Iris / app.py
Edward Nagy
Add application file
cb0ce1f unverified
raw
history blame
1.8 kB
import gradio as gr
from PIL import Image
import requests
import hopsworks
import joblib
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("iris_model", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/iris_model.pkl")
print("Model downloaded")
def iris(sepal_length, sepal_width, petal_length, petal_width):
print("Calling function")
# df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
df = pd.DataFrame([[sepal_length,sepal_width,petal_length,petal_width]],
columns=['sepal_length','sepal_width','petal_length','petal_width'])
print("Predicting")
print(df)
# 'res' is a list of predictions returned as the label.
res = model.predict(df)
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
# print("Res: {0}").format(res)
print(res)
flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
img = Image.open(requests.get(flower_url, stream=True).raw)
return img
demo = gr.Interface(
fn=iris,
title="Iris Flower Predictive Analytics",
description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
allow_flagging="never",
inputs=[
gr.inputs.Number(default=2.0, label="sepal length (cm)"),
gr.inputs.Number(default=1.0, label="sepal width (cm)"),
gr.inputs.Number(default=2.0, label="petal length (cm)"),
gr.inputs.Number(default=1.0, label="petal width (cm)"),
],
outputs=gr.Image(type="pil"))
demo.launch(debug=True)