|
import gradio as gr |
|
import os |
|
import csv |
|
import time |
|
|
|
token = os.getenv('HF_TOKEN') |
|
|
|
def save_feedback(text, original_output, corrected_label): |
|
with open('/data/feedback_data.csv', 'a', newline='') as f: |
|
predicted_label = max(original_output, key=original_output.get) |
|
writer = csv.writer(f) |
|
writer.writerow([text, original_output, predicted_label, corrected_label]) |
|
return "Feedback saved successfully!" |
|
|
|
def clear_message(): |
|
time.sleep(1) |
|
return gr.update(value="") |
|
|
|
with gr.Blocks() as demo: |
|
|
|
classification_app = gr.load("models/ressolve-ai/sentiment_cobranzas_BAL4", hf_token=token) |
|
|
|
|
|
text_input = classification_app.input_components[0] |
|
output_label = classification_app.output_components[0] |
|
|
|
|
|
gr.Markdown("## Feedback the sentiment") |
|
|
|
|
|
with gr.Row(): |
|
feedback_label = gr.Radio(["Positivo", "Negativo", "Neutro"], label="Correct Label") |
|
feedback_btn = gr.Button("If applicable, press this button to correct the label") |
|
feedback_message = gr.Textbox(label="Feedback Status", interactive=False) |
|
|
|
feedback_btn.click(save_feedback, inputs=[text_input, output_label, feedback_label], outputs=feedback_message) |
|
feedback_btn.click(clear_message, inputs=None, outputs=feedback_message) |
|
|
|
demo.launch() |