import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO # Images #torch.hub.download_url_to_file('https://ibb.co/zrFWRhJ][img]https://i.ibb.co/37v5Nyz/01-missing-hole-02-jpg-rf-3bd05d8784b12c66da03831d326edd2b.jpg', 'hole.jpg') #torch.hub.download_url_to_file('https://ibb.co/qgPMXvN][img]https://i.ibb.co/rp1GTVx/01-mouse-bite-04-jpg-rf-8b3b06d80ac553a92606bdac3e394bb9.jpg', 'mouse.jpg') #torch.hub.download_url_to_file('https://ibb.co/0Q35SLN][img]https://i.ibb.co/DLndyFX/12-spur-05-jpg-rf-39e4c0bbc17325d83c938d49e5efdf47.jpg', 'spur.jpg') def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.conf = conf_threshold model.iou = iou_threshold results = model.predict(image, imgsz=image_size, return_outputs=True) object_prediction_list = [] for _, image_results in enumerate(results): if len(image_results)!=0: image_predictions_in_xyxy_format = image_results['det'] for pred in image_predictions_in_xyxy_format: x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] object_prediction = ObjectPrediction( bbox=bbox, category_id=int(category_id), score=score, category_name=category_name, ) object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["ethanrom/pcb_def"], default="ethanrom/pcb_def", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YOLOv8 PCB defect detection" #examples = [['highway.jpg', 'ethanrom/pcb_def', 640, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, #examples=examples, #cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)