Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,197 Bytes
7362797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.
import asyncio
import json
import multiprocessing
import os
import random
import sys
import threading
import time
import traceback
from functools import partial
from typing import Any, Generator, TypeVar
import redis
import redis.asyncio as async_redis
import torch
from tokenizers import Tokenizer
from chameleon.inference.image_tokenizer import ImageTokenizer
from chameleon.inference.loader import load_model
from chameleon.inference.vocab import VocabInfo
from chameleon.viewer.backend.data_types import WSMessageType
from chameleon.viewer.backend.models.abstract_model import (
DEFAULT_IMAGE_CFG_IMAGE,
DEFAULT_IMAGE_CFG_TEXT,
DEFAULT_MULTIMODAL_CFG_IMAGE,
DEFAULT_MULTIMODAL_CFG_TEXT,
AbstractMultimodalGenerator,
MixedSequenceType,
StreamingImage,
)
from chameleon.viewer.backend.models.chameleon_local import (
ChameleonForwardMixin,
ChameleonTokenizationMixin,
)
from chameleon.viewer.backend.utils import get_logger
logger = get_logger(__name__)
START = "START"
T = TypeVar("T")
def find_any(queue_by_id: dict[str, list]) -> str | None:
for candidate_queue_id, candidate_queue in queue_by_id.items():
if len(candidate_queue) > 0:
return candidate_queue_id
return None
class RedisQueue:
def __init__(self, redis_client: redis.Redis, name: str, interval: float = 0.1):
self.redis_client = redis_client
self.name = name
self.interval = interval
self.lock = redis.lock.Lock(redis_client, f"lock_for_{name}")
def reset(self):
self.redis_client.set(self.name, json.dumps({}))
try:
self.lock.release()
except redis.lock.LockError:
pass
def size(self) -> int:
maybe_queue_by_id = self.redis_client.get(self.name)
if maybe_queue_by_id is None:
return 0
else:
return len(json.loads(maybe_queue_by_id))
def clear(self, queue_id: str):
with self.lock:
maybe_queue_by_id = self.redis_client.get(self.name)
if maybe_queue_by_id is None:
queue_by_id: dict[str, list] = {}
else:
queue_by_id: dict[str, list] = json.loads(maybe_queue_by_id)
queue_by_id[queue_id] = []
self.redis_client.set(self.name, json.dumps(queue_by_id))
def put(self, queue_id: str, value: T):
logger.debug(
"Thread %s: Starting PUT(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
with self.lock:
maybe_queue_by_id = self.redis_client.get(self.name)
if maybe_queue_by_id is None:
queue_by_id: dict[str, list[T]] = {}
else:
queue_by_id: dict[str, list[T]] = json.loads(maybe_queue_by_id)
if queue_id not in queue_by_id:
queue_by_id[queue_id] = []
queue_by_id[queue_id] = [value] + queue_by_id[queue_id]
self.redis_client.set(self.name, json.dumps(queue_by_id))
logger.debug(
"Thread %s: Finished PUT(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
def get(self, queue_id: str | None) -> tuple[str, T]:
"""
Get the next value in the queue.
if queue_id is None, will get a value from any queue
if queue_id is not none, will wait to get a value from a specific queue
"""
logger.debug(
"Thread %s: Starting GET(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
while True:
with self.lock:
# Initialization hasn't happened, so wait for it to happen
maybe_queue_by_id = self.redis_client.get(self.name)
if maybe_queue_by_id is None:
continue
queue_by_id: dict[str, list[T]] = json.loads(maybe_queue_by_id)
if queue_id is None:
queue_id = find_any(queue_by_id)
# Ensure a queue_id was found or that it already existed
if queue_id is not None and queue_id in queue_by_id:
queue = queue_by_id[queue_id]
if len(queue) == 0:
continue
value = queue.pop(-1)
# queue is mutated and queue_by_id references it, so this works
self.redis_client.set(self.name, json.dumps(queue_by_id))
logger.debug(
"Thread %s: Finished GET(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
return queue_id, value
time.sleep(self.interval)
class AsyncRedisQueue:
def __init__(
self, redis_client: async_redis.Redis, name: str, interval: float = 0.1
) -> None:
self.redis_client = redis_client
self.name = name
self.interval = interval
self.lock = async_redis.lock.Lock(redis_client, f"lock_for_{name}")
async def reset(self):
await self.redis_client.set(self.name, json.dumps({}))
try:
await self.lock.release()
except async_redis.lock.LockError:
pass
async def size(self) -> int:
maybe_queue_by_id = await self.redis_client.get(self.name)
if maybe_queue_by_id is None:
return 0
else:
return len(json.loads(maybe_queue_by_id))
async def clear(self, queue_id: str):
logger.debug(
"ASYNC Thread %s: Starting CLEAR(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
async with self.lock:
maybe_queue_by_id = await self.redis_client.get(self.name)
if maybe_queue_by_id is None:
queue_by_id: dict[str, list] = {}
else:
queue_by_id: dict[str, list] = json.loads(maybe_queue_by_id)
queue_by_id[queue_id] = []
await self.redis_client.set(self.name, json.dumps(queue_by_id))
logger.debug(
"ASYNC Thread %s: Finished CLEAR(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
async def put(self, queue_id: str, value: T):
logger.debug(
"ASYNC Thread %s: Starting PUT(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
async with self.lock:
maybe_queue_by_id = await self.redis_client.get(self.name)
if maybe_queue_by_id is None:
queue_by_id: dict[str, list[T]] = {}
else:
queue_by_id: dict[str, list[T]] = json.loads(maybe_queue_by_id)
if queue_id not in queue_by_id:
queue_by_id[queue_id] = []
queue_by_id[queue_id] = [value] + queue_by_id[queue_id]
await self.redis_client.set(self.name, json.dumps(queue_by_id))
logger.debug(
"ASYNC Thread %s: Finished PUT(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
async def get(self, queue_id: str | None):
"""
Get the next value in the queue.
if queue_id is None, will get a value from any queue
if queue_id is not none, will wait to get a value from a specific queue
"""
logger.debug(
"ASYNC Thread %s: Starting GET(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
while True:
async with self.lock:
maybe_queue_by_id = await self.redis_client.get(self.name)
if maybe_queue_by_id is None:
continue
queue_by_id: dict[str, list[T]] = json.loads(maybe_queue_by_id)
if queue_id is None:
queue_id = find_any(queue_by_id)
# Ensure a queue_id was found or that it already existed
if queue_id is not None and queue_id in queue_by_id:
queue: list = queue_by_id[queue_id]
if len(queue) == 0:
continue
value = queue.pop(-1)
# queue is mutated and queue_by_id references it, so this works
await self.redis_client.set(self.name, json.dumps(queue_by_id))
logger.debug(
"ASYNC Thread %s: Finished GET(%s) for %s",
threading.get_ident(),
self.name,
queue_id,
)
return queue_id, value
await asyncio.sleep(self.interval)
class AsyncRedisCounter:
def __init__(self, redis_client: async_redis.Redis, name: str) -> None:
self.redis_client = redis_client
self.name = name
self.lock = async_redis.lock.Lock(redis_client, f"lock_for_{name}")
async def reset(self) -> int:
try:
await self.lock.release()
except async_redis.lock.LockError:
pass
await self.redis_client.set(self.name, 0)
async def add(self, n: int) -> int:
async with self.lock:
current_val = await self.redis_client.get(self.name)
if current_val is None:
current_val = 0
else:
current_val = int(current_val)
new_val = current_val + n
await self.redis_client.set(self.name, new_val)
return new_val
async def sub(self, n: int) -> int:
async with self.lock:
current_val = await self.redis_client.get(self.name)
if current_val is None:
raise ValueError("Invalid sub counter when counter does not exist")
current_val = int(current_val)
if current_val <= 0:
raise ValueError("Invalid sub counter to counter that is already zero")
new_val = current_val - n
await self.redis_client.set(self.name, new_val)
return new_val
async def count(self) -> int:
value = await self.redis_client.get(self.name)
if value is None:
return 0
else:
return int(value)
def distributed_workers(
model_args: dict,
master_address: str,
master_port: str,
world_size: int,
rank: int,
redis_port: int,
worker_queues: dict[int, multiprocessing.Queue],
) -> None:
redis_client = redis.Redis("redis", redis_port)
request_queue = RedisQueue(redis_client, "request")
response_queue = RedisQueue(redis_client, "response")
os.environ["MASTER_ADDR"] = master_address
os.environ["MASTER_PORT"] = str(master_port)
torch.set_default_tensor_type("torch.cuda.FloatTensor")
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
assert rank == torch.distributed.get_rank()
torch.cuda.set_device(rank)
is_coord = rank == 0
worker = ChameleonWorker(
rank=rank,
model_path=model_args["model_path"],
tokenizer_path=model_args["tokenizer_path"],
additional_eos_tokens=model_args["additional_eos_tokens"],
)
worker_id = id(worker)
logger.info("Rank %s, master_port=%s worker=%s", rank, master_port, worker_id)
step = 0
while True:
step += 1
redis_client.set(f"status_rank_{rank}", "Pre-coordinator sync")
if is_coord:
distributed_objs = [request_queue.get(None)]
logger.info("Objects from queue: %s", distributed_objs)
for worker_rank in range(1, world_size):
worker_message = {"message": START, "src": rank, "dst": worker_rank}
logger.info("Rank %s Sending: %s", rank, worker_message)
worker_queues[worker_rank].put(worker_message)
else:
distributed_objs = [None]
logger.info("Rank %s worker %s waiting for rank 0", rank, worker_id)
message_from_rank_0 = worker_queues[rank].get()
logger.info(
"Received message from rank 0 in rank %s: %s", rank, message_from_rank_0
)
if message_from_rank_0["message"] != START:
raise ValueError(
f"Unexpected message from rank 0: {message_from_rank_0['message']}"
)
redis_client.set(f"status_rank_{rank}", "Post-coordinator sync")
try:
logger.info(
"Broadcast Starting: Rank %s, worker %s, step %s",
rank,
worker_id,
step,
)
redis_client.set(f"status_rank_{rank}", "Pre-torch sync")
torch.distributed.broadcast_object_list(distributed_objs, src=0)
redis_client.set(f"status_rank_{rank}", "Post-torch sync")
logger.info(
"Broadcast Complete: Rank %s, worker %s, step %s",
rank,
worker_id,
step,
)
except RuntimeError as e:
logger.error(
"Rank %s, worker %s, step %s, Error detected in torch broadcast: %s",
rank,
worker_id,
step,
str(e),
)
raise
logger.info("rank %s, objs %s", rank, distributed_objs)
queue_id, data = distributed_objs[0]
mode = data.pop("mode")
request_id = data.pop("request_id")
assert queue_id == request_id
tokenized_prompt = data.pop("tokenized_prompt")
try:
match mode:
case WSMessageType.GENERATE_TEXT:
generator_fn = partial(
worker._generate_text_streaming, tokenized_prompt, **data
)
case WSMessageType.GENERATE_IMAGE:
generator_fn = partial(
worker._generate_image_streaming, tokenized_prompt, **data
)
case WSMessageType.GENERATE_MULTIMODAL:
generator_fn = partial(
worker._generate_multimodal_streaming, tokenized_prompt, **data
)
case _:
logger.error(
"Encountered unknown mode, crashing the program: %s", mode
)
response_queue.put(
queue_id, {"error": True, "final": True, "message": mode}
)
raise ValueError("Unknown mode")
logger.info("Rank: %s, Processing request: %s", rank, request_id)
i = 0
redis_client.set(f"status_rank_{rank}", "Pre-generate")
for output in generator_fn():
i += 1
if is_coord:
response = {"final": False, "output": output, "error": False}
logger.info(
"Rank: %s, Adding to response queue: %.100s",
rank,
response,
)
redis_client.set(f"status_rank_{rank}", f"Generate Pre Put {i}")
response_queue.put(queue_id, response)
redis_client.set(f"status_rank_{rank}", f"Generate Post Put {i}")
else:
redis_client.set(f"status_rank_{rank}", f"Generate {i}")
redis_client.set(f"step_on_rank_{rank}", i)
redis_client.set(f"status_rank_{rank}", "Post-generate")
if is_coord:
logger.info("Rank: %s, Adding final result to output queue", rank)
response_queue.put(queue_id, {"final": True, "error": False})
except torch.cuda.OutOfMemoryError as e:
logger.error("Encountered OOM, crashing the program: %s", e)
response_queue.put(
queue_id, {"error": True, "final": True, "message": str(e)}
)
crash_program()
except RuntimeError as e:
message = str(e)
if "CUDA" in message:
logger.error("Encountered CUDA error, crashing the program: %s", e)
response_queue.put(
queue_id, {"error": True, "final": True, "message": str(e)}
)
crash_program()
else:
logger.error(
"Encountered unexpected runtime error, crashing the program: %s %s",
e,
traceback.format_exc(),
)
response_queue.put(
queue_id, {"error": True, "final": True, "message": str(e)}
)
crash_program()
except Exception as e:
logger.error(
"Encountered unexpected exception: %s %s",
str(e),
traceback.format_exc(),
)
response_queue.put(
queue_id, {"error": True, "final": True, "message": str(e)}
)
crash_program()
class ChameleonWorker(ChameleonForwardMixin):
def __init__(
self,
*,
rank: int,
model_path: str,
tokenizer_path: str,
additional_eos_tokens: list[str] | None,
) -> None:
self.rank = rank
self.model_path = model_path
self.additional_eos_tokens = additional_eos_tokens
torch.set_default_device(f"cuda:{rank}")
self.model = load_model(model_path, rank)
self.tokenizer = Tokenizer.from_file(str(tokenizer_path))
self.vocab = VocabInfo(json.load(open(tokenizer_path))["model"]["vocab"])
logger.info(
"Rank: %s, Model loaded in worker_obj: %s",
rank,
id(self),
)
def crash_program() -> None:
logger.error(
"Crashing the program as instructed, likely due to distributed worker failures"
)
sys.exit(1)
class ChameleonDistributedGenerator(AbstractMultimodalGenerator, ChameleonTokenizationMixin):
def __init__(
self,
*,
world_size: int,
model_path: str,
master_port: int,
tokenizer_path: str,
vqgan_config_path: str,
vqgan_ckpt_path: str | None = None,
master_address: str = "0.0.0.0",
additional_eos_tokens: list[str] | None = None,
redis_port: int | None = None,
) -> None:
self.master_port = master_port
self.master_address = master_address
self.additional_eos_tokens = additional_eos_tokens
logger.info("Loading tokenizer...")
tokenizer_path = tokenizer_path
self.tokenizer = Tokenizer.from_file(str(tokenizer_path))
self.vocab = VocabInfo(json.load(open(tokenizer_path))["model"]["vocab"])
logger.info("Loading VQGAN...")
self.image_tokenizer = ImageTokenizer(vqgan_config_path, vqgan_ckpt_path)
self.redis_port = redis_port
self.redis_pool = async_redis.ConnectionPool.from_url(
f"redis://redis:{redis_port}"
)
self.redis_client = async_redis.Redis.from_pool(self.redis_pool)
self.request_queue = AsyncRedisQueue(self.redis_client, "request")
self.response_queue = AsyncRedisQueue(self.redis_client, "response")
self.worker_queues: dict[int, multiprocessing.Queue] = {
rank: multiprocessing.Queue() for rank in range(world_size)
}
self.procs: list[multiprocessing.Process] = []
model_args = {
"model_path": model_path,
"master_address": master_address,
"master_port": master_port,
"tokenizer_path": tokenizer_path,
"additional_eos_tokens": additional_eos_tokens,
}
logger.info("Launching paralle model with world_size=%s", world_size)
for i in range(world_size):
proc = multiprocessing.Process(
target=distributed_workers,
args=(
model_args,
master_address,
master_port,
world_size,
i,
self.redis_port,
self.worker_queues,
),
daemon=True,
)
self.procs.append(proc)
proc.start()
def check_error(self, output: dict) -> None:
if output["error"]:
import sys
print(f"check_error({output})", file=sys.stderr)
self.kill_procs()
logger.error(
"COORDINATOR: Encountered error in managed processes, exiting: %s",
output,
)
crash_program()
def __del__(self) -> None:
self.kill_procs(error=False)
def kill_procs(self, error: bool = True) -> None:
if error:
log_fn = logger.error
else:
log_fn = logger.info
log_fn("Error encountered, killing worker procs: %s", self.procs)
for p in self.procs:
try:
log_fn("Killing: %s", p)
p.kill()
except:
log_fn("Encountered issue killing process and ignoring: %s", p)
# ALLOW_ANY(get_next_output.return)
async def get_next_output(self, request_id: str) -> Any:
logger.info("Waiting for response for request_id=%s", request_id)
queue_id, output = await self.response_queue.get(request_id)
assert queue_id == request_id
return output
async def generate_text_streaming(
self,
prompt: MixedSequenceType,
max_gen_tokens: int = 256,
temp: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float = 1.2,
seed: int | None = None,
debug: dict | None = None,
) -> Generator[str, None, None]:
tokenized_prompt = self.tokens_from_inputs(prompt)
request_id = f"request_{random.randint(100_000, 200_000)}"
if seed is None:
seed = random.randint(1, 2048)
if debug is not None:
debug["seed"] = seed
if len(tokenized_prompt) > (4096 - 3):
yield "ERROR: Your input exceeds the model's context length of 4096. Note that images consume 1024 tokens whether in input or output."
return
assert not isinstance(tokenized_prompt, torch.Tensor)
request = {
"mode": WSMessageType.GENERATE_TEXT.value,
"request_id": request_id,
"tokenized_prompt": tokenized_prompt,
"max_gen_tokens": max_gen_tokens,
"temp": temp,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"seed": seed,
}
logger.info(
"Sending request_id=%s: %s",
request_id,
request,
)
await asyncio.gather(
self.request_queue.clear(request_id),
self.response_queue.clear(request_id),
)
logger.info("Cleared request/response queue for %s", request_id)
await self.request_queue.put(request_id, request)
logger.info("Sent request to coordinator %s", request_id)
try:
while True:
output = await self.get_next_output(request_id)
logger.info("Received response for %s", request_id)
self.check_error(output)
if output["final"]:
break
n_outs = len(output["output"])
if n_outs != 1:
logger.error(
"Encountered unexpected number of %s arguments in: %s",
n_outs,
output["output"],
)
tokens = output["output"]
assert not isinstance(tokens, torch.Tensor)
logger.info("output info: type=%s, value=%.20s", type(tokens), tokens)
yield self.tokenizer.decode(tokens)
finally:
logger.info("Cleaning up queues in request_id=%s", request_id)
await asyncio.gather(
self.request_queue.clear(request_id),
self.response_queue.clear(request_id),
)
logger.info("Completed cleaning for request_id=%s", request_id)
async def generate_image_streaming(
self,
prompt: MixedSequenceType,
temp: float = 1.0,
top_p: float = 0.8,
cfg_image_weight: float = DEFAULT_IMAGE_CFG_IMAGE,
cfg_text_weight: float = DEFAULT_IMAGE_CFG_TEXT,
yield_every_n: int = 32,
debug: dict | None = None,
seed: int | None = None,
) -> Generator[StreamingImage, None, None]:
tokenized_prompt = self.tokens_from_inputs(prompt)
tokenized_prompt.append(self.vocab.begin_image)
assert not isinstance(tokenized_prompt, torch.Tensor)
request_id = f"request_{random.randint(100_000, 200_000)}"
if seed is None:
seed = random.randint(1, 2048)
if debug is not None:
debug["seed"] = seed
if len(tokenized_prompt) > (4096 - 3 - 1024):
yield "ERROR: Your input exceeds the model's context length of 4096. Note that images consume 1024 tokens whether in input or output."
return
request = {
"mode": WSMessageType.GENERATE_IMAGE.value,
"request_id": request_id,
"tokenized_prompt": tokenized_prompt,
"cfg_image_weight": cfg_image_weight,
"cfg_text_weight": cfg_text_weight,
"yield_every_n": yield_every_n,
"temp": temp,
"top_p": top_p,
"seed": seed,
}
logger.info(
"Sending request_id=%s: %s",
request_id,
request,
)
await asyncio.gather(
self.request_queue.clear(request_id),
self.response_queue.clear(request_id),
)
logger.info("Cleared request/response queue for %s", request_id)
await self.request_queue.put(request_id, request)
logger.info("Sent request to coordinator %s", request_id)
try:
while True:
output = await self.get_next_output(request_id)
logger.info("Received response for %s", request_id)
self.check_error(output)
if output["final"]:
break
n_outs = len(output["output"])
if n_outs != 2:
logger.error(
"Encountered unexpected number of %s arguments in: %s",
n_outs,
output["output"],
)
tokens, final = output["output"]
assert not isinstance(tokens, torch.Tensor)
yield StreamingImage(
image=self.pillow_from_bpe_tokens(torch.tensor(tokens)), final=final
)
finally:
logger.info("Cleaning up queues in request_id=%s", request_id)
await asyncio.gather(
self.request_queue.clear(request_id),
self.response_queue.clear(request_id),
)
logger.info("Completed cleaning for request_id=%s", request_id)
async def generate_multimodal_streaming(
self,
prompt: MixedSequenceType,
temp: float = 1.0,
top_p: float = 0.8,
cfg_image_weight: float = DEFAULT_MULTIMODAL_CFG_IMAGE,
cfg_text_weight: float = DEFAULT_MULTIMODAL_CFG_TEXT,
yield_every_n: int = 32,
max_gen_tokens: int = 4096,
repetition_penalty: float = 1.2,
suffix_tokens: list[str] | None = None,
seed: int | None = None,
debug: dict | None = None,
) -> Generator[MixedSequenceType, None, None]:
tokenized_prompt = self.tokens_from_inputs(prompt, suffix_tokens=suffix_tokens)
assert not isinstance(tokenized_prompt, torch.Tensor)
request_id = f"request_{random.randint(100_000, 200_000)}"
if seed is None:
seed = random.randint(1, 2048)
if debug is not None:
debug["seed"] = seed
if len(tokenized_prompt) > (4096 - 3):
yield "ERROR: Your input exceeds the model's context length of 4096. Note that images consume 1024 tokens."
return
request = {
"mode": WSMessageType.GENERATE_MULTIMODAL.value,
"request_id": request_id,
"tokenized_prompt": tokenized_prompt,
"cfg_image_weight": cfg_image_weight,
"cfg_text_weight": cfg_text_weight,
"repetition_penalty": repetition_penalty,
"yield_every_n": yield_every_n,
"max_gen_tokens": max_gen_tokens,
"temp": temp,
"top_p": top_p,
"seed": seed,
}
logger.info(
"Sending request_id=%s: %s",
request_id,
request,
)
await asyncio.gather(
self.request_queue.clear(request_id),
self.response_queue.clear(request_id),
)
logger.info("Cleared request/response queue for %s", request_id)
await self.request_queue.put(request_id, request)
logger.info("Sent request to coordinator %s", request_id)
try:
while True:
output = await self.get_next_output(request_id)
logger.info("Received response for %s", request_id)
self.check_error(output)
if output["final"]:
break
n_outs = len(output["output"])
if n_outs != 3:
logger.error(
"Encountered unexpected number of %s arguments in: %s",
n_outs,
output["output"],
)
token_type, tokens, image_is_final = output["output"]
assert not isinstance(tokens, torch.Tensor)
match token_type:
case "TEXT":
yield self.tokenizer.decode(tokens)
case "IMAGE":
yield StreamingImage(
image=self.pillow_from_bpe_tokens(torch.tensor(tokens)),
final=image_is_final,
)
case _:
raise ValueError("Unknown token type")
finally:
logger.info("Cleaning up queues in request_id=%s", request_id)
await self.request_queue.clear(request_id)
await self.response_queue.clear(request_id)
|