File size: 9,960 Bytes
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270e904
 
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aeaa47
 
f239efc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from argparse import ArgumentParser
import copy
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes

from utils.easydict import EasyDict
from tasks.eval.model_utils import load_pllava
from tasks.eval.eval_utils import (
    ChatPllava,
    conv_plain_v1,
    Conversation,
    conv_templates
)
from tasks.eval.demo import pllava_theme

SYSTEM="""You are Pllava, a large vision-language assistant. 
You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language.
Follow the instructions carefully and explain your answers in detail based on the provided video.
"""
INIT_CONVERSATION: Conversation = conv_plain_v1.copy()


# ========================================
#             Model Initialization
# ========================================
def init_model(args):

    print('Initializing PLLaVA')
    model, processor = load_pllava(
        args.pretrained_model_name_or_path, args.num_frames, 
        use_lora=args.use_lora, 
        weight_dir=args.weight_dir, 
        lora_alpha=args.lora_alpha, 
        use_multi_gpus=args.use_multi_gpus)
    if not args.use_multi_gpus:
        model = model.to('cuda')
    chat = ChatPllava(model, processor)
    return chat


# ========================================
#             Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
    if chat_state is not None:
        chat_state = INIT_CONVERSATION.copy()
    if img_list is not None:
        img_list = []
    return (
        None,
        gr.update(value=None, interactive=True),
        gr.update(value=None, interactive=True),
        gr.update(placeholder='Please upload your video first', interactive=False),
        gr.update(value="Upload & Start Chat", interactive=True),
        chat_state,
        img_list
    )


def upload_img(gr_img, gr_video, chat_state=None, num_segments=None, img_list=None):
    print(gr_img, gr_video)
    chat_state = INIT_CONVERSATION.copy() if chat_state is None else chat_state
    img_list = [] if img_list is None else img_list
    
    if gr_img is None and gr_video is None:
        return None, None, gr.update(interactive=True),gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None
    if gr_video: 
        llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
        return (
            gr.update(interactive=True),
            gr.update(interactive=True),
            gr.update(interactive=True, placeholder='Type and press Enter'),
            gr.update(value="Start Chatting", interactive=False),
            chat_state,
            img_list,
        )
    if gr_img:
        llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
        return (
            gr.update(interactive=True),
            gr.update(interactive=True),
            gr.update(interactive=True, placeholder='Type and press Enter'),
            gr.update(value="Start Chatting", interactive=False),
            chat_state,
            img_list
        )


def gradio_ask(user_message, chatbot, chat_state, system):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chat_state =  chat.ask(user_message, chat_state, system)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state


def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
    llm_message, llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=200, num_beams=num_beams, temperature=temperature)
    llm_message = llm_message.replace("<s>", "") # handle <s>
    chatbot[-1][1] = llm_message
    print(chat_state)
    print(f"Answer: {llm_message}")
    return chatbot, chat_state, img_list


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        default='llava-hf/llava-1.5-7b-hf'
    )
    parser.add_argument(
        "--num_frames",
        type=int,
        required=True,
        default=4,
    )
    parser.add_argument(
        "--use_lora",
        action='store_true'
    )
    parser.add_argument(
        "--use_multi_gpus",
        action='store_true'
    )
    parser.add_argument(
        "--weight_dir",
        type=str,
        required=False,
        default=None,
    )
    parser.add_argument(
        "--conv_mode",
        type=str,
        required=False,
        default=None,
    )
    parser.add_argument(
        "--lora_alpha",
        type=int,
        required=False,
        default=None,
    )
    parser.add_argument(
        "--server_port",
        type=int,
        required=False,
        default=7868,
    )
    args = parser.parse_args()
    return args


title = """<h1 align="center"><a href="https://github.com/magic-research/PLLaVA"><img src="https://raw.githubusercontent.com/magic-research/PLLaVA/main/assert/logo.png" alt="PLLAVA" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description = (
    """<br><p><a href='https://github.com/magic-research/PLLaVA'>
    # PLLAVA!
    <img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p>
    - Upload A Video
    - Press Upload
    - Start Chatting
    """
)

args = parse_args()

model_description = f"""
    # MODEL INFO
    - pretrained_model_name_or_path:{args.pretrained_model_name_or_path}
    - use_lora:{args.use_lora}
    - weight_dir:{args.weight_dir}
"""

# with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
with gr.Blocks(title="PLLaVA",
               theme=pllava_theme,
               css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(model_description)
    with gr.Row():
        with gr.Column(scale=0.5, visible=True) as video_upload:
            # with gr.Column(elem_id="image", scale=0.5) as img_part:
            with gr.Tab("Video", elem_id='video_tab'):
                up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload", height=360)
            with gr.Tab("Image", elem_id='image_tab'):
                up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload", height=360)
            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Restart")
            
            # num_segments = gr.Slider(
            #     minimum=8,
            #     maximum=64,
            #     value=8,
            #     step=1,
            #     interactive=True,
            #     label="Video Segments",
            # )
        
        with gr.Column(visible=True)  as input_raws:
            system_string = gr.Textbox(SYSTEM, interactive=True, label='system')
            num_beams = gr.Slider(
                minimum=1,
                maximum=5,
                value=1,
                step=1,
                interactive=True,
                label="beam search numbers",
            )           
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
            
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(elem_id="chatbot",label='Conversation')
            with gr.Row():
                with gr.Column(scale=0.7):
                    text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False, container=False)
                with gr.Column(scale=0.15, min_width=0):
                    run = gr.Button("💭Send")
                with gr.Column(scale=0.15, min_width=0):
                    clear = gr.Button("🔄Clear")     
    
    with gr.Row():
        examples = gr.Examples(
            examples=[
                ['example/jesse_dance.mp4', 'What is the man doing?'],
                ['example/yoga.mp4', 'What is the woman doing?'],
                ['example/cooking.mp4', 'Describe the background, characters and the actions in the provided video.'],
                # ['example/cooking.mp4', 'What is happening in the video?'],
                ['example/working.mp4', 'Describe the background, characters and the actions in the provided video.'],
                ['example/1917.mp4', 'Describe the background, characters and the actions in the provided video.'],
            ],
            inputs=[up_video, text_input],
            cache_examples=False
        )


    chat = init_model(args)
    INIT_CONVERSATION = conv_templates[args.conv_mode]
    upload_button.click(upload_img, [up_image, up_video, chat_state], [up_image, up_video, text_input, upload_button, chat_state, img_list])
    
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state, system_string], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    run.click(gradio_ask, [text_input, chatbot, chat_state, system_string], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    run.click(lambda: "", None, text_input)  
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)

demo.queue(max_size=5)
demo.launch()
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)