import numpy as np import gc import os import imageio import glob import uuid from animation import clear_img_dir from backend import ImagePromptEditor, log import torch import torchvision import wandb from edit import blend_paths from img_processing import custom_to_pil from PIL import Image num = 0 class PromptTransformHistory: def __init__(self, iterations) -> None: self.iterations = iterations self.transforms = [] class ImageState: def __init__(self, vqgan, prompt_optimizer: ImagePromptEditor) -> None: self.vqgan = vqgan self.device = vqgan.device self.blend_latent = None self.quant = True self.path1 = None self.path2 = None self.img_dir = "./img_history" if not os.path.exists(self.img_dir): os.mkdir(self.img_dir) self.transform_history = [] self.attn_mask = None self.prompt_optim = prompt_optimizer self._load_vectors() self.init_transforms() def _load_vectors(self): self.lip_vector = torch.load( "./latent_vectors/lipvector.pt", map_location=self.device ) self.blue_eyes_vector = torch.load( "./latent_vectors/2blue_eyes.pt", map_location=self.device ) self.asian_vector = torch.load( "./latent_vectors/asian10.pt", map_location=self.device ) def create_gif( total_duration, extend_frames, folder="./img_history", gif_name="face_edit.gif" ): images = [] paths = list(sorted(glob.glob(folder + "/*"))) print(paths) frame_duration = total_duration / len(paths) print(len(paths), "frame dur", frame_duration) durations = [frame_duration] * len(paths) if extend_frames: durations[0] = 1.5 durations[-1] = 3 for file_name in paths: if file_name.endswith(".png"): print(file_name) images.append(imageio.imread(file_name)) imageio.mimsave(gif_name, images, duration=durations) return gif_name def init_transforms(self): self.blue_eyes = torch.zeros_like(self.lip_vector) self.lip_size = torch.zeros_like(self.lip_vector) self.asian_transform = torch.zeros_like(self.lip_vector) self.current_prompt_transforms = [torch.zeros_like(self.lip_vector)] def clear_transforms(self): self.init_transforms() clear_img_dir("./img_history") return self._render_all_transformations() def _latent_to_pil(self, latent): current_im = self.vqgan.decode(latent.to(self.device))[0] return custom_to_pil(current_im) def _get_mask(self, img, mask=None): if img and "mask" in img and img["mask"] is not None: attn_mask = torchvision.transforms.ToTensor()(img["mask"]) attn_mask = torch.ceil(attn_mask[0].to(self.device)) print("mask set successfully") else: attn_mask = mask return attn_mask def set_mask(self, img): self.attn_mask = self._get_mask(img) x = self.attn_mask.clone() x = x.detach().cpu() x = torch.clamp(x, -1.0, 1.0) x = (x + 1.0) / 2.0 x = x.numpy() x = (255 * x).astype(np.uint8) x = Image.fromarray(x, "L") return x @torch.no_grad() def _render_all_transformations(self, return_twice=True): global num current_vector_transforms = ( self.blue_eyes, self.lip_size, self.asian_transform, sum(self.current_prompt_transforms), ) new_latent = self.blend_latent + sum(current_vector_transforms) if self.quant: new_latent, _, _ = self.vqgan.quantize(new_latent.to(self.device)) image = self._latent_to_pil(new_latent) image.save(f"{self.img_dir}/img_{num:06}.png") num += 1 return (image, image) if return_twice else image def apply_rb_vector(self, weight): self.blue_eyes = weight * self.blue_eyes_vector return self._render_all_transformations() def apply_lip_vector(self, weight): self.lip_size = weight * self.lip_vector return self._render_all_transformations() def update_quant(self, val): self.quant = val return self._render_all_transformations() def apply_asian_vector(self, weight): self.asian_transform = weight * self.asian_vector return self._render_all_transformations() def update_images(self, path1, path2, blend_weight): if path1 is None and path2 is None: return None # Duplicate paths if one is empty if path1 is None: path1 = path2 if path2 is None: path2 = path1 self.path1, self.path2 = path1, path2 if self.img_dir: clear_img_dir(self.img_dir) return self.blend(blend_weight) @torch.no_grad() def blend(self, weight): _, latent = blend_paths( self.vqgan, self.path1, self.path2, weight=weight, show=False, device=self.device, ) self.blend_latent = latent return self._render_all_transformations() @torch.no_grad() def rewind(self, index): if not self.transform_history: print("No history") return self._render_all_transformations() prompt_transform = self.transform_history[-1] latent_index = int(index / 100 * (prompt_transform.iterations - 1)) print(latent_index) self.current_prompt_transforms[-1] = prompt_transform.transforms[ latent_index ].to(self.device) return self._render_all_transformations() def _init_logging(lr, iterations, lpips_weight, positive_prompts, negative_prompts): wandb.init(reinit=True, project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update( dict(lr=lr, iterations=iterations, lpips_weight=lpips_weight) ) def apply_prompts( self, positive_prompts, negative_prompts, lr, iterations, lpips_weight, reconstruction_steps, ): if log: self._init_logging( lr, iterations, lpips_weight, positive_prompts, negative_prompts ) transform_log = PromptTransformHistory(iterations + reconstruction_steps) transform_log.transforms.append( torch.zeros_like(self.blend_latent, requires_grad=False) ) self.current_prompt_transforms.append( torch.zeros_like(self.blend_latent, requires_grad=False) ) positive_prompts = [prompt.strip() for prompt in positive_prompts.split("|")] negative_prompts = [prompt.strip() for prompt in negative_prompts.split("|")] self.prompt_optim.set_params( lr, iterations, lpips_weight, attn_mask=self.attn_mask, reconstruction_steps=reconstruction_steps, ) for i, transform in enumerate( self.prompt_optim.optimize( self.blend_latent, positive_prompts, negative_prompts ) ): transform_log.transforms.append(transform.detach().cpu()) self.current_prompt_transforms[-1] = transform with torch.no_grad(): image = self._render_all_transformations(return_twice=False) if log: wandb.log({"image": wandb.Image(image)}) yield (image, image) if log: wandb.finish() self.attn_mask = None self.transform_history.append(transform_log) gc.collect() torch.cuda.empty_cache()