Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,502 Bytes
7362797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.
import base64
import os
import threading
import time
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
import click
import torch
from flask import Flask, request
from flask_socketio import SocketIO
from chameleon.inference.chameleon import ChameleonInferenceModel, Options, TokenManager
@dataclass
class Request:
room: str
key: str
options: dict[str, int | float | bool]
prompt_ui: list[dict]
def convert_options(ui_options: dict) -> Options:
txt = None
if ui_options["enable-text"]:
txt = Options.Text(
repetition_penalty=ui_options["text-rep-penalty"],
temp=ui_options["text-temp"],
top_p=ui_options["text-top-p"],
)
img = None
if ui_options["enable-image"]:
img = Options.Image(
cfg=Options.Image.CFG(
guidance_scale_image=ui_options["img-cfg-gsimage"],
guidance_scale_text=ui_options["img-cfg-gstext"],
),
temp=ui_options["img-temp"],
top_p=ui_options["img-top-p"],
)
return Options(
max_seq_len=ui_options["max-seq-len"],
max_gen_len=ui_options["max-gen-len"],
seed=ui_options["seed"],
txt=txt,
img=img,
)
class UIDecoder:
class State(Enum):
TXT = 1
IMG = 2
IMG_END = 3
def __init__(self, token_manager: TokenManager):
self.token_manager = token_manager
self.state = UIDecoder.State.TXT
self.image_builder = []
self.image_yield_every_n = 32
self.image_has_updated = False
def _image_progress(self) -> dict:
self.image_has_updated = False
png = self.token_manager.png_from_bpe_tokens(torch.cat(self.image_builder))
return {
"type": "image",
"value": "data:image/png;base64," + base64.b64encode(png).decode(),
}
def next(self, gpu_token: torch.LongTensor) -> dict | None:
if self.state == UIDecoder.State.TXT:
cpu_tok = gpu_token.item()
if cpu_tok == self.token_manager.vocab.begin_image:
self.state = UIDecoder.State.IMG
return {"type": "image_start"}
return {
"type": "text",
"value": self.token_manager.tokenizer.decode([cpu_tok]),
}
elif self.state == UIDecoder.State.IMG:
self.image_builder.append(gpu_token)
self.image_has_updated = True
if len(self.image_builder) == 1024:
self.state = UIDecoder.State.IMG_END
if len(self.image_builder) % self.image_yield_every_n == 0:
return self._image_progress()
elif self.state == UIDecoder.State.IMG_END:
# assert gpu_token == end_image
self.state = UIDecoder.State.TXT
progress = self._image_progress() if self.image_has_updated else None
self.image_builder = []
return progress
@dataclass
class State:
room_keys: dict[str, set[str]]
pending_requests: list[Request]
cond: threading.Condition
def __enter__(self, *args, **kwargs):
self.cond.__enter__(*args, **kwargs)
return self
def __exit__(self, *args, **kwargs):
self.cond.__exit__(*args, **kwargs)
return self
GlobalState = State(room_keys={}, pending_requests=[], cond=threading.Condition())
app = Flask(__name__)
socketio = SocketIO(app, max_http_buffer_size=16 * 1024 * 1024)
@app.route("/")
def index():
with open(Path(__file__).parent / "miniviewer.html") as f:
return f.read()
@socketio.on("disconnect")
def handle_disconnect():
with GlobalState as state:
try:
del state.room_keys[request.sid]
except KeyError:
pass
@socketio.on("cancel")
def handle_cancel(key):
with GlobalState as state:
try:
state.room_keys[request.sid].remove(key)
except KeyError:
pass
@socketio.on("generate")
def handle_generate(key, options, prompt_ui):
with GlobalState as state:
if request.sid not in state.room_keys:
state.room_keys[request.sid] = set()
state.room_keys[request.sid].add(key)
state.pending_requests.append(Request(request.sid, key, options, prompt_ui))
state.cond.notify_all()
def generation_thread(model: ChameleonInferenceModel):
while True:
with GlobalState as state:
state.cond.wait_for(lambda: state.pending_requests)
req = state.pending_requests.pop(0)
start = time.time()
ui_decoder = UIDecoder(model.token_manager)
options = convert_options(req.options)
if not options.txt:
progress = ui_decoder.next(
torch.tensor([model.token_manager.vocab.begin_image])
)
socketio.emit(
"progress",
{"key": req.key, **progress},
room=req.room,
)
for token in model.stream(
prompt_ui=req.prompt_ui,
options=options,
):
with GlobalState as state:
if req.key not in state.room_keys.get(req.room, {}):
break
if progress := ui_decoder.next(token.id):
socketio.emit(
"progress",
{"key": req.key, **progress},
room=req.room,
)
timing = time.time() - start
socketio.emit(
"progress",
{"key": req.key, "type": "done", "value": timing},
room=req.room,
)
def queue_position_thread():
local_pending_requests = []
while True:
with GlobalState as state:
state.cond.wait_for(
lambda: local_pending_requests != state.pending_requests
)
local_pending_requests = state.pending_requests[:]
for i, req in enumerate(local_pending_requests):
progress = {
"type": "queue",
"key": req.key,
"value": i + 1,
}
socketio.emit("progress", progress, room=req.room)
@click.command()
@click.option("--data-path", type=click.Path(), default="./data")
@click.option(
"--model-size", type=click.Choice(["7b", "30b"], case_sensitive=False), default="7b"
)
def main(data_path, model_size):
data_path = Path(data_path)
model_path = str(data_path / "models" / model_size)
tokenizer_path = str(data_path / "tokenizer/text_tokenizer.json")
vqgan_cfg_path = str(data_path / "tokenizer/vqgan.yaml")
vqgan_ckpt_path = str(data_path / "tokenizer/vqgan.ckpt")
if not os.path.exists(model_path):
raise ValueError(
"Model not found. Did you run python -m chameleon.download_data {PRESIGNED_URL}"
)
cm3v2_inference_model = ChameleonInferenceModel(
model_path, tokenizer_path, vqgan_cfg_path, vqgan_ckpt_path
)
threading.Thread(
target=generation_thread,
args=(cm3v2_inference_model,),
daemon=True,
).start()
threading.Thread(target=queue_position_thread, daemon=True).start()
socketio.run(app, debug=False)
if __name__ == "__main__":
main()
|