File size: 6,215 Bytes
5cd28f2 0806a18 5cd28f2 0806a18 ae20e1b f73dbf6 ae20e1b f73dbf6 0806a18 f73dbf6 0806a18 f73dbf6 1e4af7c 0806a18 f73dbf6 0806a18 f73dbf6 0806a18 f73dbf6 3e1f438 a347f8f 45e6546 a347f8f 3e1f438 3d6609c 45e6546 3d6609c 45e6546 a347f8f 3d6609c 45e6546 3d6609c f73dbf6 3d6609c f73dbf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
from pandas import read_csv
import os
import jiwer
from huggingface_hub import Repository
REFERENCE_NAME = "references"
SUBMISSION_NAME = "submissions"
REFERENCE_URL = os.path.join(
"https://huggingface.co/datasets/esc-bench", REFERENCE_NAME
)
SUBMISSION_URL = os.path.join(
"https://huggingface.co/datasets/esc-bench", SUBMISSION_NAME
)
TEST_SETS = [
"librispeech-clean",
"librispeech-other",
"common-voice-9",
"vox-populi",
"ted-lium",
"giga-speech",
"spgi-speech",
"earnings-22",
"ami",
]
EXPECTED_TEST_FILES = [f + ".txt" for f in TEST_SETS]
OPTIONAL_TEST_SETS = ["switch-board", "call-home", "chime-4"]
CSV_RESULTS_FILE = os.path.join(SUBMISSION_NAME, "results.csv")
HF_TOKEN = os.environ.get("HF_TOKEN")
def compute_wer(pred_file, ref_file):
with open(pred_file, "r", encoding="utf-8") as pred, open(
ref_file, "r", encoding="utf-8"
) as ref:
pred_lines = [line.strip() for line in pred.readlines()]
ref_lines = [line.strip() for line in ref.readlines()]
wer = jiwer.wer(ref_lines, pred_lines)
return wer
reference_repo = Repository(
local_dir="references", clone_from=REFERENCE_URL, use_auth_token=HF_TOKEN
)
submission_repo = Repository(
local_dir="submissions", clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN
)
submission_repo.git_pull()
all_submissions = [
folder
for folder in os.listdir(SUBMISSION_NAME)
if os.path.isdir(os.path.join(SUBMISSION_NAME, folder)) and folder != ".git"
]
all_results = read_csv(CSV_RESULTS_FILE)
evaluated_submissions = all_results["name"].values.tolist()
non_evaluated_submissions = set(all_submissions) - set(evaluated_submissions)
if len(non_evaluated_submissions) > 0:
for submission in non_evaluated_submissions:
print(f"Evaluate {submission}")
results = {"name": submission}
submitted_files = os.listdir(os.path.join(SUBMISSION_NAME, submission))
submitted_files = [f for f in submitted_files if f in EXPECTED_TEST_FILES]
if sorted(EXPECTED_TEST_FILES) != sorted(submitted_files):
raise ValueError(
f"{', '.join(submitted_files)} were submitted, but expected {', '.join(EXPECTED_TEST_FILES)}"
)
for file in submitted_files:
ref_file = os.path.join(REFERENCE_NAME, file)
pred_file = os.path.join(SUBMISSION_NAME, submission, file)
wer = compute_wer(pred_file, ref_file)
results[file.split(".")[0]] = str(wer)
wer_values = [float(results[t]) for t in TEST_SETS]
all_wer = sum(wer_values) / len(wer_values)
results["esc-score"] = all_wer
all_results = all_results.append(results, ignore_index=True)
# save and upload new evaluated results
all_results.to_csv(CSV_RESULTS_FILE)
commit_url = reference_repo.push_to_hub()
print(commit_url)
COLUMN_NAMES = {
"librispeech-clean": "ls-clean",
"librispeech-other": "ls-other",
"common-voice-9": "cv9",
"vox-populi": "vox",
"ted-lium": "ted",
"giga-speech": "giga",
"spgi-speech": "spgi",
"earnings-22": "e22",
"ami": "ami",
"chime-4": "chime",
"switch-board": "swbd",
}
table = all_results
esc_column = table.pop("esc-score")
name_column = table.pop("name")
table.insert(0, "esc-score", esc_column)
table = table.select_dtypes(exclude=['object', 'string']) * 100
table.insert(0, "name", name_column)
table = table.round(2)
table = table.rename(columns=COLUMN_NAMES)
# Streamlit
st.markdown("# ESC: A Benchmark For Multi-Domain End-to-End Speech Recognition")
st.markdown(
f"""
This is the leaderboard of the End-to end Speech Challenge (ESC).
Submitted systems are ranked by the **ESC Score** which is the average of
all non-optional datasets: {', '.join(COLUMN_NAMES.values())}."""
)
# st.table(table)
table
# *Sanchit Gandhi, Patrick Von Platen, and, Alexander M Rush*
st.markdown(
"""
ESC was proposed in *ESC: A Benchmark For Multi-Domain End-to-End Speech Recognition* by ...
\n
The abstract of the paper is as follows:
\n
*Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to end Speech Challenge (ESC) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speechsystem can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems.*
\n
For more information, please see the official submission on [OpenReview.net](https://openreview.net/forum?id=9OL2fIfDLK).
"""
)
st.markdown("To submit to ESC, please click on the instructions below ↓")
st.markdown("TODO: Add instructions ...")
# Using the "with" syntax
with st.form(key="my_form"):
text_input = st.text_input(label="Name")
uploaded_file = st.file_uploader("Choose a zip file")
submit_button = st.form_submit_button(label="Submit")
if submit_button:
st.write("Computing scores ...")
|