Spaces:
Running
Running
File size: 23,237 Bytes
2bdb7ce 6181a36 2bdb7ce 72d949d 2bdb7ce 189b68e 2bdb7ce 6181a36 2bdb7ce 6181a36 72d949d 2bdb7ce 72d949d b9621c6 72d949d b9621c6 6181a36 72d949d 02a25f1 cd66e4d 72d949d 02a25f1 97cd083 6181a36 b041735 97cd083 b041735 6181a36 02a25f1 97cd083 6181a36 b041735 6181a36 b041735 2bdb7ce 97cd083 72d949d 2bdb7ce 6181a36 97cd083 02a25f1 6181a36 02a25f1 6181a36 97cd083 6181a36 97cd083 6181a36 97cd083 6181a36 97cd083 6181a36 97cd083 72d949d 97cd083 2bdb7ce 8355fb9 97cd083 6181a36 97cd083 6181a36 97cd083 6181a36 8355fb9 02a25f1 72d949d 97cd083 72d949d 6181a36 72d949d 6181a36 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 72d949d 2bdb7ce 72d949d 97cd083 72d949d 6181a36 02a25f1 2bdb7ce 72d949d 02a25f1 72d949d 97cd083 6181a36 97cd083 6181a36 97cd083 6181a36 72d949d 6181a36 72d949d 6181a36 97cd083 72d949d 97cd083 6181a36 97cd083 72d949d 2bdb7ce 72d949d 2bdb7ce 72d949d 6181a36 72d949d 6181a36 72d949d 6181a36 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 2bdb7ce 6181a36 97cd083 72d949d 97cd083 6181a36 72d949d 6181a36 72d949d 97cd083 72d949d 97cd083 72d949d 2bdb7ce 97cd083 6181a36 72d949d 6181a36 72d949d 6181a36 97cd083 6181a36 72d949d 2bdb7ce 72d949d 97cd083 6181a36 72d949d 97cd083 72d949d 6181a36 72d949d 6181a36 72d949d 6181a36 97cd083 72d949d 6181a36 97cd083 72d949d 6181a36 72d949d 97cd083 72d949d 2bdb7ce 6181a36 97cd083 6181a36 72d949d 97cd083 72d949d 97cd083 6181a36 97cd083 6181a36 72d949d 6181a36 72d949d 2bdb7ce 6181a36 97cd083 72d949d 6181a36 72d949d 6181a36 97cd083 72d949d 97cd083 72d949d 97cd083 6181a36 72d949d 97cd083 72d949d 97cd083 72d949d 97cd083 6181a36 02a25f1 72d949d 97cd083 72d949d 2bdb7ce 72d949d 6181a36 72d949d 2bdb7ce 72d949d 6181a36 72d949d 2bdb7ce 72d949d 6181a36 72d949d 97cd083 72d949d 97cd083 6181a36 72d949d 6181a36 72d949d 97cd083 72d949d 6181a36 97cd083 72d949d 6181a36 97cd083 6181a36 97cd083 72d949d 97cd083 72d949d 2bdb7ce 02a25f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
import torch
import re
import shutil
import time
from datetime import datetime
import streamlit.components.v1 as components
import uuid
import pandas as pd
import plotly.express as px
import zipfile
import traceback
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Model configuration mapping
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek"},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek"},
"Llama-4-Scout-17B-16E-Instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta"},
"Llama-4-Maverick-17B-128E-Instruct-FP8": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta"},
"gpt-4o-mini": {"max_tokens": 15000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"o3-mini": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI"},
"o1": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI"},
"o1-mini": {"max_completion_tokens": 66000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI"},
"o1-preview": {"max_tokens": 33000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI"},
"Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft"},
"Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral"},
"Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral"},
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other"}
}
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to text area")
def prepare_api_params(messages, model_name):
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
params = {"messages": messages, "model": model_name}
params[config["param_name"]] = config.get(config["param_name"])
return params, config
def get_secret(env_var):
val = os.environ.get(env_var)
if not val:
logger.warning(f"Secret '{env_var}' not found")
return val
def check_password():
correct = get_secret("password")
if not correct:
st.error("Admin password not configured")
return False
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
pwd = st.text_input("Enter password to access AI features", type="password")
if pwd:
if pwd == correct:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required = {
'manim': '0.17.3', 'Pillow': '9.0.0', 'numpy': '1.22.0',
'transformers': '4.30.0', 'torch': '2.0.0', 'pygments': '2.15.1',
'streamlit-ace': '0.1.1', 'pydub': '0.25.1', 'plotly': '5.14.0',
'pandas': '2.0.0', 'python-pptx': '0.6.21', 'fpdf': '1.7.2',
'matplotlib': '3.5.0', 'seaborn': '0.11.2', 'scipy': '1.7.3',
'huggingface_hub': '0.16.0'
}
missing = {}
for pkg, ver in required.items():
try:
__import__(pkg if pkg != 'Pillow' else 'PIL')
except ImportError:
missing[pkg] = ver
if not missing:
return True
bar = st.progress(0)
txt = st.empty()
for i, (pkg, ver) in enumerate(missing.items()):
bar.progress(i / len(missing))
txt.text(f"Installing {pkg}...")
res = subprocess.run([sys.executable, "-m", "pip", "install", f"{pkg}>={ver}"], capture_output=True, text=True)
if res.returncode != 0:
st.error(f"Failed to install {pkg}")
return False
bar.progress(1.0)
txt.empty()
return True
def install_custom_packages(pkgs):
if not pkgs.strip():
return True, "No packages specified"
parts = [p.strip() for p in pkgs.split(",") if p.strip()]
if not parts:
return True, "No valid packages"
sidebar_txt = st.sidebar.empty()
bar = st.sidebar.progress(0)
results, success = [], True
for i, p in enumerate(parts):
bar.progress(i / len(parts))
sidebar_txt.text(f"Installing {p}...")
res = subprocess.run([sys.executable, "-m", "pip", "install", p], capture_output=True, text=True)
if res.returncode != 0:
results.append(f"Failed {p}: {res.stderr}")
success = False
else:
results.append(f"Installed {p}")
bar.progress(1.0)
sidebar_txt.empty()
return success, "\n".join(results)
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
token = get_secret("github_token_api")
if not token:
st.error("API token not configured")
return None
try:
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import UserMessage
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint="https://models.inference.ai.azure.com",
credential=AzureKeyCredential(token)
)
return {"client": client, "model_name": "gpt-4o", "last_loaded": datetime.now().isoformat()}
except ImportError as e:
st.error("Azure AI SDK not installed")
logger.error(str(e))
return None
def generate_manim_preview(code):
objects = []
if "Circle" in code: objects.append("β")
if "Square" in code: objects.append("π²")
if "MathTex" in code or "Tex" in code: objects.append("π")
if "Text" in code: objects.append("π")
if "Axes" in code: objects.append("π")
icons = "".join(objects) or "π¬"
return f"""
<div style="background:#000;color:#fff;padding:1rem;border-radius:10px;text-align:center;">
<h3>Animation Preview</h3>
<div style="font-size:2rem;">{icons}</div>
<p>Full rendering required for accurate preview</p>
</div>
"""
def extract_scene_class_name(code):
m = re.findall(r'class\s+(\w+)\s*\([^)]*Scene', code)
return m[0] if m else "MyScene"
def mp4_to_gif(mp4_path, gif_path, fps=15):
cmd = [
"ffmpeg", "-i", mp4_path,
"-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop", "0", gif_path
]
res = subprocess.run(cmd, capture_output=True, text=True)
return gif_path if res.returncode == 0 else None
def generate_manim_video(code, fmt, quality, speed=1.0, audio_path=None):
temp_dir = tempfile.mkdtemp(prefix="manim_")
scene = extract_scene_class_name(code)
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w") as f:
f.write(code)
qflags = {"480p":"-ql","720p":"-qm","1080p":"-qh","4K":"-qk","8K":"-qp"}
qf = qflags.get(quality, "-qm")
cmd = ["manim", scene_file, scene, qf, f"--format={fmt}"]
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
output, out_path, mp4_path = [], None, None
log = st.empty()
for line in proc.stdout:
output.append(line)
log.code("".join(output[-10:]))
if "File ready at" in line:
m = re.search(r'["\'](.+?\.(?:mp4|gif|webm|svg))["\']', line)
if m:
out_path = m.group(1)
if out_path.endswith(".mp4"):
mp4_path = out_path
proc.wait()
time.sleep(1)
if fmt=="gif" and (not out_path or not os.path.exists(out_path)) and mp4_path:
gif = os.path.join(temp_dir, "converted.gif")
conv = mp4_to_gif(mp4_path, gif)
if conv and os.path.exists(conv):
out_path = conv
data = None
if out_path and os.path.exists(out_path):
with open(out_path, "rb") as f:
data = f.read()
shutil.rmtree(temp_dir)
if data:
size_mb = len(data)/(1024*1024)
return data, f"β
Generated ({size_mb:.1f} MB)"
else:
return None, "β No output generated. See logs."
def detect_input_calls(code):
calls=[]
for i,line in enumerate(code.split("\n"),1):
if "input(" in line and not line.strip().startswith("#"):
m=re.search(r'input\(["\'](.+?)["\']\)', line)
prompt=m.group(1) if m else f"Input at line {i}"
calls.append({"line":i,"prompt":prompt})
return calls
def run_python_script(code, inputs=None, timeout=60):
res={"stdout":"","stderr":"","exception":None,"plots":[],"dataframes":[],"execution_time":0}
mod=""
if inputs:
mod=f"""
__INPUTS={inputs}
__IDX=0
def input(prompt=''):
global __IDX
print(prompt,end='')
if __IDX<len(__INPUTS):
val=__INPUTS[__IDX]; __IDX+=1
print(val)
return val
print()
return ''
"""
full_code=mod+code
with tempfile.TemporaryDirectory() as td:
path=os.path.join(td,"script.py")
with open(path,"w") as f: f.write(full_code)
outf, errf = os.path.join(td,"out.txt"), os.path.join(td,"err.txt")
start=time.time()
try:
with open(outf,"w") as o, open(errf,"w") as e:
proc=subprocess.Popen([sys.executable, path], stdout=o, stderr=e, cwd=td)
proc.wait(timeout=timeout)
except subprocess.TimeoutExpired:
proc.kill()
res["stderr"]+="\nTimed out"
res["exception"]="Timeout"
res["execution_time"]=time.time()-start
res["stdout"]=open(outf).read()
res["stderr"]+=open(errf).read()
return res
def display_python_script_results(r):
st.info(f"Completed in {r['execution_time']:.2f}s")
if r["exception"]:
st.error(f"Exception: {r['exception']}")
if r["stderr"]:
st.error("Errors:")
st.code(r["stderr"], language="bash")
if r["plots"]:
st.markdown("### Plots")
cols=st.columns(min(3,len(r["plots"])))
for i,p in enumerate(r["plots"]):
cols[i%len(cols)].image(p,use_column_width=True)
if r["dataframes"]:
st.markdown("### DataFrames")
for df in r["dataframes"]:
with st.expander(f"{df['name']} {df['shape']}"):
st.markdown(df["preview_html"], unsafe_allow_html=True)
if r["stdout"]:
st.markdown("### Output")
st.code(r["stdout"], language="bash")
def main():
if 'init' not in st.session_state:
st.session_state.update({
'init':True, 'video_data':None, 'status':None, 'ai_models':None,
'generated_code':"", 'code':"", 'temp_code':"", 'editor_key':str(uuid.uuid4()),
'packages_checked':False, 'audio_path':None, 'image_paths':[],
'custom_library_result':"", 'python_script':"", 'python_result':None,
'active_tab':0, 'settings':{"quality":"720p","format_type":"mp4","animation_speed":"Normal"},
'password_entered':False, 'custom_model':"gpt-4o", 'pending_tab_switch':None
})
st.set_page_config(page_title="Manim Animation Studio", page_icon="π¬", layout="wide")
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked=True
else:
st.error("Package installation failed")
return
tab_names=[
"β¨ Editor","π€ AI Assistant","π¨ Assets",
"ποΈ Timeline","π Educational Export","π Python Runner"
]
tabs = st.tabs(tab_names)
# Editor
with tabs[0]:
col1,col2 = st.columns([3,2])
with col1:
st.markdown("### π Animation Editor")
mode = st.radio("Code Input", ["Type Code","Upload File"], key="editor_mode")
if mode=="Upload File":
up = st.file_uploader("Upload .py", type=["py"])
if up:
txt=up.getvalue().decode()
if txt.strip():
st.session_state.code=txt
st.session_state.temp_code=txt
if ACE_EDITOR_AVAILABLE:
st.session_state.temp_code = st_ace(
value=st.session_state.code, language="python",
theme="monokai", min_lines=20,
key=f"ace_{st.session_state.editor_key}"
)
else:
st.session_state.temp_code = st.text_area(
"Code", st.session_state.code, height=400,
key=f"ta_{st.session_state.editor_key}"
)
if st.session_state.temp_code!=st.session_state.code:
st.session_state.code=st.session_state.temp_code
if st.button("π Generate Animation"):
if not st.session_state.code:
st.error("Enter code first")
else:
data, msg = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
{"Slow":0.5,"Normal":1.0,"Fast":2.0,"Very Fast":3.0}[st.session_state.settings["animation_speed"]],
st.session_state.audio_path
)
st.session_state.video_data=data
st.session_state.status=msg
with col2:
if st.session_state.code:
components.html(
generate_manim_preview(st.session_state.code),
height=250
)
if st.session_state.video_data:
fmt=st.session_state.settings["format_type"]
if fmt=="png_sequence":
st.download_button(
"β¬οΈ Download PNG ZIP", data=st.session_state.video_data,
file_name=f"manim_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip"
)
elif fmt=="svg":
try:
svg=st.session_state.video_data.decode('utf-8')
components.html(svg, height=400)
except:
st.error("Cannot display SVG")
st.download_button(
"β¬οΈ Download SVG", data=st.session_state.video_data,
file_name="animation.svg", mime="image/svg+xml"
)
else:
st.video(st.session_state.video_data, format=fmt)
st.download_button(
f"β¬οΈ Download {fmt.upper()}", st.session_state.video_data,
file_name=f"animation.{fmt}", mime=f"video/{fmt}" if fmt!="gif" else "image/gif"
)
if st.session_state.status:
if "β" in st.session_state.status:
st.error(st.session_state.status)
else:
st.success(st.session_state.status)
# AI Assistant
with tabs[1]:
st.markdown("### π€ AI Animation Assistant")
if check_password():
client_data = init_ai_models_direct()
if client_data:
if st.button("Test API Connection"):
from azure.ai.inference.models import UserMessage
params,_=prepare_api_params([UserMessage("Hello")], client_data["model_name"])
resp=client_data["client"].complete(**params)
if resp.choices:
st.success("β
Connection successful!")
st.session_state.ai_models=client_data
else:
st.error("β No response")
if st.session_state.ai_models:
st.info(f"Using model {st.session_state.ai_models['model_name']}")
prompt = st.text_area("Describe animation or paste partial code", height=150)
if st.button("Generate Animation Code"):
if prompt.strip():
from azure.ai.inference.models import UserMessage
params,_=prepare_api_params(
[UserMessage(f"Write a complete Manim scene for:\n{prompt}")],
st.session_state.ai_models["model_name"]
)
resp=st.session_state.ai_models["client"].complete(**params)
if resp.choices:
code = resp.choices[0].message.content
if "```python" in code:
code=code.split("```python")[1].split("```")[0]
st.session_state.generated_code=code
else:
st.error("No code generated")
else:
st.warning("Enter prompt first")
if st.session_state.generated_code:
st.code(st.session_state.generated_code, language="python")
if st.button("Use This Code"):
st.session_state.code=st.session_state.generated_code
st.session_state.temp_code=st.session_state.generated_code
st.session_state.pending_tab_switch=0
st.rerun()
else:
st.info("Enter password to access AI")
# Assets
with tabs[2]:
st.markdown("### π¨ Asset Management")
c1,c2 = st.columns(2)
with c1:
imgs = st.file_uploader(
"Upload Images", type=["png","jpg","jpeg","svg"],
accept_multiple_files=True
)
if imgs:
idir = os.path.join(os.getcwd(),"manim_assets","images")
os.makedirs(idir, exist_ok=True)
for up in imgs:
ext=up.name.split(".")[-1]
fname=f"img_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}"
path=os.path.join(idir,fname)
with open(path,"wb") as f: f.write(up.getvalue())
st.session_state.image_paths.append({"name":up.name,"path":path})
for info in st.session_state.image_paths:
img=Image.open(info["path"])
st.image(img, caption=info["name"], width=100)
if st.button(f"Use {info['name']}"):
snippet=f"""
# Image asset
image = ImageMobject(r"{info['path']}")
image.scale(2)
self.play(FadeIn(image))
self.wait(1)
"""
st.session_state.code+=snippet
st.session_state.temp_code=st.session_state.code
st.success(f"Added {info['name']}")
st.session_state.pending_tab_switch=0
st.rerun()
with c2:
aud = st.file_uploader("Upload Audio", type=["mp3","wav","ogg"])
if aud:
adir = os.path.join(os.getcwd(),"manim_assets","audio")
os.makedirs(adir, exist_ok=True)
ext=aud.name.split(".")[-1]
aname=f"audio_{int(time.time())}.{ext}"
ap=os.path.join(adir,aname)
with open(ap,"wb") as f: f.write(aud.getvalue())
st.session_state.audio_path=ap
st.audio(aud)
st.success("Audio uploaded")
# Timeline
with tabs[3]:
st.markdown("### ποΈ Timeline Editor")
st.info("Use code editor to adjust timing of self.play and self.wait calls.")
# Educational Export
with tabs[4]:
st.markdown("### π Educational Export")
if not st.session_state.video_data:
st.warning("Generate animation first")
else:
title=st.text_input("Title","Manim Animation")
expl=st.text_area("Explanation (use ## to separate steps)",height=150)
fmt=st.selectbox("Format",["PowerPoint","HTML","PDF Sequence"])
if st.button("Export"):
st.success(f"{fmt} export not implemented yet")
# Python Runner
with tabs[5]:
st.markdown("### π Python Script Runner")
examples={"Select...":"","Sine Plot":"""import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,10,100)
y=np.sin(x)
plt.plot(x,y)
print("Done")"""}
sel=st.selectbox("Example",list(examples.keys()))
code = examples.get(sel, st.session_state.python_script)
if ACE_EDITOR_AVAILABLE:
code=st_ace(value=code, language="python", theme="monokai", min_lines=15, key="pyace")
else:
code=st.text_area("Code", code, height=300, key="pyta")
st.session_state.python_script=code
inputs=detect_input_calls(code)
vals=[]
if inputs:
st.info(f"{len(inputs)} input() calls detected")
for i,c in enumerate(inputs):
vals.append(st.text_input(f"{c['prompt']} (line {c['line']})", key=f"in{i}"))
timeout=st.slider("Timeout",5,300,30)
if st.button("βΆοΈ Run"):
res=run_python_script(code, inputs=vals, timeout=timeout)
st.session_state.python_result=res
if st.session_state.python_result:
display_python_script_results(st.session_state.python_result)
# Handle pending tab switch
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch = None
if __name__ == "__main__":
main()
|