Spaces:
Paused
Paused
File size: 21,064 Bytes
f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import ast
import os
import json
from typing import OrderedDict
from multiprocessing import Pool
from functools import partial
import tqdm
from tasks.eval.eval_utils import (
dump_json,
load_json,
EvalDataset,
)
from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
)
sub_task_type2chatgpt_contents = OrderedDict({
# general ones
'temporal': {
"system": "You are an intelligent chatbot designed for evaluating the temporal understanding of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if they correctly reflect the temporal sequence of events in the video content. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the temporal consistency between the predicted answer and the correct answer. The predicted answer should correctly reflect the sequence of events or details as they are presented in the video content.\n"
"- Consider synonyms or paraphrases as valid matches, but only if the temporal order is maintained.\n"
"- Evaluate the temporal accuracy of the prediction compared to the answer.",
"user": "Please evaluate the following video-based question-answer pair:\n\n"
"Question: {question}\n"
"Correct Answer: {answer}\n"
"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a temporal accuracy score where the temporal accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of temporal consistency. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the temporal accuracy score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {{'score': 4.8}}."
},
"context": {
"system": "You are an intelligent chatbot designed for evaluating the contextual understanding of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if the generated response aligns with the overall context of the video content. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Evaluate whether the predicted answer aligns with the overall context of the video content. It should not provide information that is out of context or misaligned.\n"
"- The predicted answer must capture the main themes and sentiments of the video.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Provide your evaluation of the contextual understanding of the prediction compared to the answer.",
"user": "Please evaluate the following video-based question-answer pair:\n\n"
"Question: {question}\n"
"Correct Answer: {answer}\n"
"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a contextual understanding score where the contextual understanding score is an integer value between 0 and 5, with 5 indicating the highest level of contextual understanding. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is contextual understanding score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {{'score': 4.8}}."
},
'detailed_orientation': {
"system": "You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
"- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity.",
"user": "Please evaluate the following video-based question-answer pair:\n\n"
"Question: {question}\n"
"Correct Answer: {answer}\n"
"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {{'score': 4.8}}."
,
},
"correctness": {
"system": "You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if they are factually consistent. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the factual consistency between the predicted answer and the correct answer. The predicted answer should not contain any misinterpretations or misinformation.\n"
"- The predicted answer must be factually accurate and align with the video content.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the factual accuracy of the prediction compared to the answer.",
"user": "Please evaluate the following video-based question-answer pair:\n\n"
"Question: {question}\n"
"Correct Answer: {answer}\n"
"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a factual accuracy score where the factual accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of factual consistency. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the factual accuracy score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {{'score': 4.8}}."
},
"consistency": {
"system": "You are an intelligent chatbot designed for evaluating the consistency of generative outputs for similar video-based question-answer pairs. "
"You will be given two very similar questions, a common answer common to both the questions and predicted answers for the two questions ."
"Your task is to compare the predicted answers for two very similar question, with a common correct answer and determine if they are consistent. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the consistency between the two predicted answers and the correct answer. Both predicted answers should correspond to the correct answer and to each other, and should not contain any contradictions or significant differences in the conveyed information.\n"
"- Both predicted answers must be consistent with each other and the correct answer, in terms of the information they provide about the video content.\n"
"- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency in the conveyed information.\n"
"- Evaluate the consistency of the two predicted answers compared to the correct answer.",
"user":"Please evaluate the following video-based question-answer pair:\n\n"
"Question 1: {question}\n"
"Question 2: {question1}\n"
"Correct Answer: {answer}\n"
"Predicted Answer to Question 1: {pred}\n"
"Predicted Answer to Question 2: {pred1}\n\n"
"Provide your evaluation only as a consistency score where the consistency score is an integer value between 0 and 5, with 5 indicating the highest level of consistency. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the consistency score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {{'score': 4.8}}."
},
})
SYSTEM_VCGBENCH="""
You are Video-ChatGPT, a large vision-language assistant.
You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language.
Follow the instructions carefully and explain your answers in detail based on the provided video.
"""
def check_ans(gt, pred, question, sub_task_type, question1=None, pred1=None, model="gpt-3.5-turbo-0125"):
# # dummy
# print('-' * 10 + f'pred: {pred}')
# print('-' * 10 + f'gt: {gt}')
try:
# Compute the temporal understanding score
user_input = sub_task_type2chatgpt_contents[sub_task_type]['user']
if question1 is not None and pred1 is not None:
assert sub_task_type == 'consistency', 'consistency has two answers'
user_input = user_input.format(question=question, answer=gt, pred=pred, pred1=pred1, question1=question1)
else:
user_input = user_input.format(question=question, answer=gt, pred=pred)
completion = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": sub_task_type2chatgpt_contents[sub_task_type]['system'],
},
{
"role": "user",
"content": user_input,
}
]
)
# Convert response to a Python dictionary.
response_message = completion.choices[0].message.content
response_dict = ast.literal_eval(response_message)
flag, score = response_dict['score'] > 3, response_dict['score']
except Exception as e:
import traceback
traceback.print_exc()
flag, score = False, 0
print(
f"GPT cannot deal with:\n"
f"--pred: {pred},\n"
f"--gt: {gt}\n"
f"--gpt responded: {response_message}\n"
"--will assign flag=False and score=0"
)
print(f"Dumb Answer in {sub_task_type}")
return flag, score
def chatgpt_eval(res, model="gpt-3.5-turbo-0125"):
pred = res['pred']
gt = res['gt']
question=res['question']
task_type = res['task_type']
if task_type == 'generic_qa':
# eval three sub tasks for generic
for sub_task_type in ('context', 'detailed_orientation', 'correctness'):
if pred=="":
print("no pred")
score = 0
else:
acc, score = check_ans(gt=gt, pred=pred, question=question, sub_task_type=sub_task_type, model=model) # acc is bool, score is given by chatgpt
# update the scores in result_list for this sample
res['scores'] = res.get('scores', {})
res['scores'][sub_task_type] = score
elif task_type == 'temporal_qa': # only do temporal eval for temporal_qa
sub_task_type = 'temporal'
if pred=="":
print("no pred")
score = 0
else:
acc, score = check_ans(gt=gt, pred=pred, question=question, sub_task_type=sub_task_type, model=model) # acc is bool, score is given by chatgpt
# update the scores in result_list for this sample
res['scores'] = res.get('scores', {})
res['scores'][sub_task_type] = score
elif task_type == 'consistency_qa': # only do consistency eval for consistency_qa
sub_task_type = 'consistency'
assert 'pred1' in res and 'question1' in res, 'two questions and preds'
pred1 = res['pred1']
question1 = res['question1']
if pred=="" or pred1=="":
print("no pred")
score = 0
else:
acc, score = check_ans(
gt=gt, pred=pred, pred1=pred1, question=question, question1=question1,
sub_task_type=sub_task_type, model=model) # acc is bool, score is given by chatgpt
# update the scores in result_list for this sample
res['scores'] = res.get('scores', {})
res['scores'][sub_task_type] = score
else:
raise NotImplementedError(f'not implemented task type for {task_type}')
return res
def save_results(result_list, save_path, model="gpt-3.5-turbo-0125"):
dump_json(result_list, save_path, 'inference_results.json')
with Pool(7) as pool:
# result_list = pool.map(partial(chatgpt_eval, model=model), result_list)
func = partial(chatgpt_eval, model=model)
result_list = [ res for res in tqdm.tqdm(pool.imap_unordered(func, result_list), total=len(result_list), desc='Language Chat Model Automated Evaluation...')]
final_res, acc_dict = {}, {}
correct, total, total_score = 0, 0, 0
for i, res in enumerate(result_list):
task_type = res['task_type']
for sub_task_type, score in res['scores'].items():
if sub_task_type not in acc_dict:
acc_dict[sub_task_type] = {
'correct': 0,
'total': 0,
'score': 0,
} # correct, total
correct = score > 3
acc_dict[sub_task_type]['total'] += 1
acc_dict[sub_task_type]['correct'] += correct
acc_dict[sub_task_type]['score'] += score
for k, v in acc_dict.items():
final_res[k] = {
'acc': v['correct'] / v['total'] * 100,
'score': v['score'] / v['total']
}
correct += v['correct']
total += v['total']
total_score += v['score']
final_res['Avg_Acc'] = correct / total * 100
final_res['Avg_Score'] = total_score / total
all_results = {
"acc_dict": acc_dict,
"result_list": result_list
}
result_post =f"-{model}"
dump_json(all_results, save_path, f'final_results{result_post}.json')
dump_json(final_res, save_path, f'upload_leaderboard{result_post}.json')
def load_results(save_path, model="gpt-3.5-turbo-0125"):
result_list = load_json(save_path, f'final_results-{model}.json')
if result_list is not None:
result_list = result_list['result_list']
if result_list is None:
result_list = load_json(save_path, 'inference_results.json')
return result_list
class VideoChatGPTBenchDataset(EvalDataset):
data_dir = "DATAS/VCGBench"
data_list_info = OrderedDict({
"generic_qa": OrderedDict(
json_relpath="Zero_Shot_QA/Benchmarking_QA/generic_qa.json",
prefix="DATAS/VCGBench/Videos/Benchmarking",
data_type="video",
bound=False,
question_key='Q',
answer_key='A',
name_key='video_name',
postfix=('mp4', 'mkv'),
),
"temporal_qa": OrderedDict(
json_relpath="Zero_Shot_QA/Benchmarking_QA/temporal_qa.json",
prefix="DATAS/VCGBench/Videos/Benchmarking",
data_type="video",
bound=False,
question_key='Q',
answer_key='A',
name_key='video_name',
postfix=('mp4', 'mkv'),
), # don't has start & end
"consistency_qa": OrderedDict(
# consistency is quite different in evaluating, and also awkward, hold to later.
json_relpath="Zero_Shot_QA/Benchmarking_QA/consistency_qa.json",
prefix="DATAS/VCGBench/Videos/Benchmarking",
data_type="video",
bound=False,
question_key=('Q1', 'Q2'),
answer_key='A',
name_key='video_name',
postfix=('mp4', 'mkv'),
),
})
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
data_list_info = self.data_list_info
data_dir = self.data_dir
self.data_list = []
for k, v in data_list_info.items():
with open(os.path.join(data_dir, v['json_relpath']), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'data': data,
**v, # all the infos
})
# self.data_list = self.data_list[:10] # for debug
# random.shuffle(self.data_list) # for debug
self.decord_method = {
'video': self.read_video,
'gif': self.read_gif,
'frame': self.read_frame,
}
# # transform
# crop_size = resolution
# scale_size = resolution
# input_mean = [0.48145466, 0.4578275, 0.40821073]
# input_std = [0.26862954, 0.26130258, 0.27577711]
# self.transform = T.Compose([
# GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
# GroupCenterCrop(crop_size),
# Stack(),
# ToTorchFormatTensor(),
# GroupNormalize(input_mean, input_std)
# ])
def __getitem__(self, idx):
task_type = self.data_list[idx]['task_type']
video_name_key = self.data_list[idx]['name_key']
video_name = self.data_list[idx]['data'][video_name_key]
video_postfixs = self.data_list[idx]['postfix']
if self.num_segments != 0:
video_paths = []
for p in video_postfixs:
video_path = os.path.join(self.data_list[idx]['prefix'], video_name + '.' + p)
if os.path.exists(video_path):
video_paths.append(video_path)
assert len(video_paths) > 0, f'no video named {video_name}'
# video_filename = self.data_list[idx]['data'][video_name_key] + video_postfix
video_path = video_paths[0]
decord_method = self.decord_method[self.data_list[idx]['data_type']]
bound = None
if self.data_list[idx]['bound']:
bound = (
self.data_list[idx]['data']['start'],
self.data_list[idx]['data']['end'],
)
images_group = decord_method(video_path, bound)
else:
# zero frame, no image
images_group = None
data = {
'video_path': video_path,
'video_pils': images_group, # some might use the original pils and do their own transforms
'task_type': task_type,
}
answer_key = self.data_list[idx]['answer_key']
question_key = self.data_list[idx]['question_key']
if task_type == 'consistency_qa' and isinstance(question_key, tuple):
question=self.data_list[idx]['data'][question_key[0]]
question1=self.data_list[idx]['data'][question_key[1]]
answer=self.data_list[idx]['data'][answer_key]
data.update({
'question': question,
'question1': question1,
'answer': answer,
})
elif isinstance(question_key, str):
question=self.data_list[idx]['data'][question_key]
answer=self.data_list[idx]['data'][answer_key]
data.update({
'question': question,
'answer': answer,
})
else:
raise ValueError('')
return data
|