide_type": "skip"
 
49
  },
50
  {
51
  "cell_type": "code",
52
+ "execution_count": 98,
53
  "metadata": {
54
  "slideshow": {
55
  "slide_type": "skip"
 
60
  "data": {
61
  "application/mercury+json": {
62
  "allow_download": true,
63
+ "code_uid": "App.0.40.24.1-rand0254d4eb",
64
  "continuous_update": false,
65
  "description": "Recumpute everything dynamically",
66
  "full_screen": true,
 
92
  },
93
  {
94
  "cell_type": "code",
95
+ "execution_count": 99,
96
  "metadata": {
97
  "slideshow": {
98
  "slide_type": "skip"
 
134
  },
135
  {
136
  "cell_type": "code",
137
+ "execution_count": 100,
138
  "metadata": {
139
  "slideshow": {
140
  "slide_type": "skip"
 
191
  },
192
  {
193
  "cell_type": "code",
194
+ "execution_count": 101,
195
  "metadata": {
196
  "slideshow": {
197
  "slide_type": "skip"
 
286
  },
287
  {
288
  "cell_type": "code",
289
+ "execution_count": 102,
290
  "metadata": {
291
  "slideshow": {
292
  "slide_type": "skip"
 
337
  },
338
  {
339
  "cell_type": "code",
340
+ "execution_count": 103,
341
  "metadata": {
342
  "slideshow": {
343
  "slide_type": "skip"
 
415
  },
416
  {
417
  "cell_type": "code",
418
+ "execution_count": 104,
419
  "metadata": {
420
  "slideshow": {
421
  "slide_type": "skip"
 
481
  " return df_imputed\n"
482
  ]
483
  },
484
+ {
485
+ "attachments": {},
486
+ "cell_type": "markdown",
487
+ "metadata": {
488
+ "slideshow": {
489
+ "slide_type": "skip"
490
+ }
491
+ },
492
+ "source": [
493
+ "#### **Feature Selection**"
494
+ ]
495
+ },
496
  {
497
  "cell_type": "code",
498
+ "execution_count": 105,
499
  "metadata": {},
500
  "outputs": [],
501
  "source": [
 
515
  " selected_columns = X_train.columns[selected_feature_indices]\n",
516
  " X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
517
  " print('Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape)\n",
518
+ " feature_selection_var = 'boruta'\n",
519
  " return X_train_filtered, selected_columns\n",
520
  " \n",
521
  " if method == 'none':\n",
 
524
  " print('Shape of the training set after no feature selection: ', X_train_filtered.shape)\n",
525
  " feature_selection_var = 'none'\n",
526
  " selected_features = X_train_filtered.columns\n",
527
+ " feature_selection_var = 'none'\n",
528
  " return X_train_filtered, selected_features \n",
529
  " \n",
530
  " if method == 'lasso':\n",
 
577
  },
578
  {
579
  "cell_type": "code",
580
+ "execution_count": 106,
581
  "metadata": {
582
  "slideshow": {
583
  "slide_type": "skip"
 
595
  " from imblearn.over_sampling import SMOTE\n",
596
  " sm = SMOTE(random_state=42)\n",
597
  " X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
 
 
598
  " imbalance_var = 'smote'\n",
599
  " return X_train_res, y_train_res\n",
600
  " \n",
 
602
  " from imblearn.under_sampling import RandomUnderSampler\n",
603
  " rus = RandomUnderSampler(random_state=42)\n",
604
  " X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
 
 
605
  " imbalance_var = 'random_undersampling'\n",
606
  " return X_train_res, y_train_res\n",
607
  " \n",
 
609
  " from imblearn.over_sampling import RandomOverSampler\n",
610
  " ros = RandomOverSampler(random_state=42)\n",
611
  " X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
 
 
612
  " imbalance_var = 'rose'\n",
613
  " return X_train_res, y_train_res\n",
614
  " \n",
 
616
  " if method == 'none':\n",
617
  " X_train_res = X_train\n",
618
  " y_train_res = y_train\n",
 
 
619
  " imbalance_var = 'none'\n",
620
  " return X_train_res, y_train_res\n",
621
  " \n",
 
640
  },
641
  {
642
  "cell_type": "code",
643
+ "execution_count": 107,
644
  "metadata": {
645
  "slideshow": {
646
  "slide_type": "skip"
 
729
  },
730
  {
731
  "cell_type": "code",
732
+ "execution_count": 108,
733
  "metadata": {
734
  "slideshow": {
735
  "slide_type": "skip"
 
743
  "\n",
744
  "def evaluate_models(model='random_forest'):\n",
745
  " print('Have the duplicates been removed?', drop_duplicates_var)\n",
746
+ " print('Missing values threshold is:', missing_values_threshold_var,' - Variance threshold is:,', variance_threshold_var,' - Correlation threshold is:', correlation_threshold_var)\n",
747
+ " print('Outlier removal threshold is:', outlier_var)\n",
748
+ " print('Scaling method is:', scale_model_var)\n",
749
+ " print('Imputation method is:', imputation_var)\n",
750
+ " print('Feature selection method is:', feature_selection_var)\n",
751
+ " print('Imbalance treatment method is:', imbalance_var)\n",
 
752
  "\n",
753
  " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
754
  " evaluation_score_append = []\n",
 
817
  },
818
  {
819
  "cell_type": "code",
820
+ "execution_count": 113,
821
  "metadata": {
822
  "slideshow": {
823
  "slide_type": "skip"
 
831
  "yes",
832
  "no"
833
  ],
834
+ "code_uid": "Select.0.40.16.25-rand2694baac",
835
  "disabled": false,
836
  "hidden": false,
837
  "label": "Drop Duplicates",
838
+ "model_id": "d2be0f72c8ad4556970977c13a04a1c8",
839
  "url_key": "",
840
  "value": "yes",
841
  "widget": "Select"
842
  },
843
  "application/vnd.jupyter.widget-view+json": {
844
+ "model_id": "d2be0f72c8ad4556970977c13a04a1c8",
845
  "version_major": 2,
846
  "version_minor": 0
847
  },
 
855
  {
856
  "data": {
857
  "application/mercury+json": {
858
+ "code_uid": "Text.0.40.15.28-rande1621478",
859
  "disabled": false,
860
  "hidden": false,
861
  "label": "Missing Value Threeshold",
862
+ "model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
863
  "rows": 1,
864
  "url_key": "",
865
  "value": "80",
866
  "widget": "Text"
867
  },
868
  "application/vnd.jupyter.widget-view+json": {
869
+ "model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
870
  "version_major": 2,
871
  "version_minor": 0
872
  },
 
880
  {
881
  "data": {
882
  "application/mercury+json": {
883
+ "code_uid": "Text.0.40.15.31-rand4541ac63",
884
  "disabled": false,
885
  "hidden": false,
886
  "label": "Variance Threshold",
887
+ "model_id": "be3aff94bc9946d283b7b34af9b61b1d",
888
  "rows": 1,
889
  "url_key": "",
890
  "value": "0",
891
  "widget": "Text"
892
  },
893
  "application/vnd.jupyter.widget-view+json": {
894
+ "model_id": "be3aff94bc9946d283b7b34af9b61b1d",
895
  "version_major": 2,
896
  "version_minor": 0
897
  },
 
905
  {
906
  "data": {
907
  "application/mercury+json": {
908
+ "code_uid": "Text.0.40.15.34-rand92107f0e",
909
  "disabled": false,
910
  "hidden": false,
911
  "label": "Correlation Threshold",
912
+ "model_id": "20a2b896579147a4a8cf1f8593ca263c",
913
  "rows": 1,
914
  "url_key": "",
915
  "value": "1",
916
  "widget": "Text"
917
  },
918
  "application/vnd.jupyter.widget-view+json": {
919
+ "model_id": "20a2b896579147a4a8cf1f8593ca263c",
920
  "version_major": 2,
921
  "version_minor": 0
922
  },
 
936
  4,
937
  5
938
  ],
939
+ "code_uid": "Select.0.40.16.38-randf6cb87b9",
940
  "disabled": false,
941
  "hidden": false,
942
  "label": "Outlier Removal Threshold",
943
+ "model_id": "013f6eeb57534a49abd399f13c4814aa",
944
  "url_key": "",
945
  "value": "none",
946
  "widget": "Select"
947
  },
948
  "application/vnd.jupyter.widget-view+json": {
949
+ "model_id": "013f6eeb57534a49abd399f13c4814aa",
950
  "version_major": 2,
951
  "version_minor": 0
952
  },
 
967
  "minmax",
968
  "robust"
969
  ],
970
+ "code_uid": "Select.0.40.16.46-rand035a3a64",
971
  "disabled": false,
972
  "hidden": false,
973
  "label": "Scaling Variables",
974
+ "model_id": "4c799a2109f0475dad281094174aff03",
975
  "url_key": "",
976
  "value": "none",
977
  "widget": "Select"
978
  },
979
  "application/vnd.jupyter.widget-view+json": {
980
+ "model_id": "4c799a2109f0475dad281094174aff03",
981
  "version_major": 2,
982
  "version_minor": 0
983
  },
 
997
  "knn",
998
  "most_frequent"
999
  ],
1000
+ "code_uid": "Select.0.40.16.50-rand1c821039",
1001
  "disabled": false,
1002
  "hidden": false,
1003
  "label": "Imputation Methods",
1004
+ "model_id": "7c5bf031dc55488688a5878edb7cc55f",
1005
  "url_key": "",
1006
  "value": "mean",
1007
  "widget": "Select"
1008
  },
1009
  "application/vnd.jupyter.widget-view+json": {
1010
+ "model_id": "7c5bf031dc55488688a5878edb7cc55f",
1011
  "version_major": 2,
1012
  "version_minor": 0
1013
  },
 
1028
  "pca",
1029
  "boruta"
1030
  ],
1031
+ "code_uid": "Select.0.40.16.55-randf440b52a",
1032
  "disabled": false,
1033
  "hidden": false,
1034
  "label": "Feature Selection",
1035
+ "model_id": "f2b440a394e6473dbcf3ab959393d76f",
1036
  "url_key": "",
1037
+ "value": "lasso",
1038
  "widget": "Select"
1039
  },
1040
  "application/vnd.jupyter.widget-view+json": {
1041
+ "model_id": "f2b440a394e6473dbcf3ab959393d76f",
1042
  "version_major": 2,
1043
  "version_minor": 0
1044
  },
 
1058
  "undersampling",
1059
  "rose"
1060
  ],
1061
+ "code_uid": "Select.0.40.16.59-randd37e3f6b",
1062
  "disabled": false,
1063
  "hidden": false,
1064
  "label": "Imbalance Treatment",
1065
+ "model_id": "59021cfbc5d8465ba0dae8da4581ba65",
1066
  "url_key": "",
1067
  "value": "none",
1068
  "widget": "Select"
1069
  },
1070
  "application/vnd.jupyter.widget-view+json": {
1071
+ "model_id": "59021cfbc5d8465ba0dae8da4581ba65",
1072
  "version_major": 2,
1073
  "version_minor": 0
1074
  },
 
1091
  "decision_tree",
1092
  "xgboost"
1093
  ],
1094
+ "code_uid": "Select.0.40.16.64-rand7458a327",
1095
  "disabled": false,
1096
  "hidden": false,
1097
  "label": "Model Selection",
1098
+ "model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
1099
  "url_key": "",
1100
  "value": "random_forest",
1101
  "widget": "Select"
1102
  },
1103
  "application/vnd.jupyter.widget-view+json": {
1104
+ "model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
1105
  "version_major": 2,
1106
  "version_minor": 0
1107
  },
 
1209
  },
1210
  {
1211
  "cell_type": "code",
1212
+ "execution_count": 116,
1213
  "metadata": {
1214
  "slideshow": {
1215
  "slide_type": "skip"
 
1235
  "Number of missing values after imputation: 0\n",
1236
  "Number of missing values before imputation: 6954\n",
1237
  "Number of missing values after imputation: 0\n",
1238
+ "Selected method is: lasso\n",
1239
+ "Shape of the training set after feature selection with LassoCV: (1175, 6)\n"
 
 
 
 
1240
  ]
1241
  }
1242
  ],
 
1263
  "X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
1264
  "X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
1265
  "\n",
1266
+ "# select the features using the function feature_selection\n",
1267
+ "\n",
1268
+ "X_train_selected, selected_features = feature_selection(input_feature_selection, X_train_imputed, y_train)\n",
1269
+ "\n",
1270
+ "X_train_selected = pd.DataFrame(X_train_selected, columns=selected_features)\n",
1271
+ "X_test_selected = X_test_imputed[selected_features]\n",
1272
+ "\n",
1273
  "# treat imbalance in the training set using the function oversample\n",
1274
  "\n",
1275
+ "X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_selected, y_train)\n",
1276
  "\n"
1277
  ]
1278
  },
 
1290
  },
1291
  {
1292
  "cell_type": "code",
1293
+ "execution_count": null,
1294
  "metadata": {
1295
  "slideshow": {
1296
  "slide_type": "skip"
 
1328
  },
1329
  {
1330
  "cell_type": "code",
1331
+ "execution_count": null,
1332
  "metadata": {
1333
  "slideshow": {
1334
  "slide_type": "slide"
 
1340
  "output_type": "stream",
1341
  "text": [
1342
  "Have the duplicates been removed? yes\n",
1343
+ "Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
1344
+ "Outlier removal threshold is: none\n",
1345
+ "Scaling method is: none\n",
1346
+ "Imputation method is: mean\n"
 
 
 
1347
  ]
1348
  },
1349
  {
1350
+ "ename": "NameError",
1351
+ "evalue": "name 'feature_selection_var' is not defined",
1352
+ "output_type": "error",
1353
+ "traceback": [
1354
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
1355
+ "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
1356
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\804542050.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_counts_output\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mevaluate_models\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput_model\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m# check if the model has already been evaluated and if not, append the results to the dataframe\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mevaluation_score_df\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_score_df\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
1357
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\293505729.py\u001b[0m in \u001b[0;36mevaluate_models\u001b[1;34m(model)\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Scaling method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mscale_model_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imputation method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimputation_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Feature selection method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeature_selection_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imbalance treatment method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimbalance_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
1358
+ "\u001b[1;31mNameError\u001b[0m: name 'feature_selection_var' is not defined"
1359
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360
  }
1361
  ],
1362
  "source": [