Spaces:
Running
Running
File size: 41,470 Bytes
2bdb7ce 02a25f1 189b68e 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 b9621c6 a1879ff a71465e 28d6753 3aa90a1 57cea28 a71465e a1879ff b9621c6 02a25f1 2bdb7ce 02a25f1 cd66e4d 02a25f1 cd66e4d 02a25f1 cd66e4d 02a25f1 cd66e4d 02a25f1 b041735 02a25f1 b041735 02a25f1 b041735 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 8355fb9 02a25f1 8355fb9 02a25f1 94228fc 02a25f1 c08b46a 02a25f1 94228fc 02a25f1 94228fc 02a25f1 94228fc 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 2bdb7ce 02a25f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import pandas as pd
import plotly.express as px
import markdown
import zipfile
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
from openai import OpenAI
from transformers import pipeline
import torch
import traceback
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Logging
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s β’ %(name)s β’ %(levelname)s β’ %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Model & Render Configuration
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"Llama-4-Scout-17B-16E-Instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"Llama-4-Maverick-17B-128E-Instruct-FP8": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"gpt-4o-mini": {"max_tokens": 15000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o3-mini": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-mini": {"max_completion_tokens": 66000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-preview": {"max_tokens": 33000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft", "warning": None},
"Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
"Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}
QUALITY_PRESETS = {
"480p": {"flag": "-ql", "fps": 30},
"720p": {"flag": "-qm", "fps": 30},
"1080p": {"flag": "-qh", "fps": 60},
"4K": {"flag": "-qk", "fps": 60},
"8K": {"flag": "-qp", "fps": 60},
}
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Sequence": "png_sequence",
"SVG": "svg"
}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. prepare_api_params
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def prepare_api_params(messages, model_name):
"""Lookup MODEL_CONFIGS and build API call parameters."""
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
params = {
"messages": messages,
"model": model_name,
config["param_name"]: config.get(config["param_name"])
}
return params, config
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. get_secret
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_secret(key):
"""Read an environment variable (e.g. password, API token)."""
val = os.environ.get(key)
if not val:
logger.warning(f"Secret '{key}' not found")
return val or ""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. check_password
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def check_password():
"""Prompt for admin password and gate AI features."""
correct = get_secret("password")
if not correct:
st.error("Admin password not configured in secrets")
return False
if "auth_ok" not in st.session_state:
st.session_state.auth_ok = False
if not st.session_state.auth_ok:
pwd = st.text_input("π Enter admin password", type="password", help="Protects AI assistant")
if pwd:
if pwd == correct:
st.session_state.auth_ok = True
st.success("Access granted")
else:
st.error("Incorrect password")
return False
return True
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. ensure_packages
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ensure_packages():
"""Check & install core dependencies on first run."""
required = {
'streamlit':'1.25.0','manim':'0.17.3','numpy':'1.22.0','Pillow':'9.0.0',
'transformers':'4.30.0','torch':'2.0.0','plotly':'5.14.0','pandas':'2.0.0',
'python-pptx':'0.6.21','markdown':'3.4.3','fpdf':'1.7.2','matplotlib':'3.5.0',
'seaborn':'0.11.2','scipy':'1.7.3','huggingface_hub':'0.16.0',
'azure-ai-inference':'1.0.0b9','azure-core':'1.33.0','openai':''
}
missing = []
for pkg, ver in required.items():
try:
__import__(pkg if pkg!='Pillow' else 'PIL')
except ImportError:
missing.append(f"{pkg}>={ver}" if ver else pkg)
if missing:
st.sidebar.info("Installing required packages...")
prog = st.sidebar.progress(0)
for i, pkg in enumerate(missing, 1):
subprocess.run([sys.executable, "-m", "pip", "install", pkg], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
prog.progress(i/len(missing))
st.sidebar.success("All packages installed")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5. install_custom_packages
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def install_custom_packages(package_list):
"""Install user-specified pip packages on the fly."""
packages = [p.strip() for p in package_list.split(",") if p.strip()]
if not packages:
return True, "No packages specified"
results = []
success = True
for pkg in packages:
res = subprocess.run([sys.executable, "-m", "pip", "install", pkg], capture_output=True, text=True)
ok = (res.returncode == 0)
results.append(f"{pkg}: {'β
' if ok else 'β'}")
if not ok: success = False
return success, "\n".join(results)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 6. init_ai_models_direct
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
"""Initialize Azure ChatCompletionsClient for AI code generation."""
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets")
return None
endpoint = "https://models.inference.ai.azure.com"
client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(token))
return {"client": client, "model_name": "gpt-4o", "endpoint": endpoint}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 7. suggest_code_completion
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def suggest_code_completion(code_snippet, models):
"""Use the initialized AI model to generate complete Manim code."""
if not models:
st.error("AI models not initialized")
return None
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should include:
- A Scene subclass
- self.play() animations
- wait times
Return only valid Python code.
"""
config = MODEL_CONFIGS.get(models["model_name"].split("/")[-1], MODEL_CONFIGS["default"])
if config["category"] == "OpenAI":
client = models.get("openai_client") or OpenAI(base_url="https://models.github.ai/inference", api_key=get_secret("github_token_api"))
models["openai_client"] = client
messages = [{"role":"developer","content":"Expert in Manim."}, {"role":"user","content":prompt}]
params = {"messages": messages, "model": models["model_name"], config["param_name"]: config.get(config["param_name"])}
resp = client.chat.completions.create(**params)
content = resp.choices[0].message.content
else:
client = models["client"]
msgs = [UserMessage(prompt)]
params, _ = prepare_api_params(msgs, models["model_name"])
resp = client.complete(**params)
content = resp.choices[0].message.content
# extract code block
if "```python" in content:
content = content.split("```python")[1].split("```")[0]
elif "```" in content:
content = content.split("```")[1].split("```")[0]
if "class" not in content:
content = f"from manim import *\n\nclass MyScene(Scene):\n def construct(self):\n {content}"
return content
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 8. check_model_freshness
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def check_model_freshness():
"""Return True if AI client was loaded within the past hour."""
if not st.session_state.get("ai_models"): return False
last = st.session_state.ai_models.get("last_loaded")
if not last: return False
return datetime.fromisoformat(last) + timedelta(hours=1) > datetime.now()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 9. extract_scene_class_name
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def extract_scene_class_name(python_code):
"""Regex for the first class inheriting from Scene."""
m = re.findall(r"class\s+(\w+)\s*\([^)]*Scene[^)]*\)", python_code)
return m[0] if m else "MyScene"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 10. highlight_code
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def highlight_code(code):
"""Return HTML+CSS highlighted Python code."""
formatter = HtmlFormatter(style="monokai", full=True, noclasses=True)
return highlight(code, PythonLexer(), formatter)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 11. generate_manim_preview
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_manim_preview(python_code):
"""Show icons for detected Manim objects in code."""
icons = []
mapping = {
"Circle":"β","Square":"π²","MathTex":"π","Tex":"π",
"Text":"π","Axes":"π","ThreeDScene":"π§","Sphere":"π","Cube":"π§"
}
for key,icon in mapping.items():
if key in python_code: icons.append(icon)
icons = icons or ["π¬"]
html = f"""
<div style="background:#000;color:#fff;padding:1rem;border-radius:8px;text-align:center;">
<h4>Animation Preview</h4>
<div style="font-size:2.5rem">{''.join(icons)}</div>
<p style="opacity:0.7">Accurate preview requires full render</p>
</div>
"""
return html
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 12. render_latex_preview
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def render_latex_preview(latex_formula):
"""Return HTML snippet with MathJax preview for LaTeX."""
if not latex_formula:
return """
<div style="background:#f8f9fa;padding:1rem;border-radius:6px;text-align:center;color:#777;">
Enter a LaTeX formula above.
</div>"""
return f"""
<div style="background:#202124;color:#fff;padding:1rem;border-radius:6px;text-align:center;">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script async id="MathJax-script" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<h4>LaTeX Preview</h4>
<div>$$ {latex_formula} $$</div>
</div>"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 13. prepare_audio_for_manim
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def prepare_audio_for_manim(audio_file, target_dir):
"""Save uploaded audio and return filesystem path."""
os.makedirs(target_dir, exist_ok=True)
filename = f"audio_{int(time.time())}.mp3"
out = os.path.join(target_dir, filename)
with open(out, "wb") as f:
f.write(audio_file.getvalue())
return out
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 14. mp4_to_gif
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def mp4_to_gif(mp4_path, output_path, fps=15):
"""Use ffmpeg to convert an MP4 to a looping GIF."""
cmd = [
"ffmpeg","-i",mp4_path,
"-vf",f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop","0",output_path
]
res = subprocess.run(cmd, capture_output=True, text=True)
return output_path if res.returncode==0 else None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 15. generate_manim_video
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None):
"""Render code via Manim CLI; fallback for GIF via ffmpeg."""
temp_dir = tempfile.mkdtemp(prefix="manim_")
try:
scene = extract_scene_class_name(python_code)
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w", encoding="utf-8") as f:
f.write(python_code)
flag = QUALITY_PRESETS[quality_preset]["flag"]
cmd = ["manim", scene_file, scene, flag, f"--format={format_type}"]
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
output = []
while True:
line = proc.stdout.readline()
if not line and proc.poll() is not None:
break
output.append(line)
proc.wait()
# find output file
matches = list(Path(temp_dir).rglob(f"*.{format_type}"))
if format_type == "gif" and not matches:
# try ffmpeg fallback
mp4s = list(Path(temp_dir).rglob("*.mp4"))
if mp4s:
gif = os.path.join(temp_dir, f"{scene}.gif")
mp4_to_gif(str(mp4s[-1]), gif)
matches = [Path(gif)]
if not matches:
return None, "β No output file found"
data = matches[-1].read_bytes()
return data, f"β
Generated ({len(data)/(1024*1024):.1f} MB)"
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 16. detect_input_calls
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def detect_input_calls(code):
"""Scan for input() calls and extract prompts."""
calls = []
for i, line in enumerate(code.splitlines(), 1):
if "input(" in line and not line.strip().startswith("#"):
m = re.search(r'input\(["\'](.+?)["\']\)', line)
prompt = m.group(1) if m else f"Input at line {i}"
calls.append({"line": i, "prompt": prompt})
return calls
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 17. run_python_script
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def run_python_script(code, inputs=None, timeout=60):
"""Execute arbitrary Python code, capturing stdout/stderr, plots, DataFrames."""
tmp = tempfile.mkdtemp(prefix="run_")
result = {"stdout":"", "stderr":"", "exception":None, "plots":[], "dataframes":[], "execution_time":0}
# override input()
if inputs:
wrapper = (
"__INPUTS="+json.dumps(inputs)+"\n"
"__IDX=0\n"
"def input(prompt=''):\n"
" global __IDX\n"
" val = __INPUTS[__IDX] if __IDX<len(__INPUTS) else ''\n"
" __IDX +=1\n"
" print(prompt+val)\n"
" return val\n\n"
)
code = wrapper + code
# ensure matplotlib & pandas imports
if "plt" in code and "import matplotlib" not in code:
code = "import matplotlib.pyplot as plt\n" + code
if "pd." in code and "import pandas" not in code:
code = "import pandas as pd\n" + code
script_path = os.path.join(tmp, "script.py")
with open(script_path, "w") as f:
f.write(code)
start = time.time()
try:
proc = subprocess.Popen([sys.executable, script_path],
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
cwd=tmp, text=True)
out, err = proc.communicate(timeout=timeout)
result["stdout"] = out
result["stderr"] = err
except subprocess.TimeoutExpired:
proc.kill()
result["stderr"] += f"\nβ±οΈ Execution timed out after {timeout}s"
finally:
result["execution_time"] = time.time() - start
# plots & dataframes capture omitted for brevity
shutil.rmtree(tmp, ignore_errors=True)
return result
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 18. display_python_script_results
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def display_python_script_results(res):
"""Render the result dict from run_python_script() in Streamlit."""
if res["exception"]:
st.error(f"Exception: {res['exception']}")
if res["stderr"]:
st.error("Errors:")
st.code(res["stderr"])
if res["stdout"]:
st.markdown("### Output:")
st.code(res["stdout"])
st.info(f"Execution time: {res['execution_time']:.2f}s")
# plots & dataframes display omitted for brevity
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 19. parse_animation_steps
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def parse_animation_steps(python_code):
"""Extract self.play() and self.wait() steps into a list of dicts."""
plays = re.findall(r"self\.play\((.*?)\)", python_code, re.DOTALL)
waits = re.findall(r"self\.wait\((.*?)\)", python_code, re.DOTALL)
steps = []
current = 0.0
for i, play in enumerate(plays):
anims = [a.strip() for a in play.split(",")]
dur = float(waits[i]) if i < len(waits) and re.match(r"[\d\.]+", waits[i]) else 1.0
steps.append({"id": i+1, "animations": anims, "duration": dur, "start_time": current, "code": f"self.play({play})"})
current += dur
return steps
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 20. generate_code_from_timeline
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_code_from_timeline(animation_steps, original_code):
"""Regenerate the construct() method body from timeline steps."""
class_match = re.search(r"(class\s+\w+\s*\([^)]*\)\s*:\s*.*?def\s+construct\s*\(self\)\s*:)", original_code, re.DOTALL)
if not class_match:
return original_code
header = class_match.group(1)
indent = " " * (len(header) - len(header.lstrip())) + " "
body = [header]
for step in animation_steps:
body.append(f"{indent}{step['code']}")
body.append(f"{indent}self.wait({step['duration']})")
return "\n".join(body)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 21. create_timeline_editor
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_timeline_editor(code):
"""Interactive timeline editor tab to reorder/update animation steps."""
st.markdown("### π Animation Timeline")
steps = parse_animation_steps(code)
if not steps:
st.warning("No animation steps detected.")
return code
df = pd.DataFrame(steps)
fig = px.timeline(df, x_start="start_time", x_end=df["start_time"]+df["duration"],
y="id", color="id", hover_name="animations")
fig.update_layout(height=300, showlegend=False, xaxis_title="Time (s)", yaxis_title="Step")
st.plotly_chart(fig, use_container_width=True)
cols = st.columns(3)
step_id = cols[0].selectbox("Select Step", df["id"])
new_dur = cols[1].number_input("New Duration (s)", min_value=0.1, step=0.1, value=float(df[df["id"]==step_id]["duration"]))
action = cols[2].selectbox("Action", ["Update Duration","Delete Step","Move Up","Move Down"])
if st.button("Apply"):
idx = df[df["id"]==step_id].index[0]
if action=="Update Duration":
df.at[idx,"duration"]=new_dur
elif action=="Delete Step":
df = df[df["id"]!=step_id]
elif action=="Move Up" and step_id>1:
other = df[df["id"]==step_id-1].index[0]
df.at[idx,"id"],df.at[other,"id"]=df.at[other,"id"],df.at[idx,"id"]
elif action=="Move Down" and step_id<len(df):
other = df[df["id"]==step_id+1].index[0]
df.at[idx,"id"],df.at[other,"id"]=df.at[other,"id"],df.at[idx,"id"]
df = df.sort_values("id").reset_index(drop=True)
current=0.0
for i,row in df.iterrows():
df.at[i,"start_time"]=current
current+=row["duration"]
new_code = generate_code_from_timeline(df.to_dict("records"), code)
st.success("Timeline updated!")
return new_code
return code
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 22. export_to_educational_format
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
"""Export the existing video_data to PPTX, HTML, or PDF sequence."""
if format_type=="powerpoint":
from pptx import Presentation
from pptx.util import Inches
prs = Presentation()
slide = prs.slides.add_slide(prs.slide_layouts[0])
slide.shapes.title.text = animation_title
video_path = os.path.join(temp_dir,"video.mp4")
with open(video_path,"wb") as f: f.write(video_data)
slide2 = prs.slides.add_slide(prs.slide_layouts[5])
slide2.shapes.title.text="Animation"
slide2.shapes.add_movie(video_path, Inches(1),Inches(1.5),Inches(8),Inches(4.5))
if explanation_text:
txt_sl = prs.slides.add_slide(prs.slide_layouts[1])
txt_sl.shapes.title.text="Explanation"
txt_sl.placeholders[1].text=explanation_text
out = os.path.join(temp_dir,f"{animation_title}.pptx")
prs.save(out)
return open(out,"rb").read(), "pptx"
elif format_type=="html":
html_template = """<!DOCTYPE html><html><head><meta charset="utf-8"><title>{title}</title></head><body>
<h1>{title}</h1><video controls width="100%"><source src="data:video/mp4;base64,{b64}"></video>
<div>{explanation}</div></body></html>"""
b64 = base64.b64encode(video_data).decode()
expl = markdown.markdown(explanation_text or "")
content = html_template.format(title=animation_title,b64=b64,explanation=expl)
out = os.path.join(temp_dir,f"{animation_title}.html")
with open(out,"w",encoding="utf-8") as f: f.write(content)
return open(out,"rb").read(), "html"
elif format_type=="sequence":
from fpdf import FPDF
video_path = os.path.join(temp_dir,"video.mp4")
with open(video_path,"wb") as f: f.write(video_data)
frames_dir = os.path.join(temp_dir,"frames")
os.makedirs(frames_dir, exist_ok=True)
# extract 5 key frames
subprocess.run(["ffmpeg","-i",video_path,"-vf","select=not(mod(n\\,10))","-vsync","vfr",
os.path.join(frames_dir,"frame_%03d.png")], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
pdf = FPDF()
segments = explanation_text.split("##") if explanation_text else []
for i, img in enumerate(sorted(os.listdir(frames_dir))):
pdf.add_page()
pdf.image(os.path.join(frames_dir,img), x=10,y=10,w=190)
pdf.ln(100)
txt = segments[i] if i<len(segments) else ""
pdf.multi_cell(0, 5, txt)
out = os.path.join(temp_dir,f"{animation_title}.pdf")
pdf.output(out)
return open(out,"rb").read(), "pdf"
return None, None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 23. main
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
st.set_page_config(page_title="π¬ Manim Animation Studio", layout="wide")
# Custom CSS
st.markdown("""
<style>
.main-header { font-size:2.5rem; text-align:center; background:linear-gradient(90deg,#4F46E5,#818CF8); -webkit-background-clip:text; -webkit-text-fill-color:transparent; margin-bottom:1rem; }
.card { background:#fff; padding:1rem; border-radius:8px; box-shadow:0 2px 6px rgba(0,0,0,0.1); margin-bottom:1rem; }
</style>
""", unsafe_allow_html=True)
# Ensure packages installed once
if 'packages_checked' not in st.session_state:
ensure_packages()
st.session_state.packages_checked = True
# Sidebar
with st.sidebar:
st.header("βοΈ Settings")
with st.expander("Render Settings", True):
st.selectbox("Quality", list(QUALITY_PRESETS.keys()), key="quality")
st.selectbox("Format", list(EXPORT_FORMATS.keys()), key="format")
st.selectbox("Speed", list(ANIMATION_SPEEDS.keys()), key="speed")
with st.expander("Custom Libraries"):
txt = st.text_area("pip install β¦", help="e.g. scipy,networkx")
if st.button("Install"):
ok,msg = install_custom_packages(txt)
st.code(msg)
st.markdown("---")
st.markdown("Manim Studio β’ Powered by Streamlit")
# Tabs
tabs = st.tabs(["β¨ Editor","π€ AI","π LaTeX","π¨ Assets","ποΈ Timeline","π Export","π Python"])
# --- Editor Tab ---
with tabs[0]:
st.markdown("<div class='main-header'>β¨ Animation Editor</div>", unsafe_allow_html=True)
code = st.text_area("Python code", height=300, key="editor_code")
st.markdown(generate_manim_preview(code), unsafe_allow_html=True)
if st.button("π Generate Animation"):
data, status = generate_manim_video(
code,
EXPORT_FORMATS[st.session_state.format],
st.session_state.quality,
ANIMATION_SPEEDS[st.session_state.speed]
)
if data:
st.video(data)
st.success(status)
st.session_state.last_video = data
else:
st.error(status)
if st.session_state.get("last_video"):
st.download_button("β¬οΈ Download Animation", st.session_state.last_video,
f"manim_animation.{EXPORT_FORMATS[st.session_state.format]}", use_container_width=True)
# --- AI Tab ---
with tabs[1]:
st.markdown("<div class='main-header'>π€ AI Animation Assistant</div>", unsafe_allow_html=True)
if not check_password():
return
if "ai_models" not in st.session_state or not check_model_freshness():
models = init_ai_models_direct()
if models:
st.session_state.ai_models = {**models, "last_loaded": datetime.now().isoformat()}
st.markdown("### Describe your animation or paste code stub")
prompt = st.text_area("Prompt / stub", height=150)
if st.button("β¨ Generate Code"):
models = st.session_state.ai_models
gen = suggest_code_completion(prompt, models)
if gen:
st.code(gen, language="python")
if st.button("Use This Code"):
st.session_state.editor_code = gen
st.experimental_rerun()
# --- LaTeX Tab ---
with tabs[2]:
st.markdown("<div class='main-header'>π LaTeX Formula Builder</div>", unsafe_allow_html=True)
latex_input = st.text_input("LaTeX", key="latex_input", help="Raw string, e.g. r\"e^{i\\pi}+1=0\"")
st.markdown(render_latex_preview(latex_input), unsafe_allow_html=True)
if latex_input and st.button("Insert into Editor"):
snippet = f"""formula = MathTex(r"{latex_input}")\nself.play(Write(formula))\nself.wait(2)"""
st.session_state.editor_code += "\n " + snippet
st.success("Inserted into editor")
st.experimental_rerun()
# --- Assets Tab ---
with tabs[3]:
st.markdown("<div class='main-header'>π¨ Asset Management</div>", unsafe_allow_html=True)
imgs = st.file_uploader("Upload images", accept_multiple_files=True)
for img in imgs:
st.image(img, width=150, caption=img.name)
if st.button(f"Use {img.name}"):
code_snip = f"""from manim import ImageMobject\nimg = ImageMobject(r"{img.name}")\nself.play(FadeIn(img))"""
st.session_state.editor_code += "\n " + code_snip
st.success(f"Added {img.name} to code")
st.experimental_rerun()
audio = st.file_uploader("Upload audio", type=["mp3","wav"])
if audio:
path = prepare_audio_for_manim(audio, "manim_assets/audio")
st.audio(audio)
st.code(f"@with_sound(r\"{path}\")\nclass YourScene(Scene):\n ...")
# --- Timeline Tab ---
with tabs[4]:
st.markdown("<div class='main-header'>ποΈ Timeline Editor</div>", unsafe_allow_html=True)
new_code = create_timeline_editor(st.session_state.get("editor_code",""))
if new_code != st.session_state.get("editor_code",""):
st.session_state.editor_code = new_code
# --- Export Tab ---
with tabs[5]:
st.markdown("<div class='main-header'>π Educational Export</div>", unsafe_allow_html=True)
if not st.session_state.get("last_video"):
st.warning("Generate an animation first")
else:
title = st.text_input("Animation Title", "My Animation")
expl = st.text_area("Explanation (use ## for steps)")
fmt = st.selectbox("Export Format", ["PowerPoint","HTML","PDF Sequence"])
if st.button("π€ Export"):
fmt_key = {"PowerPoint":"powerpoint","HTML":"html","PDF Sequence":"sequence"}[fmt]
data,ft = export_to_educational_format(
st.session_state.last_video, fmt_key, title, expl, tempfile.mkdtemp()
)
if data:
ext = {"pptx":"pptx","html":"html","pdf":"pdf"}[ft]
st.success(f"{fmt} created")
st.download_button(f"β¬οΈ Download {fmt}", data, f"{title}.{ext}")
# --- Python Tab ---
with tabs[6]:
st.markdown("<div class='main-header'>π Python Script Runner</div>", unsafe_allow_html=True)
script = st.text_area("Script", height=200, key="python_script")
calls = detect_input_calls(script)
inputs = []
if calls:
st.info("Detected input() calls β please provide values:")
for c in calls:
v = st.text_input(f"{c['prompt']} (line {c['line']})")
inputs.append(v)
if st.button("βΆοΈ Run Script"):
res = run_python_script(script, inputs)
display_python_script_results(res)
if __name__ == "__main__":
main()
|