Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from sahi.prediction import ObjectPrediction
|
4 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
+
from ultralyticsplus import YOLO
|
6 |
+
|
7 |
+
# Images
|
8 |
+
torch.hub.download_url_to_file('https://ibb.co/zrFWRhJ][img]https://i.ibb.co/37v5Nyz/01-missing-hole-02-jpg-rf-3bd05d8784b12c66da03831d326edd2b.jpg', 'hole.jpg')
|
9 |
+
torch.hub.download_url_to_file('https://ibb.co/qgPMXvN][img]https://i.ibb.co/rp1GTVx/01-mouse-bite-04-jpg-rf-8b3b06d80ac553a92606bdac3e394bb9.jpg', 'mouse.jpg')
|
10 |
+
torch.hub.download_url_to_file('https://ibb.co/0Q35SLN][img]https://i.ibb.co/DLndyFX/12-spur-05-jpg-rf-39e4c0bbc17325d83c938d49e5efdf47.jpg', 'spur.jpg')
|
11 |
+
|
12 |
+
def yolov8_inference(
|
13 |
+
image: gr.inputs.Image = None,
|
14 |
+
model_path: gr.inputs.Dropdown = None,
|
15 |
+
image_size: gr.inputs.Slider = 640,
|
16 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
17 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
YOLOv8 inference function
|
21 |
+
Args:
|
22 |
+
image: Input image
|
23 |
+
model_path: Path to the model
|
24 |
+
image_size: Image size
|
25 |
+
conf_threshold: Confidence threshold
|
26 |
+
iou_threshold: IOU threshold
|
27 |
+
Returns:
|
28 |
+
Rendered image
|
29 |
+
"""
|
30 |
+
model = YOLO(model_path)
|
31 |
+
model.conf = conf_threshold
|
32 |
+
model.iou = iou_threshold
|
33 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
34 |
+
object_prediction_list = []
|
35 |
+
for _, image_results in enumerate(results):
|
36 |
+
if len(image_results)!=0:
|
37 |
+
image_predictions_in_xyxy_format = image_results['det']
|
38 |
+
for pred in image_predictions_in_xyxy_format:
|
39 |
+
x1, y1, x2, y2 = (
|
40 |
+
int(pred[0]),
|
41 |
+
int(pred[1]),
|
42 |
+
int(pred[2]),
|
43 |
+
int(pred[3]),
|
44 |
+
)
|
45 |
+
bbox = [x1, y1, x2, y2]
|
46 |
+
score = pred[4]
|
47 |
+
category_name = model.model.names[int(pred[5])]
|
48 |
+
category_id = pred[5]
|
49 |
+
object_prediction = ObjectPrediction(
|
50 |
+
bbox=bbox,
|
51 |
+
category_id=int(category_id),
|
52 |
+
score=score,
|
53 |
+
category_name=category_name,
|
54 |
+
)
|
55 |
+
object_prediction_list.append(object_prediction)
|
56 |
+
|
57 |
+
image = read_image(image)
|
58 |
+
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
59 |
+
return output_image['image']
|
60 |
+
|
61 |
+
|
62 |
+
inputs = [
|
63 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
64 |
+
gr.inputs.Dropdown(["ethanrom/pcb_def"],
|
65 |
+
default="ethanrom/pcb_def", label="Model"),
|
66 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
67 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
68 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
69 |
+
]
|
70 |
+
|
71 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
72 |
+
title = "YOLOv8 PCB defect detection"
|
73 |
+
|
74 |
+
examples = [['highway.jpg', 'ethanrom/pcb_def', 640, 0.25, 0.45]]
|
75 |
+
demo_app = gr.Interface(
|
76 |
+
fn=yolov8_inference,
|
77 |
+
inputs=inputs,
|
78 |
+
outputs=outputs,
|
79 |
+
title=title,
|
80 |
+
examples=examples,
|
81 |
+
cache_examples=True,
|
82 |
+
theme='huggingface',
|
83 |
+
)
|
84 |
+
demo_app.launch(debug=True, enable_queue=True)
|