File size: 1,100 Bytes
722fcb5
3092c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab7af2
70d7e2d
3092c67
 
8180fc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from huggingface_hub import hf_hub_download
from fastai.learner import load_learner

repo_id = "ethanmac/dr-macbloomber-retina-condition-classifier"

model = load_learner(
    hf_hub_download(repo_id, "model.pkl")
)

class_names = [
'Normal',
'Hollenhorst Emboli',
'Hypertensive Retinopathy',
'Coat\'s',
'Macroaneurism',
'Choroidal Neovascularization',
'Other',
'Branch Retinal Artery Occlusion',
'Cilio-Retinal Artery Occlusion',
'Branch Retinal Vein Occlusion',
'Central Retinal Vein Occlusion',
'Hemi-Central Retinal Vein Occlusion',
'Background Diabetic Retinopathy',
'Proliferative Diabetic Retinopathy',
'Arteriosclerotic Retinopathy'
]

categories = [c.replace('_', ' ').title() for c in class_names]

def classify_image(img):
    pred, idx, probs = model.predict(img)
    out = dict(zip(categories, map(float, probs)))
    return out

intf = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(),
    outputs=gr.Label(num_top_classes=5),
    title="Retinal Image Condition Classifier",
    examples=['healthy.jpg', 'crvo.jpg']
)

intf.launch(inline=False, share=True)