Spaces:
Configuration error
Configuration error
import importlib | |
import numpy as np | |
import taming | |
import torch | |
import yaml | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from taming.models.vqgan import VQModel | |
from utils import get_device | |
# import discriminator | |
def load_config(config_path, display=False): | |
config = OmegaConf.load(config_path) | |
if display: | |
print(yaml.dump(OmegaConf.to_container(config))) | |
return config | |
# def load_disc(device): | |
# dconf = load_config("disc_config.yaml") | |
# sd = torch.load("disc.pt", map_location=device) | |
# # print(sd.keys()) | |
# model = discriminator.NLayerDiscriminator() | |
# model.load_state_dict(sd, strict=True) | |
# model.to(device) | |
# return model | |
# print(dconf.keys()) | |
def load_default(device): | |
# device = get_device() | |
ckpt_path = "logs/2021-04-23T18-11-19_celebahq_transformer/checkpoints/last.ckpt" | |
conf_path = "./unwrapped.yaml" | |
config = load_config(conf_path, display=False) | |
model = taming.models.vqgan.VQModel(**config.model.params) | |
sd = torch.load("./vqgan_only.pt", map_location=device) | |
model.load_state_dict(sd, strict=True) | |
model.to(device) | |
return model | |
def load_vqgan(config, ckpt_path=None, is_gumbel=False): | |
if is_gumbel: | |
model = GumbelVQ(**config.model.params) | |
else: | |
model = VQModel(**config.model.params) | |
if ckpt_path is not None: | |
sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] | |
missing, unexpected = model.load_state_dict(sd, strict=False) | |
return model.eval() | |
def load_ffhq(): | |
conf = "2020-11-09T13-33-36_faceshq_vqgan/configs/2020-11-09T13-33-36-project.yaml" | |
ckpt = "2020-11-09T13-33-36_faceshq_vqgan/checkpoints/last.ckpt" | |
vqgan = load_model(load_config(conf), ckpt, True, True)[0] | |
def reconstruct_with_vqgan(x, model): | |
# could also use model(x) for reconstruction but use explicit encoding and decoding here | |
z, _, [_, _, indices] = model.encode(x) | |
print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}") | |
xrec = model.decode(z) | |
return xrec | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def instantiate_from_config(config): | |
if not "target" in config: | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def load_model_from_config(config, sd, gpu=True, eval_mode=True): | |
model = instantiate_from_config(config) | |
if sd is not None: | |
model.load_state_dict(sd) | |
if gpu: | |
model.cuda() | |
if eval_mode: | |
model.eval() | |
return {"model": model} | |
def load_model(config, ckpt, gpu, eval_mode): | |
# load the specified checkpoint | |
if ckpt: | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
global_step = pl_sd["global_step"] | |
print(f"loaded model from global step {global_step}.") | |
else: | |
pl_sd = {"state_dict": None} | |
global_step = None | |
model = load_model_from_config(config.model, pl_sd["state_dict"], gpu=gpu, eval_mode=eval_mode)["model"] | |
return model, global_step |