Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
|
7 |
+
token = "" # hugging face token
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model(base_model_path) :
|
10 |
+
"""
|
11 |
+
Load the base model and apply the adapter.
|
12 |
+
"""
|
13 |
+
|
14 |
+
print('START OF THE APP')
|
15 |
+
# Load the base model and tokenizer
|
16 |
+
token = ''
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token) # meta-llama/Llama-3.2-1B
|
18 |
+
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token,device_map="auto", low_cpu_mem_usage=True,trust_remote_code=True,torch_dtype=torch.float16)
|
19 |
+
print('Loaded the BASE MODEL AND TOKENIZER ')
|
20 |
+
print(f"Base Model Path: {base_model_path}")
|
21 |
+
print(f"Adapter Path: {adapter_path}")
|
22 |
+
# Load the adapter
|
23 |
+
model = PeftModel.from_pretrained(base_model,'eromanova115/CyberSecurityAIAssistant',token=token)
|
24 |
+
# adapter_config_path = os.path.dirname('CyberSecurityAssistant/adapter_config.json')
|
25 |
+
# print(f"Adapter Config Path: {adapter_config_path}")
|
26 |
+
# print('type of adapter config path ',type(adapter_config_path))
|
27 |
+
# model = PeftModel.from_pretrained(
|
28 |
+
# base_model,
|
29 |
+
# adapter_path,
|
30 |
+
# config=adapter_config_path,
|
31 |
+
# torch_dtype='auto'
|
32 |
+
# )
|
33 |
+
# model = PeftModel.from_pretrained(base_model,adapter_path)
|
34 |
+
model = model.merge_and_unload()
|
35 |
+
print('Model is merged successful')
|
36 |
+
return model, tokenizer
|
37 |
+
|
38 |
+
|
39 |
+
# Streamlit UI
|
40 |
+
st.title("Cybersecurity AI ASSISTANT LLM Security")
|
41 |
+
|
42 |
+
|
43 |
+
# Sidebar inputs for model paths
|
44 |
+
base_model_path = st.sidebar.text_input("Base Model Path from HF", 'meta-llama/Llama-3.2-3B')
|
45 |
+
adapter_path = st.sidebar.text_input("Adapter Safetensors Path", 'CyberSecurityAssistant')
|
46 |
+
adapter_config_path = st.sidebar.text_input("Adapter Config Path", 'CyberSecurityAssistant/adapter_config.json') # CyberSecurityAssistant\adapter_config.json
|
47 |
+
print(f"{base_model_path=}")
|
48 |
+
|
49 |
+
# Temperature slider
|
50 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 2.0, 0.7, step=0.1)
|
51 |
+
|
52 |
+
# Load the model
|
53 |
+
if base_model_path and adapter_path and adapter_config_path:
|
54 |
+
try:
|
55 |
+
with st.spinner("Loading model..."):
|
56 |
+
model, tokenizer = load_model(base_model_path)
|
57 |
+
st.sidebar.success("Model loaded successfully!")
|
58 |
+
except Exception as e:
|
59 |
+
st.sidebar.error(f"Error loading model: {e}")
|
60 |
+
model, tokenizer = None, None
|
61 |
+
else:
|
62 |
+
st.warning("Please provide paths to the model and adapter files in the sidebar.")
|
63 |
+
|
64 |
+
|
65 |
+
# SYSTEM PROMPT
|
66 |
+
|
67 |
+
# GLOBAL VARIABLE INSTRUCTION
|
68 |
+
instruction= 'You are a Cybersecurity AI Assistant, will be glad to answer your questions related to Cybersecurity, particularly LLM Security.'
|
69 |
+
|
70 |
+
|
71 |
+
# Chat Interface
|
72 |
+
if model and tokenizer:
|
73 |
+
user_input = st.text_input("Your message", "")
|
74 |
+
user_input= f'{instruction} \n\nUser: {user_input}\nAI'
|
75 |
+
if user_input:
|
76 |
+
with st.spinner("Generating response..."):
|
77 |
+
try:
|
78 |
+
# Tokenize input
|
79 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt").to(model.device)
|
80 |
+
# Generate response
|
81 |
+
outputs = model.generate(input_ids, max_new_tokens=512, temperature=temperature)
|
82 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
+
st.write(f"**Response:** {response}")
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error generating response: {e}")
|
86 |
+
|
87 |
+
|
88 |
+
# streamlit run app.py
|