File size: 7,502 Bytes
7362797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.

import base64
import os
import threading
import time
from dataclasses import dataclass
from enum import Enum
from pathlib import Path

import click
import torch
from flask import Flask, request
from flask_socketio import SocketIO

from chameleon.inference.chameleon import ChameleonInferenceModel, Options, TokenManager


@dataclass
class Request:
    room: str
    key: str
    options: dict[str, int | float | bool]
    prompt_ui: list[dict]


def convert_options(ui_options: dict) -> Options:
    txt = None
    if ui_options["enable-text"]:
        txt = Options.Text(
            repetition_penalty=ui_options["text-rep-penalty"],
            temp=ui_options["text-temp"],
            top_p=ui_options["text-top-p"],
        )
    img = None
    if ui_options["enable-image"]:
        img = Options.Image(
            cfg=Options.Image.CFG(
                guidance_scale_image=ui_options["img-cfg-gsimage"],
                guidance_scale_text=ui_options["img-cfg-gstext"],
            ),
            temp=ui_options["img-temp"],
            top_p=ui_options["img-top-p"],
        )
    return Options(
        max_seq_len=ui_options["max-seq-len"],
        max_gen_len=ui_options["max-gen-len"],
        seed=ui_options["seed"],
        txt=txt,
        img=img,
    )


class UIDecoder:
    class State(Enum):
        TXT = 1
        IMG = 2
        IMG_END = 3

    def __init__(self, token_manager: TokenManager):
        self.token_manager = token_manager
        self.state = UIDecoder.State.TXT
        self.image_builder = []
        self.image_yield_every_n = 32
        self.image_has_updated = False

    def _image_progress(self) -> dict:
        self.image_has_updated = False
        png = self.token_manager.png_from_bpe_tokens(torch.cat(self.image_builder))
        return {
            "type": "image",
            "value": "data:image/png;base64," + base64.b64encode(png).decode(),
        }

    def next(self, gpu_token: torch.LongTensor) -> dict | None:
        if self.state == UIDecoder.State.TXT:
            cpu_tok = gpu_token.item()

            if cpu_tok == self.token_manager.vocab.begin_image:
                self.state = UIDecoder.State.IMG
                return {"type": "image_start"}

            return {
                "type": "text",
                "value": self.token_manager.tokenizer.decode([cpu_tok]),
            }

        elif self.state == UIDecoder.State.IMG:
            self.image_builder.append(gpu_token)
            self.image_has_updated = True
            if len(self.image_builder) == 1024:
                self.state = UIDecoder.State.IMG_END
            if len(self.image_builder) % self.image_yield_every_n == 0:
                return self._image_progress()

        elif self.state == UIDecoder.State.IMG_END:
            # assert gpu_token == end_image
            self.state = UIDecoder.State.TXT
            progress = self._image_progress() if self.image_has_updated else None
            self.image_builder = []
            return progress


@dataclass
class State:
    room_keys: dict[str, set[str]]
    pending_requests: list[Request]
    cond: threading.Condition

    def __enter__(self, *args, **kwargs):
        self.cond.__enter__(*args, **kwargs)
        return self

    def __exit__(self, *args, **kwargs):
        self.cond.__exit__(*args, **kwargs)
        return self


GlobalState = State(room_keys={}, pending_requests=[], cond=threading.Condition())

app = Flask(__name__)
socketio = SocketIO(app, max_http_buffer_size=16 * 1024 * 1024)


@app.route("/")
def index():
    with open(Path(__file__).parent / "miniviewer.html") as f:
        return f.read()


@socketio.on("disconnect")
def handle_disconnect():
    with GlobalState as state:
        try:
            del state.room_keys[request.sid]
        except KeyError:
            pass


@socketio.on("cancel")
def handle_cancel(key):
    with GlobalState as state:
        try:
            state.room_keys[request.sid].remove(key)
        except KeyError:
            pass


@socketio.on("generate")
def handle_generate(key, options, prompt_ui):
    with GlobalState as state:
        if request.sid not in state.room_keys:
            state.room_keys[request.sid] = set()
        state.room_keys[request.sid].add(key)
        state.pending_requests.append(Request(request.sid, key, options, prompt_ui))
        state.cond.notify_all()


def generation_thread(model: ChameleonInferenceModel):
    while True:
        with GlobalState as state:
            state.cond.wait_for(lambda: state.pending_requests)
            req = state.pending_requests.pop(0)

        start = time.time()
        ui_decoder = UIDecoder(model.token_manager)
        options = convert_options(req.options)

        if not options.txt:
            progress = ui_decoder.next(
                torch.tensor([model.token_manager.vocab.begin_image])
            )
            socketio.emit(
                "progress",
                {"key": req.key, **progress},
                room=req.room,
            )

        for token in model.stream(
            prompt_ui=req.prompt_ui,
            options=options,
        ):
            with GlobalState as state:
                if req.key not in state.room_keys.get(req.room, {}):
                    break

            if progress := ui_decoder.next(token.id):
                socketio.emit(
                    "progress",
                    {"key": req.key, **progress},
                    room=req.room,
                )

        timing = time.time() - start
        socketio.emit(
            "progress",
            {"key": req.key, "type": "done", "value": timing},
            room=req.room,
        )


def queue_position_thread():
    local_pending_requests = []
    while True:
        with GlobalState as state:
            state.cond.wait_for(
                lambda: local_pending_requests != state.pending_requests
            )
            local_pending_requests = state.pending_requests[:]

        for i, req in enumerate(local_pending_requests):
            progress = {
                "type": "queue",
                "key": req.key,
                "value": i + 1,
            }
            socketio.emit("progress", progress, room=req.room)


@click.command()
@click.option("--data-path", type=click.Path(), default="./data")
@click.option(
    "--model-size", type=click.Choice(["7b", "30b"], case_sensitive=False), default="7b"
)
def main(data_path, model_size):
    data_path = Path(data_path)

    model_path = str(data_path / "models" / model_size)
    tokenizer_path = str(data_path / "tokenizer/text_tokenizer.json")
    vqgan_cfg_path = str(data_path / "tokenizer/vqgan.yaml")
    vqgan_ckpt_path = str(data_path / "tokenizer/vqgan.ckpt")

    if not os.path.exists(model_path):
        raise ValueError(
            "Model not found. Did you run python -m chameleon.download_data {PRESIGNED_URL}"
        )

    cm3v2_inference_model = ChameleonInferenceModel(
        model_path, tokenizer_path, vqgan_cfg_path, vqgan_ckpt_path
    )
    threading.Thread(
        target=generation_thread,
        args=(cm3v2_inference_model,),
        daemon=True,
    ).start()
    threading.Thread(target=queue_position_thread, daemon=True).start()
    socketio.run(app, debug=False)


if __name__ == "__main__":
    main()