Spaces:
Paused
Paused
File size: 9,960 Bytes
f239efc 270e904 f239efc 3aeaa47 f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from argparse import ArgumentParser
import copy
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
from utils.easydict import EasyDict
from tasks.eval.model_utils import load_pllava
from tasks.eval.eval_utils import (
ChatPllava,
conv_plain_v1,
Conversation,
conv_templates
)
from tasks.eval.demo import pllava_theme
SYSTEM="""You are Pllava, a large vision-language assistant.
You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language.
Follow the instructions carefully and explain your answers in detail based on the provided video.
"""
INIT_CONVERSATION: Conversation = conv_plain_v1.copy()
# ========================================
# Model Initialization
# ========================================
def init_model(args):
print('Initializing PLLaVA')
model, processor = load_pllava(
args.pretrained_model_name_or_path, args.num_frames,
use_lora=args.use_lora,
weight_dir=args.weight_dir,
lora_alpha=args.lora_alpha,
use_multi_gpus=args.use_multi_gpus)
if not args.use_multi_gpus:
model = model.to('cuda')
chat = ChatPllava(model, processor)
return chat
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state = INIT_CONVERSATION.copy()
if img_list is not None:
img_list = []
return (
None,
gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
gr.update(placeholder='Please upload your video first', interactive=False),
gr.update(value="Upload & Start Chat", interactive=True),
chat_state,
img_list
)
def upload_img(gr_img, gr_video, chat_state=None, num_segments=None, img_list=None):
print(gr_img, gr_video)
chat_state = INIT_CONVERSATION.copy() if chat_state is None else chat_state
img_list = [] if img_list is None else img_list
if gr_img is None and gr_video is None:
return None, None, gr.update(interactive=True),gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None
if gr_video:
llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
return (
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True, placeholder='Type and press Enter'),
gr.update(value="Start Chatting", interactive=False),
chat_state,
img_list,
)
if gr_img:
llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
return (
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True, placeholder='Type and press Enter'),
gr.update(value="Start Chatting", interactive=False),
chat_state,
img_list
)
def gradio_ask(user_message, chatbot, chat_state, system):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat_state = chat.ask(user_message, chat_state, system)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message, llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=200, num_beams=num_beams, temperature=temperature)
llm_message = llm_message.replace("<s>", "") # handle <s>
chatbot[-1][1] = llm_message
print(chat_state)
print(f"Answer: {llm_message}")
return chatbot, chat_state, img_list
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
default='llava-hf/llava-1.5-7b-hf'
)
parser.add_argument(
"--num_frames",
type=int,
required=True,
default=4,
)
parser.add_argument(
"--use_lora",
action='store_true'
)
parser.add_argument(
"--use_multi_gpus",
action='store_true'
)
parser.add_argument(
"--weight_dir",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--conv_mode",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--lora_alpha",
type=int,
required=False,
default=None,
)
parser.add_argument(
"--server_port",
type=int,
required=False,
default=7868,
)
args = parser.parse_args()
return args
title = """<h1 align="center"><a href="https://github.com/magic-research/PLLaVA"><img src="https://raw.githubusercontent.com/magic-research/PLLaVA/main/assert/logo.png" alt="PLLAVA" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description = (
"""<br><p><a href='https://github.com/magic-research/PLLaVA'>
# PLLAVA!
<img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p>
- Upload A Video
- Press Upload
- Start Chatting
"""
)
args = parse_args()
model_description = f"""
# MODEL INFO
- pretrained_model_name_or_path:{args.pretrained_model_name_or_path}
- use_lora:{args.use_lora}
- weight_dir:{args.weight_dir}
"""
# with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
with gr.Blocks(title="PLLaVA",
theme=pllava_theme,
css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(model_description)
with gr.Row():
with gr.Column(scale=0.5, visible=True) as video_upload:
# with gr.Column(elem_id="image", scale=0.5) as img_part:
with gr.Tab("Video", elem_id='video_tab'):
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload", height=360)
with gr.Tab("Image", elem_id='image_tab'):
up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload", height=360)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
# num_segments = gr.Slider(
# minimum=8,
# maximum=64,
# value=8,
# step=1,
# interactive=True,
# label="Video Segments",
# )
with gr.Column(visible=True) as input_raws:
system_string = gr.Textbox(SYSTEM, interactive=True, label='system')
num_beams = gr.Slider(
minimum=1,
maximum=5,
value=1,
step=1,
interactive=True,
label="beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(elem_id="chatbot",label='Conversation')
with gr.Row():
with gr.Column(scale=0.7):
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False, container=False)
with gr.Column(scale=0.15, min_width=0):
run = gr.Button("💭Send")
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("🔄Clear")
with gr.Row():
examples = gr.Examples(
examples=[
['example/jesse_dance.mp4', 'What is the man doing?'],
['example/yoga.mp4', 'What is the woman doing?'],
['example/cooking.mp4', 'Describe the background, characters and the actions in the provided video.'],
# ['example/cooking.mp4', 'What is happening in the video?'],
['example/working.mp4', 'Describe the background, characters and the actions in the provided video.'],
['example/1917.mp4', 'Describe the background, characters and the actions in the provided video.'],
],
inputs=[up_video, text_input],
cache_examples=False
)
chat = init_model(args)
INIT_CONVERSATION = conv_templates[args.conv_mode]
upload_button.click(upload_img, [up_image, up_video, chat_state], [up_image, up_video, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state, system_string], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(gradio_ask, [text_input, chatbot, chat_state, system_string], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(lambda: "", None, text_input)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)
demo.queue(max_size=5)
demo.launch()
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)
|