File size: 1,144 Bytes
253de62
 
 
c1728bd
253de62
47e4017
253de62
 
 
 
47e4017
 
253de62
 
 
 
47e4017
253de62
 
c1728bd
253de62
 
47e4017
253de62
 
 
 
 
c1728bd
253de62
c1728bd
 
 
253de62
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
we deploy the pipeline via streamlit.
"""
import re
import streamlit as st
from idiomify.fetchers import fetch_pipeline
from idiomify.pipeline import Pipeline


@st.cache(allow_output_mutation=True)
def cache_pipeline() -> Pipeline:
    return fetch_pipeline()


def main():
    # fetch a pre-trained model
    pipeline = cache_pipeline()
    st.title("Idiomify Demo")
    text = st.text_area("Type sentences here",
                        value="Just remember that there will always be a hope even when things look hopeless")
    with st.sidebar:
        st.subheader("Supported idioms")
        idioms = [row["Idiom"] for _, row in pipeline.idioms.iterrows()]
        st.write(" / ".join(idioms))

    if st.button(label="Idiomify"):
        with st.spinner("Please wait..."):
            sents = [sent for sent in text.split(".") if sent]
            preds = pipeline(sents, max_length=200)
            # highlight the rule & honorifics that were applied
            preds = [re.sub(r"<idiom>|</idiom>", "`", pred)
                     for pred in preds]
            st.markdown(". ".join(preds))


if __name__ == '__main__':
    main()