etechoptimist
commited on
Commit
·
c10f136
1
Parent(s):
7e9cd65
using distilbert-base-uncased
Browse files
app.py
CHANGED
@@ -19,10 +19,10 @@ def anomalies_detector(logs: str) -> list[tuple[int, str]]:
|
|
19 |
Returns:
|
20 |
list[tuple[int, str]]: List of tuples containing (line_number, anomalous_text)
|
21 |
"""
|
22 |
-
# Initialize the text classification pipeline with a
|
23 |
classifier = pipeline(
|
24 |
"text-classification",
|
25 |
-
model="distilbert-base-uncased
|
26 |
top_k=2 # Get both normal and anomalous probabilities
|
27 |
)
|
28 |
|
@@ -41,7 +41,7 @@ def anomalies_detector(logs: str) -> list[tuple[int, str]]:
|
|
41 |
# Check if the line is classified as anomalous
|
42 |
# The model returns probabilities for both classes
|
43 |
for result in results:
|
44 |
-
if result['label'] == '
|
45 |
anomalies.append((line_num, line))
|
46 |
break
|
47 |
|
@@ -53,7 +53,7 @@ demo = gr.Interface(
|
|
53 |
inputs="textbox",
|
54 |
outputs="text",
|
55 |
title="Log Anomaly Detector",
|
56 |
-
description="Enter log entries to detect anomalous patterns using
|
57 |
)
|
58 |
|
59 |
# Launch both the Gradio web interface and the MCP server
|
|
|
19 |
Returns:
|
20 |
list[tuple[int, str]]: List of tuples containing (line_number, anomalous_text)
|
21 |
"""
|
22 |
+
# Initialize the text classification pipeline with a smaller, more reliable model
|
23 |
classifier = pipeline(
|
24 |
"text-classification",
|
25 |
+
model="distilbert-base-uncased", # Using a smaller, more reliable model
|
26 |
top_k=2 # Get both normal and anomalous probabilities
|
27 |
)
|
28 |
|
|
|
41 |
# Check if the line is classified as anomalous
|
42 |
# The model returns probabilities for both classes
|
43 |
for result in results:
|
44 |
+
if result['label'] == 'LABEL_1' and result['score'] > 0.7: # LABEL_1 indicates potential anomaly
|
45 |
anomalies.append((line_num, line))
|
46 |
break
|
47 |
|
|
|
53 |
inputs="textbox",
|
54 |
outputs="text",
|
55 |
title="Log Anomaly Detector",
|
56 |
+
description="Enter log entries to detect anomalous patterns using BERT Model. The system will identify unusual patterns, errors, and potential issues in your logs."
|
57 |
)
|
58 |
|
59 |
# Launch both the Gradio web interface and the MCP server
|