File size: 2,968 Bytes
dfce863
 
ecf768f
683fa93
 
ecf768f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfce863
ecf768f
 
dfce863
ecf768f
ec386e0
 
 
 
 
ecf768f
 
 
ec386e0
ecf768f
ec386e0
 
ecf768f
ec386e0
dfce863
 
ecf768f
 
 
 
 
 
 
 
 
 
ec386e0
ecf768f
 
 
 
ec386e0
ecf768f
ec386e0
ecf768f
 
 
683fa93
ecf768f
683fa93
ec386e0
ecf768f
ec386e0
ecf768f
 
683fa93
 
 
ecf768f
 
683fa93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import json
from huggingface_hub import snapshot_download
import gradio as gr

# 1) Pre-download only the MFD/YOLO weights
MODEL_REPO = "opendatalab/pdf-extract-kit-1.0"
LOCAL_MODELS = "./models"
snapshot_download(
    repo_id=MODEL_REPO,
    local_dir=LOCAL_MODELS,
    allow_patterns="models/MFD/YOLO/*",
    max_workers=4
)

# 2) Write a minimal magic-pdf.json pointing to our models
CFG_PATH = os.path.expanduser("~/magic-pdf.json")
if not os.path.exists(CFG_PATH):
    cfg = {
        "device": "cpu",               # CPU fallback
        "models-dir": LOCAL_MODELS,    # where we downloaded yolo_v8_ft.pt
        "layout-model": "layoutlmv3",  
        "formula-enable": True,
        "table-enable": True
    }
    with open(CFG_PATH, "w", encoding="utf-8") as f:
        json.dump(cfg, f, ensure_ascii=False, indent=2)

# 3) MinerU imports
from magic_pdf.data.read_api import read_local_pdfs
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod

def convert_with_mineru(pdf_file, out_fmt):
    datasets = read_local_pdfs(pdf_file.name)
    tmp, img_dir = "output", os.path.join("output", "images")
    os.makedirs(img_dir, exist_ok=True)
    md_writer = FileBasedDataWriter(tmp)
    img_writer = FileBasedDataWriter(img_dir)

    results = []
    for ds in datasets:
        method = ds.classify()
        infer = ds.apply(doc_analyze, ocr=(method == SupportedPdfParseMethod.OCR))
        pipe = (
            infer.pipe_ocr_mode(img_writer)
            if method == SupportedPdfParseMethod.OCR
            else infer.pipe_txt_mode(img_writer)
        )
        base = os.path.splitext(os.path.basename(pdf_file.name))[0]
        md_name = f"{base}.md"
        pipe.dump_md(md_writer, md_name, os.path.basename(img_dir))
        with open(os.path.join(tmp, md_name), encoding="utf-8") as f:
            md_text = f.read()

        json_name = f"{base}_content_list.json"
        pipe.dump_content_list(md_writer, json_name, os.path.basename(img_dir))
        with open(os.path.join(tmp, json_name), encoding="utf-8") as f:
            content = json.load(f)

        results.append({"markdown": md_text, "content_list": content})

    if out_fmt == "markdown":
        return "\n\n---\n\n".join(r["markdown"] for r in results)
    return json.dumps(results, ensure_ascii=False, indent=2)

# 4) Gradio UI
demo = gr.Interface(
    fn=convert_with_mineru,
    inputs=[gr.File(label="Upload PDF"), gr.Radio(["markdown", "json"], label="Format")],
    outputs=gr.Code(label="Result"),
    title="MinerU PDF → Markdown/JSON (Fixed)",
    description="Pre-downloads YOLO weights and configures MinerU for Spaces."
)

if __name__ == "__main__":
    # Recommended: ensure HF_HUB_CACHE points to ./models
    os.environ.setdefault("HF_HUB_CACHE", LOCAL_MODELS)
    demo.launch(server_name="0.0.0.0", server_port=7860)