Spaces:
Configuration error
Configuration error
File size: 7,947 Bytes
e0f92a0 f2e0f04 e0f92a0 bea83f6 a23872f e0f92a0 a23872f e0f92a0 a23872f 9251ae0 e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 21d692f bea83f6 21d692f bea83f6 e0f92a0 21d692f e0f92a0 21d692f bea83f6 e0f92a0 a23872f e0f92a0 a23872f 6859b0d a23872f e0f92a0 a23872f e0f92a0 663705e a23872f e0f92a0 a23872f ec39fe8 a23872f e0f92a0 a23872f ec39fe8 a23872f e0f92a0 29bbf75 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f ec39fe8 a23872f e0f92a0 a23872f e0f92a0 ec39fe8 a23872f e0f92a0 663705e a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 29bbf75 a23872f e0f92a0 a23872f e0f92a0 29bbf75 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 a23872f e0f92a0 6859b0d a23872f 29bbf75 a23872f f2e0f04 e0f92a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import numpy as np
import gc
import os
import imageio
import glob
import uuid
from animation import clear_img_dir
from backend import ImagePromptEditor, log
import torch
import torchvision
import wandb
from edit import blend_paths
from img_processing import custom_to_pil
from PIL import Image
num = 0
class PromptTransformHistory:
def __init__(self, iterations) -> None:
self.iterations = iterations
self.transforms = []
class ImageState:
def __init__(self, vqgan, prompt_optimizer: ImagePromptEditor) -> None:
self.vqgan = vqgan
self.device = vqgan.device
self.blend_latent = None
self.quant = True
self.path1 = None
self.path2 = None
self.img_dir = "./img_history"
if not os.path.exists(self.img_dir):
os.mkdir(self.img_dir)
self.transform_history = []
self.attn_mask = None
self.prompt_optim = prompt_optimizer
self._load_vectors()
self.init_transforms()
def _load_vectors(self):
self.lip_vector = torch.load(
"./latent_vectors/lipvector.pt", map_location=self.device
)
self.blue_eyes_vector = torch.load(
"./latent_vectors/2blue_eyes.pt", map_location=self.device
)
self.asian_vector = torch.load(
"./latent_vectors/asian10.pt", map_location=self.device
)
def create_gif(
total_duration, extend_frames, folder="./img_history", gif_name="face_edit.gif"
):
images = []
paths = list(sorted(glob.glob(folder + "/*")))
print(paths)
frame_duration = total_duration / len(paths)
print(len(paths), "frame dur", frame_duration)
durations = [frame_duration] * len(paths)
if extend_frames:
durations[0] = 1.5
durations[-1] = 3
for file_name in paths:
if file_name.endswith(".png"):
print(file_name)
images.append(imageio.imread(file_name))
imageio.mimsave(gif_name, images, duration=durations)
return gif_name
def init_transforms(self):
self.blue_eyes = torch.zeros_like(self.lip_vector)
self.lip_size = torch.zeros_like(self.lip_vector)
self.asian_transform = torch.zeros_like(self.lip_vector)
self.current_prompt_transforms = [torch.zeros_like(self.lip_vector)]
def clear_transforms(self):
self.init_transforms()
clear_img_dir("./img_history")
return self._render_all_transformations()
def _latent_to_pil(self, latent):
current_im = self.vqgan.decode(latent.to(self.device))[0]
return custom_to_pil(current_im)
def _get_mask(self, img, mask=None):
if img and "mask" in img and img["mask"] is not None:
attn_mask = torchvision.transforms.ToTensor()(img["mask"])
attn_mask = torch.ceil(attn_mask[0].to(self.device))
print("mask set successfully")
else:
attn_mask = mask
return attn_mask
def set_mask(self, img):
self.attn_mask = self._get_mask(img)
x = self.attn_mask.clone()
x = x.detach().cpu()
x = torch.clamp(x, -1.0, 1.0)
x = (x + 1.0) / 2.0
x = x.numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x, "L")
return x
@torch.no_grad()
def _render_all_transformations(self, return_twice=True):
global num
current_vector_transforms = (
self.blue_eyes,
self.lip_size,
self.asian_transform,
sum(self.current_prompt_transforms),
)
new_latent = self.blend_latent + sum(current_vector_transforms)
if self.quant:
new_latent, _, _ = self.vqgan.quantize(new_latent.to(self.device))
image = self._latent_to_pil(new_latent)
image.save(f"{self.img_dir}/img_{num:06}.png")
num += 1
return (image, image) if return_twice else image
def apply_rb_vector(self, weight):
self.blue_eyes = weight * self.blue_eyes_vector
return self._render_all_transformations()
def apply_lip_vector(self, weight):
self.lip_size = weight * self.lip_vector
return self._render_all_transformations()
def update_quant(self, val):
self.quant = val
return self._render_all_transformations()
def apply_asian_vector(self, weight):
self.asian_transform = weight * self.asian_vector
return self._render_all_transformations()
def update_images(self, path1, path2, blend_weight):
if path1 is None and path2 is None:
return None
# Duplicate paths if one is empty
if path1 is None:
path1 = path2
if path2 is None:
path2 = path1
self.path1, self.path2 = path1, path2
if self.img_dir:
clear_img_dir(self.img_dir)
return self.blend(blend_weight)
@torch.no_grad()
def blend(self, weight):
_, latent = blend_paths(
self.vqgan,
self.path1,
self.path2,
weight=weight,
show=False,
device=self.device,
)
self.blend_latent = latent
return self._render_all_transformations()
@torch.no_grad()
def rewind(self, index):
if not self.transform_history:
print("No history")
return self._render_all_transformations()
prompt_transform = self.transform_history[-1]
latent_index = int(index / 100 * (prompt_transform.iterations - 1))
print(latent_index)
self.current_prompt_transforms[-1] = prompt_transform.transforms[
latent_index
].to(self.device)
return self._render_all_transformations()
def _init_logging(lr, iterations, lpips_weight, positive_prompts, negative_prompts):
wandb.init(reinit=True, project="face-editor")
wandb.config.update({"Positive Prompts": positive_prompts})
wandb.config.update({"Negative Prompts": negative_prompts})
wandb.config.update(
dict(lr=lr, iterations=iterations, lpips_weight=lpips_weight)
)
def apply_prompts(
self,
positive_prompts,
negative_prompts,
lr,
iterations,
lpips_weight,
reconstruction_steps,
):
if log:
self._init_logging(
lr, iterations, lpips_weight, positive_prompts, negative_prompts
)
transform_log = PromptTransformHistory(iterations + reconstruction_steps)
transform_log.transforms.append(
torch.zeros_like(self.blend_latent, requires_grad=False)
)
self.current_prompt_transforms.append(
torch.zeros_like(self.blend_latent, requires_grad=False)
)
positive_prompts = [prompt.strip() for prompt in positive_prompts.split("|")]
negative_prompts = [prompt.strip() for prompt in negative_prompts.split("|")]
self.prompt_optim.set_params(
lr,
iterations,
lpips_weight,
attn_mask=self.attn_mask,
reconstruction_steps=reconstruction_steps,
)
for i, transform in enumerate(
self.prompt_optim.optimize(
self.blend_latent, positive_prompts, negative_prompts
)
):
transform_log.transforms.append(transform.detach().cpu())
self.current_prompt_transforms[-1] = transform
with torch.no_grad():
image = self._render_all_transformations(return_twice=False)
if log:
wandb.log({"image": wandb.Image(image)})
yield (image, image)
if log:
wandb.finish()
self.attn_mask = None
self.transform_history.append(transform_log)
gc.collect()
torch.cuda.empty_cache()
|