Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
|
3 |
-
df = pd.read_csv("./drugs_side_effects_drugs_com.csv")
|
4 |
-
df.info()
|
5 |
-
|
6 |
-
df = df[['drug_name', 'medical_condition', 'side_effects']]
|
7 |
-
df.dropna(inplace=True)
|
8 |
-
|
9 |
-
df.info()
|
10 |
-
|
11 |
context_data = pd.read_csv("drugs_side_effects_drugs_com.csv")
|
12 |
|
13 |
import os
|
@@ -28,15 +20,9 @@ vectorstore = Chroma(
|
|
28 |
persist_directory="./",
|
29 |
)
|
30 |
|
31 |
-
vectorstore.get().keys()
|
32 |
-
|
33 |
# add data to vector nstore
|
34 |
vectorstore.add_texts(context_data)
|
35 |
|
36 |
-
query = "What drug that causes these side effects hives ; difficulty breathing; swelling of your face, lips, tongue, or throat."
|
37 |
-
docs = vectorstore.similarity_search(query)
|
38 |
-
print(docs[0].page_content)
|
39 |
-
|
40 |
retriever = vectorstore.as_retriever()
|
41 |
|
42 |
from langchain_core.prompts import PromptTemplate
|
@@ -45,11 +31,8 @@ template = ("""You are a medical expert.
|
|
45 |
Use the provided context to answer the question.
|
46 |
If you don't know the answer, say so. Explain your answer in detail.
|
47 |
Do not discuss the context in your response; just provide the answer directly.
|
48 |
-
|
49 |
Context: {context}
|
50 |
-
|
51 |
Question: {question}
|
52 |
-
|
53 |
Answer:""")
|
54 |
|
55 |
rag_prompt = PromptTemplate.from_template(template)
|
@@ -64,20 +47,6 @@ rag_chain = (
|
|
64 |
| StrOutputParser()
|
65 |
)
|
66 |
|
67 |
-
from IPython.display import display, Markdown
|
68 |
-
|
69 |
-
response = rag_chain.invoke("What drug that causes these side effects hives ; difficulty breathing; swelling of your face, lips, tongue, or throat")
|
70 |
-
Markdown(response)
|
71 |
-
|
72 |
-
from IPython.display import display, Markdown
|
73 |
-
|
74 |
-
response = rag_chain.invoke("What is Capital of Greece?")
|
75 |
-
Markdown(response)
|
76 |
-
|
77 |
-
"""# Deployment
|
78 |
-
|
79 |
-
"""
|
80 |
-
|
81 |
import gradio as gr
|
82 |
|
83 |
def rag_memory_stream(text):
|
@@ -86,6 +55,10 @@ def rag_memory_stream(text):
|
|
86 |
partial_text += new_text
|
87 |
yield partial_text
|
88 |
|
|
|
|
|
|
|
|
|
89 |
|
90 |
title = "MediGuide ChatBot"
|
91 |
demo = gr.Interface(
|
@@ -93,6 +66,7 @@ demo = gr.Interface(
|
|
93 |
fn=rag_memory_stream,
|
94 |
inputs="text",
|
95 |
outputs="text",
|
|
|
96 |
allow_flagging="never",
|
97 |
)
|
98 |
|
@@ -100,36 +74,5 @@ demo = gr.Interface(
|
|
100 |
if __name__ == "__main__":
|
101 |
demo.launch()
|
102 |
|
103 |
-
"""# Evaluating Using Blue Score and Rouge Score"""
|
104 |
-
|
105 |
-
# qa_pair = []
|
106 |
-
# for i in range(len(context_data)):
|
107 |
-
# drug_name = str(context_data['drug_name'][i])
|
108 |
-
# medical_condition = str(context_data['medical_condition'][i])
|
109 |
-
# side_effects = str(context_data['side_effects'][i])
|
110 |
-
|
111 |
-
# Question = f"What are the side effect of {drug_name} ?"
|
112 |
-
# Answer = f"Side Effects: {side_effects}"
|
113 |
-
|
114 |
-
# qa_pair.append([Question,Answer])
|
115 |
-
|
116 |
-
# df = pd.DataFrame(qa_pair, columns=['Questions', 'Answers'])
|
117 |
-
|
118 |
-
# question = [df['Questions'][0]]
|
119 |
-
|
120 |
-
# import sacrebleu
|
121 |
-
# from rouge_score import rouge_scorer
|
122 |
-
|
123 |
-
# predicted_answer = rag_chain.invoke("What are the side effects of doxycycline?")
|
124 |
-
# predicted_answer
|
125 |
-
|
126 |
-
# reference_answer =df['Answers'][0]
|
127 |
-
# reference_answer
|
128 |
-
|
129 |
-
# blue_score = sacrebleu.corpus_bleu([predicted_answer], reference_answer).score
|
130 |
-
# blue_score
|
131 |
|
132 |
-
# scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
|
133 |
-
# rouge_score = scorer.score(reference_answer, predicted_answer)
|
134 |
-
# rouge_score
|
135 |
|
|
|
1 |
import pandas as pd
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
context_data = pd.read_csv("drugs_side_effects_drugs_com.csv")
|
4 |
|
5 |
import os
|
|
|
20 |
persist_directory="./",
|
21 |
)
|
22 |
|
|
|
|
|
23 |
# add data to vector nstore
|
24 |
vectorstore.add_texts(context_data)
|
25 |
|
|
|
|
|
|
|
|
|
26 |
retriever = vectorstore.as_retriever()
|
27 |
|
28 |
from langchain_core.prompts import PromptTemplate
|
|
|
31 |
Use the provided context to answer the question.
|
32 |
If you don't know the answer, say so. Explain your answer in detail.
|
33 |
Do not discuss the context in your response; just provide the answer directly.
|
|
|
34 |
Context: {context}
|
|
|
35 |
Question: {question}
|
|
|
36 |
Answer:""")
|
37 |
|
38 |
rag_prompt = PromptTemplate.from_template(template)
|
|
|
47 |
| StrOutputParser()
|
48 |
)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
import gradio as gr
|
51 |
|
52 |
def rag_memory_stream(text):
|
|
|
55 |
partial_text += new_text
|
56 |
yield partial_text
|
57 |
|
58 |
+
examples = ['I feel dizzy', 'what is the possible sickness for fatigue']
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
|
63 |
title = "MediGuide ChatBot"
|
64 |
demo = gr.Interface(
|
|
|
66 |
fn=rag_memory_stream,
|
67 |
inputs="text",
|
68 |
outputs="text",
|
69 |
+
examples=examples,
|
70 |
allow_flagging="never",
|
71 |
)
|
72 |
|
|
|
74 |
if __name__ == "__main__":
|
75 |
demo.launch()
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
|
|
|
|
78 |
|