eromanova115's picture
Update app.py
767b855 verified
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
import os
token = os.getenv('HF_TOKEN')
# token = token # hugging face token
@st.cache_resource
def load_model(base_model_path) :
"""
Load the base model and apply the adapter.
"""
print('START OF THE APP')
# Load the base model and tokenizer
#token = token
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token) # meta-llama/Llama-3.2-1B
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token,device_map="auto", low_cpu_mem_usage=True,trust_remote_code=True,torch_dtype=torch.float16)
print('Loaded the BASE MODEL AND TOKENIZER ')
print(f"Base Model Path: {base_model_path}")
print(f"Adapter Path: {adapter_path}")
# Load the adapter
model = PeftModel.from_pretrained(base_model,'eromanova115/CyberSecurityAIAssistant',token=token)
# adapter_config_path = os.path.dirname('CyberSecurityAssistant/adapter_config.json')
# print(f"Adapter Config Path: {adapter_config_path}")
# print('type of adapter config path ',type(adapter_config_path))
# model = PeftModel.from_pretrained(
# base_model,
# adapter_path,
# config=adapter_config_path,
# torch_dtype='auto'
# )
# model = PeftModel.from_pretrained(base_model,adapter_path)
model = model.merge_and_unload()
print('Model is merged successful')
return model, tokenizer
# Streamlit UI
st.title("Cybersecurity AI ASSISTANT LLM Security")
# Sidebar inputs for model paths
base_model_path = st.sidebar.text_input("Base Model Path from HF", 'meta-llama/Llama-3.2-3B')
adapter_path = st.sidebar.text_input("Adapter Safetensors Path", 'CyberSecurityAssistant')
adapter_config_path = st.sidebar.text_input("Adapter Config Path", 'CyberSecurityAssistant/adapter_config.json') # CyberSecurityAssistant\adapter_config.json
print(f"{base_model_path=}")
# Temperature slider
temperature = st.sidebar.slider("Temperature", 0.0, 2.0, 0.7, step=0.1)
# Load the model
if base_model_path and adapter_path and adapter_config_path:
try:
with st.spinner("Loading model..."):
model, tokenizer = load_model(base_model_path)
st.sidebar.success("Model loaded successfully!")
except Exception as e:
st.sidebar.error(f"Error loading model: {e}")
model, tokenizer = None, None
else:
st.warning("Please provide paths to the model and adapter files in the sidebar.")
# SYSTEM PROMPT
# GLOBAL VARIABLE INSTRUCTION
instruction= 'You are a Cybersecurity AI Assistant, will be glad to answer your questions related to Cybersecurity, particularly LLM Security.'
# Chat Interface
if model and tokenizer:
user_input = st.text_input("Your message", "")
user_input= f'{instruction} \n\nUser: {user_input}\nAI'
if user_input:
with st.spinner("Generating response..."):
try:
# Tokenize input
input_ids = tokenizer.encode(user_input, return_tensors="pt").to(model.device)
# Generate response
outputs = model.generate(input_ids, max_new_tokens=512, temperature=temperature)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write(f"**Response:** {response}")
except Exception as e:
st.error(f"Error generating response: {e}")
# streamlit run app.py