Spaces:
Running
Running
File size: 207,040 Bytes
2bdb7ce aef7e3e 2bdb7ce aef7e3e e9acc95 aef7e3e 2bdb7ce aef7e3e b9621c6 aef7e3e 02a25f1 aef7e3e cce8261 aef7e3e 6181a36 aef7e3e 6181a36 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e 0ef6cca aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 e9acc95 aef7e3e cce8261 e9acc95 aef7e3e e9acc95 aef7e3e cce8261 e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 e9acc95 aef7e3e e9acc95 cce8261 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e 4892ac0 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e cce8261 aef7e3e e9acc95 aef7e3e cce8261 aef7e3e e9acc95 aef7e3e cce8261 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e 72d949d aef7e3e cce8261 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e e9acc95 aef7e3e cce8261 aef7e3e e9acc95 aef7e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 |
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer, CppLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Model configuration mapping for different API requirements and limits
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o3": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o4-mini": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
# Default configuration for other models
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
def prepare_api_params(messages, model_name):
"""Create appropriate API parameters based on model configuration"""
# Get model configuration
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
# Base parameters common to all models
api_params = {
"messages": messages,
"model": model_name
}
# Add the appropriate token parameter based on model's parameter name
token_param = config["param_name"]
token_value = config[token_param] # Get the actual value from the config
# Add the parameter to the API params
api_params[token_param] = token_value
return api_params, config
# New functions for accessing secrets and password verification
def get_secret(github_token_api):
"""Retrieve a secret from HuggingFace Spaces environment variables"""
secret_value = os.environ.get(github_token_api)
if not secret_value:
logger.warning(f"Secret '{github_token_api}' not found")
return None
return secret_value
def check_password():
"""Returns True if the user entered the correct password"""
# Get the password from secrets
correct_password = get_secret("password")
if not correct_password:
st.error("Admin password not configured in HuggingFace Spaces secrets")
return False
# Password input
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
password = st.text_input("Enter password to access AI features", type="password")
if password:
if password == correct_password:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required_packages = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1', # For audio processing
'plotly': '5.14.0', # For timeline editor
'pandas': '2.0.0', # For data manipulation
'python-pptx': '0.6.21', # For PowerPoint export
'markdown': '3.4.3', # For markdown processing
'fpdf': '1.7.2', # For PDF generation
'matplotlib': '3.5.0', # For Python script runner
'seaborn': '0.11.2', # For enhanced visualizations
'scipy': '1.7.3', # For scientific computations
'huggingface_hub': '0.16.0', # For Hugging Face API
}
with st.spinner("Checking required packages..."):
# First, quickly check if packages are already installed
missing_packages = {}
for package, version in required_packages.items():
try:
# Try to import the package to check if it's available
if package == 'manim':
import manim
elif package == 'Pillow':
import PIL
elif package == 'numpy':
import numpy
elif package == 'transformers':
import transformers
elif package == 'torch':
import torch
elif package == 'pygments':
import pygments
elif package == 'streamlit-ace':
# This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
pass
elif package == 'pydub':
import pydub
elif package == 'plotly':
import plotly
elif package == 'pandas':
import pandas
elif package == 'python-pptx':
import pptx
elif package == 'markdown':
import markdown
elif package == 'fpdf':
import fpdf
elif package == 'matplotlib':
import matplotlib
elif package == 'seaborn':
import seaborn
elif package == 'scipy':
import scipy
elif package == 'huggingface_hub':
import huggingface_hub
except ImportError:
missing_packages[package] = version
# If no packages are missing, return success immediately
if not missing_packages:
logger.info("All required packages already installed.")
return True
# If there are missing packages, install them with progress reporting
progress_bar = st.progress(0)
status_text = st.empty()
for i, (package, version) in enumerate(missing_packages.items()):
try:
progress = (i / len(missing_packages))
progress_bar.progress(progress)
status_text.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", f"{package}>={version}"],
capture_output=True,
text=True
)
if result.returncode != 0:
st.error(f"Failed to install {package}: {result.stderr}")
logger.error(f"Package installation failed: {package}")
return False
except Exception as e:
st.error(f"Error installing {package}: {str(e)}")
logger.error(f"Package installation error: {str(e)}")
return False
progress_bar.progress(1.0)
status_text.text("All packages installed successfully!")
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
return True
def install_custom_packages(package_list):
"""Install custom packages specified by the user without page refresh"""
if not package_list.strip():
return True, "No packages specified"
# Split and clean package list
packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
if not packages:
return True, "No valid packages specified"
status_placeholder = st.sidebar.empty()
progress_bar = st.sidebar.progress(0)
results = []
success = True
for i, package in enumerate(packages):
try:
progress = (i / len(packages))
progress_bar.progress(progress)
status_placeholder.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", package],
capture_output=True,
text=True
)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
logger.error(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
logger.info(f"Successfully installed custom package: {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
logger.error(error_msg)
success = False
progress_bar.progress(1.0)
status_placeholder.text("Installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_placeholder.empty()
return success, "\n".join(results)
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
"""Direct implementation using the exact pattern from the example code"""
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
return None
# Log what we're doing - for debugging
logger.info(f"Initializing AI model with token: {token[:5]}...")
# Use exact imports as in your example
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Use exact endpoint as in your example
endpoint = "https://models.inference.ai.azure.com"
# Use default model
model_name = "gpt-4o"
# Create client exactly as in your example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Return the necessary information
return {
"client": client,
"model_name": model_name,
"endpoint": endpoint
}
except ImportError as ie:
st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
logger.error(f"Import error: {str(ie)}")
return None
except Exception as e:
st.error(f"Error initializing AI model: {str(e)}")
logger.error(f"Initialization error: {str(e)}")
return None
def suggest_code_completion(code_snippet, models):
"""Generate code completion using the AI model"""
if not models:
st.error("AI models not properly initialized.")
return None
try:
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
with st.spinner("AI is generating your animation code..."):
# Get the current model name and base URL
model_name = models["model_name"]
# Convert message to the appropriate format based on model category
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
category = config.get("category", "Other")
if category == "OpenAI":
# Import OpenAI client
from openai import OpenAI
# Get token
token = get_secret("github_token_api")
# Create or get client
if "openai_client" not in models:
client = OpenAI(
base_url="https://models.github.ai/inference",
api_key=token
)
models["openai_client"] = client
else:
client = models["openai_client"]
# For OpenAI models, we need role-based messages
messages = [
{"role": "system", "content": "You are an expert in Manim animations."},
{"role": "user", "content": prompt}
]
# Create params
params = {
"messages": messages,
"model": model_name
}
# Add token parameter
token_param = config["param_name"]
params[token_param] = config[token_param]
# Make API call
response = client.chat.completions.create(**params)
completed_code = response.choices[0].message.content
else:
# Use Azure client
from azure.ai.inference.models import UserMessage
# Convert message format for Azure
messages = [UserMessage(prompt)]
api_params, _ = prepare_api_params(messages, model_name)
# Make API call with Azure client
response = models["client"].complete(**api_params)
completed_code = response.choices[0].message.content
# Process the code
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error generating code: {str(e)}")
st.code(traceback.format_exc())
return None
def check_model_freshness():
"""Check if models need to be reloaded based on TTL"""
if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
return False
if 'last_loaded' not in st.session_state.ai_models:
return False
last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
ttl_hours = 1 # 1 hour TTL
return datetime.now() - last_loaded < timedelta(hours=ttl_hours)
def extract_scene_class_name(python_code):
"""Extract the scene class name from Python code."""
import re
scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
if scene_classes:
# Return the first scene class found
return scene_classes[0]
else:
# If no scene class is found, use a default name
return "MyScene"
def suggest_code_completion(code_snippet, models):
if not models or "code_model" not in models:
st.error("AI models not properly initialized")
return None
try:
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
```python
"""
with st.spinner("AI is generating your animation code..."):
response = models["code_model"](
prompt,
max_length=1024,
do_sample=True,
temperature=0.2,
top_p=0.95,
top_k=50,
num_return_sequences=1,
truncation=True,
pad_token_id=50256
)
if not response or not response[0].get('generated_text'):
st.error("No valid completion generated")
return None
completed_code = response[0]['generated_text']
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error suggesting code: {str(e)}")
logger.error(f"Code suggestion error: {str(e)}")
return None
# Quality presets
QUALITY_PRESETS = {
"480p": {"resolution": "480p", "fps": "30"},
"720p": {"resolution": "720p", "fps": "30"},
"1080p": {"resolution": "1080p", "fps": "60"},
"4K": {"resolution": "2160p", "fps": "60"},
"8K": {"resolution": "4320p", "fps": "60"} # Added 8K option
}
# Animation speeds
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
# Export formats
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Image Sequence": "png_sequence",
"SVG Image": "svg"
}
# FPS options
FPS_OPTIONS = [15, 24, 30, 60, 120]
def highlight_code(code):
formatter = HtmlFormatter(style='monokai')
highlighted = highlight(code, PythonLexer(), formatter)
return highlighted, formatter.get_style_defs()
def generate_manim_preview(python_code):
"""Generate a lightweight preview of the Manim animation"""
try:
# Extract scene components for preview
scene_objects = []
if "Circle" in python_code:
scene_objects.append("circle")
if "Square" in python_code:
scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code:
scene_objects.append("equation")
if "Text" in python_code:
scene_objects.append("text")
if "Axes" in python_code:
scene_objects.append("graph")
if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
scene_objects.append("3D scene")
if "Sphere" in python_code:
scene_objects.append("sphere")
if "Cube" in python_code:
scene_objects.append("cube")
# Generate a more detailed visual preview based on extracted objects
object_icons = {
"circle": "⭕",
"square": "🔲",
"equation": "📊",
"text": "📝",
"graph": "📈",
"3D scene": "🧊",
"sphere": "🌐",
"cube": "🧊"
}
icon_html = ""
for obj in scene_objects:
if obj in object_icons:
icon_html += f'<span style="font-size:2rem; margin:0.3rem;">{object_icons[obj]}</span>'
preview_html = f"""
<div style="background-color:#000000; width:100%; height:220px; border-radius:10px; display:flex; flex-direction:column; align-items:center; justify-content:center; color:white; text-align:center;">
<h3 style="margin-bottom:10px;">Animation Preview</h3>
<div style="margin-bottom:15px;">
{icon_html if icon_html else '<span style="font-size:2rem;">🎬</span>'}
</div>
<p>Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}</p>
<div style="margin-top:10px; font-size:0.8rem; opacity:0.8;">Full rendering required for accurate preview</div>
</div>
"""
return preview_html
except Exception as e:
logger.error(f"Preview generation error: {str(e)}")
return f"""
<div style="background-color:#FF0000; width:100%; height:200px; border-radius:10px; display:flex; align-items:center; justify-content:center; color:white; text-align:center;">
<div>
<h3>Preview Error</h3>
<p>{str(e)}</p>
</div>
</div>
"""
def prepare_audio_for_manim(audio_file, target_dir):
"""Process audio file and return path for use in Manim"""
try:
# Create audio directory if it doesn't exist
audio_dir = os.path.join(target_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename
filename = f"audio_{int(time.time())}.mp3"
output_path = os.path.join(audio_dir, filename)
# Save audio file
with open(output_path, "wb") as f:
f.write(audio_file.getvalue())
return output_path
except Exception as e:
logger.error(f"Audio processing error: {str(e)}")
return None
def mp4_to_gif(mp4_path, output_path, fps=15):
"""Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
try:
# Use ffmpeg for conversion with optimized settings
command = [
"ffmpeg",
"-i", mp4_path,
"-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop", "0",
output_path
]
# Run the conversion
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"FFmpeg conversion error: {result.stderr}")
return None
return output_path
except Exception as e:
logger.error(f"GIF conversion error: {str(e)}")
return None
def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None, fps=None):
temp_dir = None
progress_placeholder = st.empty()
status_placeholder = st.empty()
log_placeholder = st.empty()
video_data = None # Initialize video data variable
try:
if not python_code or not format_type:
raise ValueError("Missing required parameters")
# Create temporary directory
temp_dir = tempfile.mkdtemp(prefix="manim_render_")
# Extract the scene class name from the code
scene_class = extract_scene_class_name(python_code)
logger.info(f"Detected scene class: {scene_class}")
# If audio is provided, we need to modify the code to include it
if audio_path:
# Check if the code already has a with_sound decorator
if "with_sound" not in python_code:
# Add the necessary import
if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
# Add sound to the scene
scene_def_pattern = f"class {scene_class}\\(.*?\\):"
scene_def_match = re.search(scene_def_pattern, python_code)
if scene_def_match:
scene_def = scene_def_match.group(0)
scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
python_code = python_code.replace(scene_def, scene_def_with_sound)
else:
logger.warning("Could not find scene definition to add audio")
# Write the code to a file
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w", encoding="utf-8") as f:
f.write(python_code)
# Map quality preset to Manim quality flag
quality_map = {
"480p": "-ql", # Low quality
"720p": "-qm", # Medium quality
"1080p": "-qh", # High quality
"4K": "-qk", # 4K quality
"8K": "-qp" # 8K quality (production quality)
}
quality_flag = quality_map.get(quality_preset, "-qm")
# Handle special formats
if format_type == "png_sequence":
# For PNG sequence, we need additional flags
format_arg = "--format=png"
extra_args = ["--save_pngs"]
elif format_type == "svg":
# For SVG, we need a different format
format_arg = "--format=svg"
extra_args = []
else:
# Standard video formats
format_arg = f"--format={format_type}"
extra_args = []
# Add custom FPS if specified
if fps is not None:
extra_args.append(f"--fps={fps}")
# Show status and create progress bar
status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
progress_bar = progress_placeholder.progress(0)
# Build command
command = [
"manim",
scene_file,
scene_class,
quality_flag,
format_arg
]
command.extend(extra_args)
logger.info(f"Running command: {' '.join(command)}")
# Execute the command
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True
)
# Track output
full_output = []
output_file_path = None
mp4_output_path = None # Track MP4 output for GIF fallback
# Animation tracking variables
total_animations = None
current_animation = 0
total_frames = None
current_frame = 0
while True:
line = process.stdout.readline()
if not line and process.poll() is not None:
break
full_output.append(line)
log_placeholder.code("".join(full_output[-10:]))
# Try to detect total animations
if "Rendering animation number" in line or "Processing animation" in line:
try:
# Extract current animation number
anim_match = re.search(r"(?:Rendering animation number|Processing animation) (\d+) (?:out of|/) (\d+)", line)
if anim_match:
current_animation = int(anim_match.group(1))
total_animations = int(anim_match.group(2))
logger.info(f"Animation progress: {current_animation}/{total_animations}")
# Calculate progress based on animations
animation_progress = current_animation / total_animations
progress_bar.progress(animation_progress)
status_placeholder.info(f"Rendering {scene_class}: Animation {current_animation}/{total_animations} ({int(animation_progress*100)}%)")
except Exception as e:
logger.error(f"Error parsing animation progress: {str(e)}")
# Try to extract total frames information as fallback
elif "Render animations with total frames:" in line and not total_animations:
try:
total_frames = int(line.split("Render animations with total frames:")[1].strip().split()[0])
logger.info(f"Total frames to render: {total_frames}")
except Exception as e:
logger.error(f"Error parsing total frames: {str(e)}")
# Update progress bar based on frame information if animation count not available
elif "Rendering frame" in line and total_frames and not total_animations:
try:
# Extract current frame number
frame_match = re.search(r"Rendering frame (\d+)", line)
if frame_match:
current_frame = int(frame_match.group(1))
# Calculate progress as current frame / total frames
frame_progress = min(0.99, current_frame / total_frames)
progress_bar.progress(frame_progress)
# Update status with frame information
status_placeholder.info(f"Rendering {scene_class}: Frame {current_frame}/{total_frames} ({int(frame_progress*100)}%)")
except Exception as e:
logger.error(f"Error parsing frame progress: {str(e)}")
elif "%" in line and not total_animations and not total_frames:
try:
# Fallback to percentage if available
percent = float(line.split("%")[0].strip().split()[-1])
progress_bar.progress(min(0.99, percent / 100))
except:
pass
# Try to capture the output file path from Manim's output
if "File ready at" in line:
try:
# Combine next few lines to get the full path
path_parts = []
path_parts.append(line.split("File ready at")[-1].strip())
# Read up to 5 more lines to get the complete path
for _ in range(5):
additional_line = process.stdout.readline()
if additional_line:
full_output.append(additional_line)
path_parts.append(additional_line.strip())
if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
break
# Join all parts and clean up
potential_path = ''.join(path_parts).replace("'", "").strip()
# Look for path pattern surrounded by quotes
path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
if path_match:
output_file_path = path_match.group(2)
logger.info(f"Found output path in logs: {output_file_path}")
# Track MP4 file for potential GIF fallback
if output_file_path.endswith('.mp4'):
mp4_output_path = output_file_path
except Exception as e:
logger.error(f"Error parsing output path: {str(e)}")
# Wait for the process to complete
process.wait()
progress_bar.progress(1.0)
# IMPORTANT: Wait a moment for file system to catch up
time.sleep(3)
# Rest of the function remains the same
# Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
# Generate a GIF using FFmpeg
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(mp4_output_path, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
output_file_path = gif_path
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# For PNG sequence, we need to collect the PNGs
if format_type == "png_sequence":
# Find the PNG directory
png_dirs = []
search_dirs = [
os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
"/tmp/media/images",
]
for search_dir in search_dirs:
if os.path.exists(search_dir):
for root, dirs, _ in os.walk(search_dir):
for d in dirs:
if os.path.exists(os.path.join(root, d)):
png_dirs.append(os.path.join(root, d))
if png_dirs:
# Get the newest directory
newest_dir = max(png_dirs, key=os.path.getctime)
# Create a zip file with all PNGs
png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
if png_files:
zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for png in png_files:
png_path = os.path.join(newest_dir, png)
zipf.write(png_path, os.path.basename(png_path))
with open(zip_path, 'rb') as f:
video_data = f.read()
logger.info(f"Created PNG sequence zip: {zip_path}")
else:
logger.error("No PNG files found in directory")
else:
logger.error("No PNG directories found")
elif output_file_path and os.path.exists(output_file_path):
# For other formats, read the output file directly
with open(output_file_path, 'rb') as f:
video_data = f.read()
logger.info(f"Read output file from path: {output_file_path}")
else:
# If we didn't find the output path, search for files
search_paths = [
os.path.join(os.getcwd(), "media", "videos"),
os.path.join(os.getcwd(), "media", "videos", "scene"),
os.path.join(os.getcwd(), "media", "videos", scene_class),
"/tmp/media/videos",
temp_dir,
os.path.join(temp_dir, "media", "videos"),
]
# Add quality-specific paths
for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
# For SVG format
if format_type == "svg":
search_paths.extend([
os.path.join(os.getcwd(), "media", "designs"),
os.path.join(os.getcwd(), "media", "designs", scene_class),
])
# Find all output files in the search paths
output_files = []
for search_path in search_paths:
if os.path.exists(search_path):
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith(f".{format_type}") and "partial" not in file:
file_path = os.path.join(root, file)
if os.path.exists(file_path):
output_files.append(file_path)
logger.info(f"Found output file: {file_path}")
if output_files:
# Get the newest file
latest_file = max(output_files, key=os.path.getctime)
with open(latest_file, 'rb') as f:
video_data = f.read()
logger.info(f"Read output from file search: {latest_file}")
# If the format is GIF but we got an MP4, try to convert it
if format_type == "gif" and latest_file.endswith('.mp4'):
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(latest_file, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# If we got output data, return it
if video_data:
file_size_mb = len(video_data) / (1024 * 1024)
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)"
else:
output_str = ''.join(full_output)
logger.error(f"No output files found. Full output: {output_str}")
# Check if we have an MP4 but need a GIF (special handling for GIF issues)
if format_type == "gif":
# Try one more aggressive search for any MP4 file
mp4_files = []
for search_path in [os.getcwd(), temp_dir, "/tmp"]:
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith('.mp4') and scene_class.lower() in file.lower():
mp4_path = os.path.join(root, file)
if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
mp4_files.append(mp4_path)
if mp4_files:
newest_mp4 = max(mp4_files, key=os.path.getctime)
logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
# Convert to GIF
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(newest_mp4, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
file_size_mb = len(video_data) / (1024 * 1024)
return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
except Exception as e:
logger.error(f"Error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
if progress_placeholder:
progress_placeholder.empty()
if status_placeholder:
status_placeholder.error(f"Rendering Error: {str(e)}")
if log_placeholder:
log_placeholder.empty()
return None, f"❌ Error: {str(e)}"
finally:
# CRITICAL: Only cleanup after we've captured the output data
if temp_dir and os.path.exists(temp_dir) and video_data is not None:
try:
shutil.rmtree(temp_dir)
logger.info(f"Cleaned up temp dir: {temp_dir}")
except Exception as e:
logger.error(f"Failed to clean temp dir: {str(e)}")
# ENHANCED PYTHON RUNNER FUNCTIONS
def detect_input_calls(code):
"""Detect input() calls in Python code to prepare for handling"""
input_calls = []
lines = code.split('\n')
for i, line in enumerate(lines):
if 'input(' in line and not line.strip().startswith('#'):
# Try to extract the prompt if available
prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
input_calls.append({"line": i+1, "prompt": prompt})
return input_calls
def run_python_script_enhanced(code, inputs=None, timeout=60, enable_debug=False, enable_profile=False,
additional_libs=None, project_files=None, realtime_viz=False):
"""Enhanced version of run_python_script with debugging, profiling, etc."""
result = {
"stdout": "",
"stderr": "",
"exception": None,
"plots": [],
"dataframes": [],
"execution_time": 0,
"profile_data": None,
"debug_steps": [],
"realtime_data": []
}
# Create a tempdir for script execution
with tempfile.TemporaryDirectory() as temp_dir:
# Path for saving plots
plot_dir = os.path.join(temp_dir, 'plots')
os.makedirs(plot_dir, exist_ok=True)
# Handle multi-file project if provided
if project_files:
for filename, file_content in project_files.items():
with open(os.path.join(temp_dir, filename), 'w', encoding='utf-8') as f:
f.write(file_content)
# Set the main script path
main_script = os.path.join(temp_dir, "main.py")
else:
# Write the single code file
main_script = os.path.join(temp_dir, "script.py")
with open(main_script, 'w', encoding='utf-8') as f:
f.write(code)
# Add library imports if specified
if additional_libs:
lib_imports = "\n".join([f"import {lib}" for lib in additional_libs if lib != "numpy" and lib != "matplotlib"])
if lib_imports:
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(lib_imports + "\n\n" + content)
# Add debugging setup if enabled
if enable_debug:
debug_setup = """
import pdb
import sys
import traceback
class StringIODebugger:
def __init__(self):
self.steps = []
def add_step(self, frame, event, arg):
if event == 'line':
self.steps.append({
'file': frame.f_code.co_filename,
'line': frame.f_lineno,
'function': frame.f_code.co_name,
'locals': {k: str(v) for k, v in frame.f_locals.items() if not k.startswith('__')}
})
return self
debug_steps = []
def trace_calls(frame, event, arg):
if event != 'call':
return
co = frame.f_code
func_name = co.co_name
if func_name == 'write':
return
line_no = frame.f_lineno
filename = co.co_filename
if 'debugger' in filename or func_name.startswith('__'):
return
debug_steps.append(f"Calling {func_name} in {filename} at line {line_no}")
return trace_calls
sys.settrace(trace_calls)
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(debug_setup + "\n" + content)
# Add profiling if enabled
if enable_profile:
profile_setup = """
import cProfile
import pstats
import io
# Set up profiler
profiler = cProfile.Profile()
profiler.enable()
"""
profile_teardown = """
# Finish profiling
profiler.disable()
s = io.StringIO()
ps = pstats.Stats(profiler, stream=s).sort_stats('cumulative')
ps.print_stats()
with open('profile_results.txt', 'w') as f:
f.write(s.getvalue())
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(profile_setup + "\n" + content + "\n" + profile_teardown)
# Add real-time visualization if enabled
if realtime_viz:
realtime_viz_setup = """
# Setup for real-time visualization
import threading
import json
import time
class RealTimeData:
def __init__(self):
self.data = []
def add_data(self, label, value):
self.data.append({'label': label, 'value': value, 'time': time.time()})
# Write to file for real-time monitoring
with open('realtime_data.json', 'w') as f:
json.dump(self.data, f)
rt_data = RealTimeData()
# Example usage: rt_data.add_data("iteration", i)
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(realtime_viz_setup + "\n" + content)
# Add input handling code
if inputs and len(inputs) > 0:
# Modify the code to use predefined inputs instead of waiting for user input
input_handling = """
# Input values provided by the user
__INPUT_VALUES = {}
__INPUT_INDEX = 0
# Override the built-in input function
def input(prompt=''):
global __INPUT_INDEX
print(prompt, end='')
if __INPUT_INDEX < len(__INPUT_VALUES):
value = __INPUT_VALUES[__INPUT_INDEX]
__INPUT_INDEX += 1
print(value) # Echo the input
return value
else:
print("\\n[WARNING] No more predefined inputs available, using empty string")
return ""
""".format(inputs)
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(input_handling + "\n" + content)
# Add matplotlib and pandas handling
data_handling = """
# Add plot saving code if matplotlib is used
import os
# For matplotlib plots
if 'matplotlib' in globals() or 'matplotlib.pyplot' in globals() or 'plt' in globals():
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
# Hook to save all figures
original_show = plt.show
def custom_show(*args, **kwargs):
for i, fig in enumerate(map(plt.figure, plt.get_fignums())):
fig.savefig(os.path.join('{}', f'plot_{{i}}.png'))
return original_show(*args, **kwargs)
plt.show = custom_show
# For pandas DataFrames
if 'pandas' in globals() or 'pd' in globals():
import pandas as pd
import json
# Save DataFrames
original_df_repr_html = pd.DataFrame._repr_html_
def custom_df_repr_html(self):
try:
df_info = {{
"name": str(id(self)),
"shape": self.shape,
"columns": list(map(str, self.columns)),
"preview_html": self.head().to_html()
}}
with open(f'df_{{id(self)}}.json', 'w') as f:
json.dump(df_info, f)
except:
pass
return original_df_repr_html(self)
pd.DataFrame._repr_html_ = custom_df_repr_html
""".format(plot_dir.replace('\\', '\\\\'))
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(data_handling + "\n" + content)
# Files for capturing stdout and stderr
stdout_file = os.path.join(temp_dir, 'stdout.txt')
stderr_file = os.path.join(temp_dir, 'stderr.txt')
# Execute with timeout
start_time = time.time()
try:
# Run the script with stdout and stderr redirection
with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
process = subprocess.Popen(
[sys.executable, main_script],
stdout=stdout_f,
stderr=stderr_f,
cwd=temp_dir
)
# Real-time monitoring for real-time visualization
if realtime_viz:
realtime_data_file = os.path.join(temp_dir, 'realtime_data.json')
while process.poll() is None:
if os.path.exists(realtime_data_file):
try:
with open(realtime_data_file, 'r') as f:
result["realtime_data"] = json.load(f)
except:
pass
time.sleep(0.1)
# Check for timeout
if time.time() - start_time > timeout:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
break
else:
try:
process.wait(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
# Read the output
with open(stdout_file, 'r') as f:
result["stdout"] = f.read()
with open(stderr_file, 'r') as f:
result["stderr"] = f.read()
# Collect plots
if os.path.exists(plot_dir):
plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
for plot_file in plot_files:
with open(os.path.join(plot_dir, plot_file), 'rb') as f:
result["plots"].append(f.read())
# Collect dataframes
df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
for df_file in df_files:
with open(os.path.join(temp_dir, df_file), 'r') as f:
result["dataframes"].append(json.load(f))
# Collect profiling data if enabled
if enable_profile and os.path.exists(os.path.join(temp_dir, 'profile_results.txt')):
with open(os.path.join(temp_dir, 'profile_results.txt'), 'r') as f:
result["profile_data"] = f.read()
# Collect debug data if enabled
if enable_debug and 'debug_steps' in globals():
result["debug_steps"] = debug_steps
# Calculate execution time
result["execution_time"] = time.time() - start_time
except Exception as e:
result["exception"] = str(e)
result["stderr"] += f"\nError executing script: {str(e)}"
return result
def display_python_script_results_enhanced(result):
"""Display the enhanced results from the Python script execution"""
if not result:
st.error("No results to display.")
return
# Display execution time
st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
# Display any errors
if result["exception"]:
st.error(f"Exception occurred: {result['exception']}")
if result["stderr"]:
st.error("Errors:")
st.code(result["stderr"], language="bash")
# Display profiling data if available
if result.get("profile_data"):
with st.expander("Profiling Results"):
st.code(result["profile_data"], language="bash")
# Display debugging steps if available
if result.get("debug_steps"):
with st.expander("Debugging Steps"):
for i, step in enumerate(result["debug_steps"]):
st.markdown(f"**Step {i+1}**: {step}")
# Display plots if any
if result["plots"]:
st.markdown("### Plots")
cols = st.columns(min(3, len(result["plots"])))
for i, plot_data in enumerate(result["plots"]):
cols[i % len(cols)].image(plot_data, use_column_width=True)
# Add button to use this plot in Manim
if cols[i % len(cols)].button(f"Use in Manim", key=f"use_plot_{i}"):
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
tmp.write(plot_data)
plot_path = tmp.name
# Generate Manim code
plot_code = f"""
# Import the plot image
plot_image = ImageMobject(r"{plot_path}")
plot_image.scale(2) # Adjust size as needed
self.play(FadeIn(plot_image))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + plot_code
else:
st.session_state.code = f"""from manim import *
class PlotScene(Scene):
def construct(self):
{plot_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added plot to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Display dataframes if any
if result["dataframes"]:
st.markdown("### DataFrames")
for df_info in result["dataframes"]:
with st.expander(f"{df_info.get('name', 'DataFrame')} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"):
st.markdown(df_info["preview_html"], unsafe_allow_html=True)
# Add button to visualize this dataframe in Manim
if st.button(f"Visualize in Manim", key=f"viz_df_{df_info.get('name', 'df')}"):
# Generate Manim code for dataframe visualization
df_viz_code = f"""
# Create a simple table visualization
columns = {df_info['columns']}
table = Table(
col_labels=[Text(col, font_size=24) for col in columns]
)
# Add data rows (showing first 5 rows)
for i in range(min(5, {df_info['shape'][0]})):
# This is a placeholder - in a real implementation, you'd extract actual data
table.add_row(*[Text(f"Row {{i}}, Col {{j}}", font_size=20) for j in range(len(columns))])
self.play(Create(table))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + df_viz_code
else:
st.session_state.code = f"""from manim import *
class DataFrameScene(Scene):
def construct(self):
{df_viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added DataFrame visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Display standard output
if result["stdout"]:
st.markdown("### Standard Output")
st.code(result["stdout"], language="bash")
# Display real-time data if available
if result.get("realtime_data"):
st.markdown("### Real-time Data")
# Convert to DataFrame for easier visualization
import pandas as pd
rt_df = pd.DataFrame(result["realtime_data"])
# Create a plotly chart
import plotly.express as px
if not rt_df.empty and "time" in rt_df.columns and "value" in rt_df.columns:
fig = px.line(rt_df, x="time", y="value", color="label" if "label" in rt_df.columns else None,
title="Real-time Data Visualization")
st.plotly_chart(fig, use_container_width=True)
# Add button to create Manim animation from this data
if st.button("Create Manim Animation from Data", key="create_manim_from_rt"):
# Extract data points
data_points = []
for _, row in rt_df.iterrows():
if "value" in row:
data_points.append(float(row["value"]))
# Generate Manim code
rt_viz_code = f"""
# Visualize real-time data
data = {data_points}
axes = Axes(
x_range=[0, {len(data_points)}, 1],
y_range=[{min(data_points) if data_points else 0}, {max(data_points) if data_points else 10}, {(max(data_points)-min(data_points))/10 if data_points and max(data_points) > min(data_points) else 1}],
axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(data)]
graph = VMobject(color=RED)
graph.set_points_as_corners(points)
self.play(Create(axes))
self.play(Create(graph), run_time=2)
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + rt_viz_code
else:
st.session_state.code = f"""from manim import *
class DataVisualizationScene(Scene):
def construct(self):
{rt_viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added real-time data visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# C/C++ RUNNER FUNCTIONS
def compile_cpp_code_enhanced(code, settings, project_files=None, enable_debug=False, breakpoints=None, watch_vars=None):
"""Enhanced function to compile C++ code with advanced options."""
try:
# Create a temporary directory for compilation
temp_dir = tempfile.mkdtemp(prefix="cpp_runner_")
# Write the project files
if project_files:
for filename, content in project_files.items():
file_path = os.path.join(temp_dir, filename)
with open(file_path, "w") as f:
f.write(content)
# Set main file for single file mode
cpp_file = os.path.join(temp_dir, "main.cpp")
else:
# Write the single code file
cpp_file = os.path.join(temp_dir, "main.cpp")
with open(cpp_file, "w") as f:
f.write(code)
# Output executable path
exe_file = os.path.join(temp_dir, "program.exe" if platform.system() == "Windows" else "program")
# Build the compilation command
compiler = settings.get("compiler", "g++")
std_version = settings.get("std", "c++17")
optimization = settings.get("optimization", "-O2")
compile_cmd = [
compiler,
"-std=" + std_version,
optimization
]
# Add debug flag if debugging is enabled
if enable_debug:
compile_cmd.append("-g")
# Add preprocessor definitions
for definition in settings.get("definitions", []):
if "=" in definition:
name, value = definition.split("=", 1)
compile_cmd.append(f"-D{name}={value}")
else:
compile_cmd.append(f"-D{definition}")
# Add include paths
for path in settings.get("include_paths", []):
compile_cmd.append(f"-I{path}")
# Add library paths
for path in settings.get("library_paths", []):
compile_cmd.append(f"-L{path}")
# Add files to compile
if project_files:
source_files = [os.path.join(temp_dir, f) for f in project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
compile_cmd.extend(source_files)
else:
compile_cmd.append(cpp_file)
# Output file
compile_cmd.extend(["-o", exe_file])
# Add libraries
for lib in settings.get("libraries", []):
if lib == "Eigen":
# Eigen is header-only, nothing to link
pass
elif lib == "OpenCV":
# Add OpenCV libraries
try:
# Get OpenCV libraries using pkg-config
pkg_config = subprocess.run(
["pkg-config", "--libs", "opencv4"],
capture_output=True,
text=True,
check=False
)
if pkg_config.returncode == 0:
compile_cmd.extend(pkg_config.stdout.strip().split())
else:
# Try opencv instead of opencv4
pkg_config = subprocess.run(
["pkg-config", "--libs", "opencv"],
capture_output=True,
text=True,
check=False
)
if pkg_config.returncode == 0:
compile_cmd.extend(pkg_config.stdout.strip().split())
else:
# Fallback to common OpenCV libraries
compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
except:
# Fallback to common OpenCV libraries
compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
elif lib == "Boost":
# Add common Boost libraries
compile_cmd.extend(["-lboost_system", "-lboost_filesystem"])
elif lib == "FFTW":
compile_cmd.append("-lfftw3")
elif lib == "SDL2":
compile_cmd.append("-lSDL2")
elif lib == "SFML":
compile_cmd.extend(["-lsfml-graphics", "-lsfml-window", "-lsfml-system"])
elif lib == "OpenGL":
compile_cmd.extend(["-lGL", "-lGLU", "-lglut"])
# Add additional libraries
for lib in settings.get("additional_libs", []):
compile_cmd.append(f"-l{lib}")
# Add advanced flags
if settings.get("advanced_flags"):
compile_cmd.extend(settings["advanced_flags"].split())
# Run the compilation process
logger.info(f"Compiling with command: {' '.join(compile_cmd)}")
result = subprocess.run(
compile_cmd,
capture_output=True,
text=True,
check=False,
cwd=temp_dir
)
if result.returncode != 0:
return None, result.stderr, temp_dir
return exe_file, None, temp_dir
except Exception as e:
return None, str(e), None
def run_cpp_executable_enhanced(exe_path, temp_dir, inputs=None, timeout=30, enable_debug=False, breakpoints=None, watch_vars=None):
"""Enhanced function to run C++ executable with debugging support."""
result = {
"stdout": "",
"stderr": "",
"execution_time": 0,
"images": [],
"exception": None,
"debug_output": None,
"memory_usage": None
}
try:
# Prepare input data if provided
input_data = "\n".join(inputs) if inputs else None
# Start timing
start_time = time.time()
if enable_debug and breakpoints:
# Run with GDB for debugging
gdb_commands = ["set pagination off"]
# Add breakpoints
for bp in breakpoints:
gdb_commands.append(f"break {bp}")
# Add watchpoints for variables
if watch_vars:
for var in watch_vars:
gdb_commands.append(f"watch {var}")
# Run the program
gdb_commands.append("run")
# Continue to end
gdb_commands.append("continue")
# Quit GDB
gdb_commands.append("quit")
# Create GDB command file
gdb_cmd_file = os.path.join(temp_dir, "gdb_commands.txt")
with open(gdb_cmd_file, "w") as f:
f.write("\n".join(gdb_commands))
# Run with GDB
process = subprocess.run(
["gdb", "-x", gdb_cmd_file, "-batch", exe_path],
input=input_data,
text=True,
capture_output=True,
timeout=timeout,
cwd=temp_dir
)
# Capture outputs
result["stdout"] = process.stdout
result["stderr"] = process.stderr
result["debug_output"] = process.stdout
else:
# Run normally
process = subprocess.run(
[exe_path],
input=input_data,
text=True,
capture_output=True,
timeout=timeout,
cwd=temp_dir
)
# Capture outputs
result["stdout"] = process.stdout
result["stderr"] = process.stderr
# Calculate execution time
result["execution_time"] = time.time() - start_time
# Look for generated images in the executable directory
for ext in [".png", ".jpg", ".jpeg", ".bmp", ".ppm"]:
image_files = [f for f in os.listdir(temp_dir) if f.endswith(ext)]
for img_file in image_files:
try:
img_path = os.path.join(temp_dir, img_file)
# For PPM files, convert to PNG for easier display
if img_file.endswith(".ppm"):
# Create output path
png_path = os.path.join(temp_dir, img_file.replace(".ppm", ".png"))
# Convert using PIL
from PIL import Image
Image.open(img_path).save(png_path)
img_path = png_path
img_file = img_file.replace(".ppm", ".png")
with open(img_path, "rb") as f:
result["images"].append({
"name": img_file,
"data": f.read()
})
except Exception as e:
logger.error(f"Error processing image {img_file}: {str(e)}")
# Estimate memory usage
try:
if platform.system() != "Windows":
# Use ps command to get memory usage
ps_output = subprocess.run(
["ps", "-p", str(process.pid), "-o", "rss="],
capture_output=True,
text=True,
check=False
)
if ps_output.returncode == 0:
mem_kb = int(ps_output.stdout.strip())
result["memory_usage"] = mem_kb / 1024 # Convert to MB
except:
pass
return result
except subprocess.TimeoutExpired:
result["stderr"] += f"\nProgram execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
return result
except Exception as e:
result["stderr"] += f"\nError executing program: {str(e)}"
result["exception"] = str(e)
return result
def parse_animation_steps(python_code):
"""Parse Manim code to extract animation steps for timeline editor"""
animation_steps = []
# Look for self.play calls in the code
play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
# Extract animation objects from play calls
for i, play_call in enumerate(play_calls):
# Parse the arguments to self.play()
animations = [arg.strip() for arg in play_call.split(',')]
# Get wait time after this animation if available
wait_time = 1.0 # Default wait time
if i < len(wait_calls):
wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
if wait_match:
wait_time = float(wait_match.group(1))
# Add to animation steps
animation_steps.append({
"id": i+1,
"type": "play",
"animations": animations,
"duration": wait_time,
"start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
"code": f"self.play({play_call})"
})
return animation_steps
def generate_code_from_timeline(animation_steps, original_code):
"""Generate Manim code from the timeline data"""
# Extract the class definition and setup
class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
if not class_match:
return original_code # Can't find proper structure to modify
setup_code = class_match.group(1)
# Build the new construct method
new_code = [setup_code]
indent = " " # Standard Manim indentation
# Add each animation step in order
for step in sorted(animation_steps, key=lambda x: x["id"]):
new_code.append(f"{indent}{step['code']}")
if "duration" in step and step["duration"] > 0:
new_code.append(f"{indent}self.wait({step['duration']})")
# Add any code that might come after animations
end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
if end_match:
new_code.append(end_match.group(1))
# Combine the code parts with proper indentation
return "\n".join(new_code)
def create_timeline_editor(code):
"""Create an interactive timeline editor for animation sequences"""
st.markdown("### 🎞️ Animation Timeline Editor")
if not code:
st.warning("Add animation code first to use the timeline editor.")
return code
# Parse animation steps from the code
animation_steps = parse_animation_steps(code)
if not animation_steps:
st.warning("No animation steps detected in your code.")
return code
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(animation_steps)
# Create an interactive Gantt chart with plotly
st.markdown("#### Animation Timeline")
st.markdown("Drag timeline elements to reorder or resize to change duration")
# Create the Gantt chart
fig = px.timeline(
df,
x_start="start_time",
x_end=df["start_time"] + df["duration"],
y="id",
color="type",
hover_name="animations",
labels={"id": "Step", "start_time": "Time (seconds)"}
)
# Make it interactive
fig.update_layout(
height=400,
xaxis=dict(
title="Time (seconds)",
rangeslider_visible=True
)
)
# Add buttons and interactivity
timeline_chart = st.plotly_chart(fig, use_container_width=True)
# Control panel
st.markdown("#### Timeline Controls")
controls_col1, controls_col2, controls_col3 = st.columns(3)
with controls_col1:
selected_step = st.selectbox(
"Select Step to Edit:",
options=list(range(1, len(animation_steps) + 1)),
format_func=lambda x: f"Step {x}"
)
with controls_col2:
new_duration = st.number_input(
"Duration (seconds):",
min_value=0.1,
max_value=10.0,
value=float(df[df["id"] == selected_step]["duration"].values[0]),
step=0.1
)
with controls_col3:
step_action = st.selectbox(
"Action:",
options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
)
apply_btn = st.button("Apply Change", key="apply_timeline_change")
# Handle timeline modifications
if apply_btn:
modified = False
if step_action == "Update Duration":
# Update the duration of the selected step
idx = df[df["id"] == selected_step].index[0]
df.at[idx, "duration"] = new_duration
modified = True
elif step_action == "Move Up" and selected_step > 1:
# Swap with the step above
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step - 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
modified = True
elif step_action == "Move Down" and selected_step < len(animation_steps):
# Swap with the step below
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step + 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
modified = True
elif step_action == "Delete Step":
# Remove the selected step
df = df[df["id"] != selected_step]
# Reindex remaining steps
new_ids = list(range(1, len(df) + 1))
df["id"] = new_ids
modified = True
if modified:
# Recalculate start times
df = df.sort_values("id")
cumulative_time = 0
for idx, row in df.iterrows():
df.at[idx, "start_time"] = cumulative_time
cumulative_time += row["duration"]
# Regenerate animation code
animation_steps = df.to_dict('records')
new_code = generate_code_from_timeline(animation_steps, code)
st.success("Timeline updated! Code has been regenerated.")
return new_code
# Visual keyframe editor
st.markdown("#### Visual Keyframe Editor")
st.markdown("Add keyframes for smooth property transitions")
keyframe_obj = st.selectbox(
"Select object to animate:",
options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects
)
keyframe_prop = st.selectbox(
"Select property:",
options=["position", "scale", "rotation", "opacity", "color"]
)
# Keyframe timeline visualization
keyframe_times = [0, 1, 2, 3, 4] # Placeholder
keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder
keyframe_df = pd.DataFrame({
"time": keyframe_times,
"value": keyframe_values
})
keyframe_fig = px.line(
keyframe_df,
x="time",
y="value",
markers=True,
title=f"{keyframe_prop.capitalize()} Keyframes"
)
keyframe_fig.update_layout(
xaxis_title="Time (seconds)",
yaxis_title="Value",
height=250
)
st.plotly_chart(keyframe_fig, use_container_width=True)
keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
with keyframe_col1:
keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
with keyframe_col2:
keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with keyframe_col3:
add_keyframe = st.button("Add Keyframe")
# Return the original code or modified code
return code
def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
"""Export animation to various educational formats"""
try:
if format_type == "powerpoint":
# Make sure python-pptx is installed
try:
import pptx
from pptx.util import Inches
except ImportError:
logger.error("python-pptx not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
import pptx
from pptx.util import Inches
# Create PowerPoint presentation
prs = pptx.Presentation()
# Title slide
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
title_slide.shapes.title.text = animation_title
title_slide.placeholders[1].text = "Created with Manim Animation Studio"
# Video slide
video_slide = prs.slides.add_slide(prs.slide_layouts[5])
video_slide.shapes.title.text = "Animation"
# Save video to temp file
video_path = os.path.join(temp_dir, "animation.mp4")
with open(video_path, "wb") as f:
f.write(video_data)
# Add video to slide
try:
left = Inches(1)
top = Inches(1.5)
width = Inches(8)
height = Inches(4.5)
video_slide.shapes.add_movie(video_path, left, top, width, height)
except Exception as e:
logger.error(f"Error adding video to PowerPoint: {str(e)}")
# Fallback to adding a picture with link
img_path = os.path.join(temp_dir, "thumbnail.png")
# Generate thumbnail with ffmpeg
subprocess.run([
"ffmpeg", "-i", video_path, "-ss", "00:00:01.000",
"-vframes", "1", img_path
], check=True)
if os.path.exists(img_path):
pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
# Explanation slide
if explanation_text:
text_slide = prs.slides.add_slide(prs.slide_layouts[1])
text_slide.shapes.title.text = "Explanation"
text_slide.placeholders[1].text = explanation_text
# Save presentation
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
prs.save(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "powerpoint"
elif format_type == "html":
# Create interactive HTML animation
html_template = """
<!DOCTYPE html>
<html>
<head>
<title>{title}</title>
<style>
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }}
.animation-container {{ margin: 20px 0; }}
.controls {{ display: flex; margin: 10px 0; }}
.controls button {{ margin-right: 10px; padding: 5px 10px; }}
.explanation {{ margin-top: 20px; padding: 15px; background: #f5f5f5; border-radius: 5px; }}
</style>
<script>
document.addEventListener('DOMContentLoaded', function() {{
const video = document.getElementById('animation');
const playBtn = document.getElementById('play');
const pauseBtn = document.getElementById('pause');
const restartBtn = document.getElementById('restart');
const slowBtn = document.getElementById('slow');
const normalBtn = document.getElementById('normal');
const fastBtn = document.getElementById('fast');
playBtn.addEventListener('click', function() {{ video.play(); }});
pauseBtn.addEventListener('click', function() {{ video.pause(); }});
restartBtn.addEventListener('click', function() {{ video.currentTime = 0; video.play(); }});
slowBtn.addEventListener('click', function() {{ video.playbackRate = 0.5; }});
normalBtn.addEventListener('click', function() {{ video.playbackRate = 1.0; }});
fastBtn.addEventListener('click', function() {{ video.playbackRate = 2.0; }});
}});
</script>
</head>
<body>
<h1>{title}</h1>
<div class="animation-container">
<video id="animation" width="100%" controls>
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
Your browser does not support the video tag.
</video>
<div class="controls">
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="restart">Restart</button>
<button id="slow">0.5x Speed</button>
<button id="normal">1x Speed</button>
<button id="fast">2x Speed</button>
</div>
</div>
<div class="explanation">
<h2>Explanation</h2>
{explanation_html}
</div>
<footer>
<p>Created with Manim Animation Studio</p>
</footer>
</body>
</html>
"""
# Convert video data to base64
video_base64 = base64.b64encode(video_data).decode('utf-8')
# Convert markdown explanation to HTML
explanation_html = markdown.markdown(explanation_text) if explanation_text else "<p>No explanation provided.</p>"
# Format the HTML template
html_content = html_template.format(
title=animation_title,
video_base64=video_base64,
explanation_html=explanation_html
)
# Save to file
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
with open(output_path, "w", encoding="utf-8") as f:
f.write(html_content)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "html"
elif format_type == "sequence":
# Generate animation sequence with explanatory text
# Make sure FPDF is installed
try:
from fpdf import FPDF
except ImportError:
logger.error("fpdf not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
from fpdf import FPDF
# Save video temporarily
temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
with open(temp_video_path, "wb") as f:
f.write(video_data)
# Create frames directory
frames_dir = os.path.join(temp_dir, "frames")
os.makedirs(frames_dir, exist_ok=True)
# Extract frames using ffmpeg (assuming it's installed)
frame_count = 5 # Number of key frames to extract
try:
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
"-vsync", "0",
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
except Exception as e:
logger.error(f"Error extracting frames: {str(e)}")
# Try a simpler approach
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-r", "1", # 1 frame per second
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
# Parse explanation text into segments (assuming sections divided by ##)
explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
# Create a PDF with frames and explanations
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
# Title page
pdf.add_page()
pdf.set_font("Arial", "B", 20)
pdf.cell(190, 10, animation_title, ln=True, align="C")
pdf.ln(10)
pdf.set_font("Arial", "", 12)
pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
# Add each frame with explanation
frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
for i, frame_file in enumerate(frame_files):
pdf.add_page()
# Add frame image
frame_path = os.path.join(frames_dir, frame_file)
pdf.image(frame_path, x=10, y=10, w=190)
# Add explanation text
pdf.ln(140) # Move below the image
pdf.set_font("Arial", "B", 12)
pdf.cell(190, 10, f"Step {i+1}", ln=True)
pdf.set_font("Arial", "", 10)
# Use the corresponding explanation segment if available
explanation = explanation_segments[min(i, len(explanation_segments)-1)]
pdf.multi_cell(190, 5, explanation.strip())
# Save PDF
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
pdf.output(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "pdf"
return None, None
except Exception as e:
logger.error(f"Educational export error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None, None
def main():
# Initialize session state variables if they don't exist
if 'init' not in st.session_state:
st.session_state.init = True
st.session_state.video_data = None
st.session_state.status = None
st.session_state.ai_models = None
st.session_state.generated_code = ""
st.session_state.code = ""
st.session_state.temp_code = ""
st.session_state.editor_key = str(uuid.uuid4())
st.session_state.packages_checked = False # Track if packages were already checked
st.session_state.audio_path = None
st.session_state.image_paths = []
st.session_state.custom_library_result = ""
st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
st.session_state.python_result = None
st.session_state.active_tab = 0 # Track currently active tab
st.session_state.settings = {
"quality": "720p",
"format_type": "mp4",
"animation_speed": "Normal",
"fps": 30 # Default FPS
}
st.session_state.password_entered = False # Track password authentication
st.session_state.custom_model = "gpt-4o" # Default model
st.session_state.first_load_complete = False # Prevent refreshes on first load
st.session_state.pending_tab_switch = None # Track pending tab switches
# C++ runner state
st.session_state.cpp_code = """#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::cout << "Hello, Manim Animation Studio!" << std::endl;
// Create a vector of numbers
std::vector<int> numbers = {5, 2, 8, 1, 9, 3, 7, 4, 6};
// Sort the vector
std::sort(numbers.begin(), numbers.end());
// Print the sorted numbers
std::cout << "Sorted numbers: ";
for (int num : numbers) {
std::cout << num << " ";
}
std::cout << std::endl;
return 0;
}"""
st.session_state.cpp_result = None
st.session_state.cpp_project_files = {"main.cpp": st.session_state.cpp_code}
st.session_state.cpp_settings = {
"compiler": "g++",
"std": "c++17",
"optimization": "-O2",
"include_paths": [],
"library_paths": [],
"libraries": []
}
# Page configuration with improved layout
st.set_page_config(
page_title="Manim Animation Studio",
page_icon="🎬",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(90deg, #4F46E5, #818CF8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1rem;
text-align: center;
}
/* Improved Cards */
.card {
background-color: #ffffff;
border-radius: 12px;
padding: 1.8rem;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08);
margin-bottom: 1.8rem;
border-left: 5px solid #4F46E5;
transition: all 0.3s ease;
}
.card:hover {
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.12);
transform: translateY(-2px);
}
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 2px;
}
.stTabs [data-baseweb="tab"] {
height: 45px;
white-space: pre-wrap;
border-radius: 4px 4px 0 0;
font-weight: 500;
}
.stTabs [aria-selected="true"] {
background-color: #f0f4fd;
border-bottom: 2px solid #4F46E5;
}
/* Buttons */
.stButton button {
border-radius: 6px;
font-weight: 500;
transition: all 0.2s ease;
}
.stButton button:hover {
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Model selection */
.model-group {
margin-bottom: 1.5rem;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
.model-card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 10px;
border-left: 4px solid #4F46E5;
transition: all 0.3s ease;
}
.model-card:hover {
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
transform: translateY(-2px);
}
.model-category {
font-size: 1.2rem;
font-weight: 600;
padding: 10px 5px;
margin-top: 15px;
border-bottom: 2px solid #e9ecef;
color: #333;
}
.model-details {
font-size: 0.8rem;
color: #666;
margin-top: 5px;
}
.selected-model {
background-color: #e8f4fe;
border-left: 4px solid #0d6efd;
}
.preview-container {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
min-height: 200px;
}
.small-text {
font-size: 0.8rem;
color: #6c757d;
}
.asset-card {
background-color: #f0f2f5;
border-radius: 8px;
padding: 1rem;
margin-bottom: 1rem;
border-left: 4px solid #4F46E5;
}
.timeline-container {
background-color: #f8f9fa;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
}
.keyframe {
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #4F46E5;
position: absolute;
transform: translate(-50%, -50%);
cursor: pointer;
}
.educational-export-container {
background-color: #f0f7ff;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border: 1px solid #c2e0ff;
}
.code-output {
background-color: #f8f9fa;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #10b981;
max-height: 400px;
overflow-y: auto;
}
.error-output {
background-color: #fef2f2;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #ef4444;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown("""
<div class="main-header">
🎬 Manim Animation Studio
</div>
<p style="text-align: center; margin-bottom: 2rem;">Create mathematical animations with Manim</p>
""", unsafe_allow_html=True)
# Check for packages ONLY ONCE per session
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked = True
else:
st.error("Failed to install required packages. Please try again.")
st.stop()
# Create main tabs
tab_names = ["✨ Editor", "🤖 AI Assistant", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner", "🔧 C/C++ Runner"]
tabs = st.tabs(tab_names)
# Sidebar for rendering settings and custom libraries
with st.sidebar:
# Rendering settings section
st.markdown("## ⚙️ Rendering Settings")
col1, col2 = st.columns(2)
with col1:
quality = st.selectbox(
"🎯 Quality",
options=list(QUALITY_PRESETS.keys()),
index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
key="quality_select"
)
with col2:
format_type_display = st.selectbox(
"📦 Format",
options=list(EXPORT_FORMATS.keys()),
index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"])
if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
key="format_select_display"
)
# Convert display name to actual format value
format_type = EXPORT_FORMATS[format_type_display]
# Add FPS control
fps = st.selectbox(
"🎞️ FPS",
options=FPS_OPTIONS,
index=FPS_OPTIONS.index(st.session_state.settings["fps"]) if st.session_state.settings["fps"] in FPS_OPTIONS else 2, # Default to 30 FPS (index 2)
key="fps_select"
)
animation_speed = st.selectbox(
"⚡ Speed",
options=list(ANIMATION_SPEEDS.keys()),
index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
key="speed_select"
)
# Apply the settings without requiring a button
st.session_state.settings = {
"quality": quality,
"format_type": format_type,
"animation_speed": animation_speed,
"fps": fps
}
# Custom libraries section
st.markdown("## 📚 Custom Libraries")
st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
custom_libraries = st.text_area(
"Libraries to install",
placeholder="e.g., scipy, networkx, matplotlib",
key="custom_libraries"
)
if st.button("Install Libraries", key="install_libraries_btn"):
success, result = install_custom_packages(custom_libraries)
st.session_state.custom_library_result = result
if success:
st.success("Installation complete!")
else:
st.error("Installation failed for some packages.")
if st.session_state.custom_library_result:
with st.expander("Installation Results"):
st.code(st.session_state.custom_library_result)
# C/C++ Library Options
with st.sidebar.expander("C/C++ Library Options"):
st.markdown("### Advanced C/C++ Settings")
cpp_libs = st.multiselect(
"Include Libraries",
options=["Eigen", "Boost", "OpenCV", "FFTW", "Matplotlib-cpp"],
default=st.session_state.cpp_settings.get("libraries", [])
)
st.session_state.cpp_settings["libraries"] = cpp_libs
custom_include = st.text_input("Custom Include Path:")
custom_lib = st.text_input("Custom Library Path:")
if custom_include and custom_include not in st.session_state.cpp_settings.get("include_paths", []):
if "include_paths" not in st.session_state.cpp_settings:
st.session_state.cpp_settings["include_paths"] = []
st.session_state.cpp_settings["include_paths"].append(custom_include)
if custom_lib and custom_lib not in st.session_state.cpp_settings.get("library_paths", []):
if "library_paths" not in st.session_state.cpp_settings:
st.session_state.cpp_settings["library_paths"] = []
st.session_state.cpp_settings["library_paths"].append(custom_lib)
if st.button("Update Library Settings"):
st.success("Library settings updated!")
# EDITOR TAB
with tabs[0]:
col1, col2 = st.columns([3, 2])
with col1:
st.markdown("### 📝 Animation Editor")
# Toggle between upload and type
editor_mode = st.radio(
"Choose how to input your code:",
["Type Code", "Upload File"],
key="editor_mode"
)
if editor_mode == "Upload File":
uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
if uploaded_file:
code_content = uploaded_file.getvalue().decode("utf-8")
if code_content.strip(): # Only update if file has content
st.session_state.code = code_content
st.session_state.temp_code = code_content
# Code editor
if ACE_EDITOR_AVAILABLE:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st_ace(
value=current_code,
language="python",
theme="monokai",
min_lines=20,
key=f"ace_editor_{st.session_state.editor_key}"
)
else:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st.text_area(
"Manim Python Code",
value=current_code,
height=400,
key=f"code_textarea_{st.session_state.editor_key}"
)
# Update code in session state if it changed
if st.session_state.temp_code != st.session_state.code:
st.session_state.code = st.session_state.temp_code
# Generate button (use a form to prevent page reloads)
generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn")
if generate_btn:
if not st.session_state.code:
st.error("Please enter some code before generating animation")
else:
# Extract scene class name
scene_class = extract_scene_class_name(st.session_state.code)
# If no valid scene class found, add a basic one
if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
default_scene = """
class MyScene(Scene):
def construct(self):
text = Text("Default Scene")
self.play(Write(text))
self.wait(2)
"""
st.session_state.code += default_scene
st.session_state.temp_code = st.session_state.code
st.warning("No scene class found. Added a default scene.")
with st.spinner("Generating animation..."):
video_data, status = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
st.session_state.audio_path,
st.session_state.settings["fps"]
)
st.session_state.video_data = video_data
st.session_state.status = status
with col2:
st.markdown("### 🖥️ Preview & Output")
# Preview container
if st.session_state.code:
with st.container():
st.markdown("<div class='preview-container'>", unsafe_allow_html=True)
preview_html = generate_manim_preview(st.session_state.code)
components.html(preview_html, height=250)
st.markdown("</div>", unsafe_allow_html=True)
# Generated output display
if st.session_state.video_data:
# Different handling based on format type
format_type = st.session_state.settings["format_type"]
if format_type == "png_sequence":
st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
# Add download button for ZIP
st.download_button(
label="⬇️ Download PNG Sequence (ZIP)",
data=st.session_state.video_data,
file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip",
use_container_width=True
)
elif format_type == "svg":
# Display SVG preview
try:
svg_data = st.session_state.video_data.decode('utf-8')
components.html(svg_data, height=400)
except Exception as e:
st.error(f"Error displaying SVG: {str(e)}")
# Download button for SVG
st.download_button(
label="⬇️ Download SVG",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
mime="image/svg+xml",
use_container_width=True
)
else:
# Standard video display for MP4, GIF, WebM
try:
st.video(st.session_state.video_data, format=format_type)
except Exception as e:
st.error(f"Error displaying video: {str(e)}")
# Fallback for GIF if st.video fails
if format_type == "gif":
st.markdown("GIF preview:")
gif_b64 = base64.b64encode(st.session_state.video_data).decode()
st.markdown(f'<img src="data:image/gif;base64,{gif_b64}" alt="animation" style="width:100%">', unsafe_allow_html=True)
# Add download button
st.download_button(
label=f"⬇️ Download {format_type.upper()}",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
use_container_width=True
)
if st.session_state.status:
if "Error" in st.session_state.status:
st.error(st.session_state.status)
# Show troubleshooting tips
with st.expander("🔍 Troubleshooting Tips"):
st.markdown("""
### Common Issues:
1. **Syntax Errors**: Check your Python code for any syntax issues
2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
3. **High Resolution Issues**: Try a lower quality preset for complex animations
4. **Memory Issues**: For 4K animations, reduce complexity or try again
5. **Format Issues**: Some formats require specific Manim configurations
6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
### Example Code:
```python
from manim import *
class MyScene(Scene):
def construct(self):
circle = Circle(color=RED)
self.play(Create(circle))
self.wait(1)
```
""")
else:
st.success(st.session_state.status)
# AI ASSISTANT TAB
with tabs[1]:
st.markdown("### 🤖 AI Animation Assistant")
# Check password before allowing access
if check_password():
# Debug section
with st.expander("🔧 Debug Connection"):
st.markdown("Test the AI model connection directly")
if st.button("Test API Connection", key="test_api_btn"):
with st.spinner("Testing API connection..."):
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets")
st.stop()
# Get model details
model_name = st.session_state.custom_model
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
category = config.get("category", "Other")
if category == "OpenAI":
# Use OpenAI client for GitHub AI models
try:
from openai import OpenAI
except ImportError:
st.error("OpenAI package not installed. Please run 'pip install openai'")
st.stop()
# Create OpenAI client with GitHub AI endpoint
client = OpenAI(
base_url="https://models.github.ai/inference",
api_key=token,
)
# For GitHub AI models, ensure the model_name includes the publisher
# If it doesn't have a publisher prefix, add "openai/"
if "/" not in model_name:
full_model_name = f"openai/{model_name}"
st.info(f"Using full model name: {full_model_name}")
else:
full_model_name = model_name
# Prepare parameters based on model configuration
params = {
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, this is a connection test."}
],
"model": full_model_name
}
# Add appropriate token parameter
token_param = config["param_name"]
params[token_param] = config[token_param]
# Make API call
response = client.chat.completions.create(**params)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"openai_client": client,
"model_name": full_model_name, # Store the full model name
"endpoint": "https://models.github.ai/inference",
"last_loaded": datetime.now().isoformat(),
"category": category
}
else:
st.error("❌ API returned an empty response")
elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]:
# Use Azure client for Azure API models
try:
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
except ImportError:
st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'")
st.stop()
# Define endpoint
endpoint = "https://models.inference.ai.azure.com"
# Prepare API parameters
messages = [UserMessage("Hello, this is a connection test.")]
api_params, config = prepare_api_params(messages, model_name)
# Create client with appropriate API version
api_version = config.get("api_version")
if api_version:
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
api_version=api_version
)
else:
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Test with the prepared parameters
response = client.complete(**api_params)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"client": client,
"model_name": model_name,
"endpoint": endpoint,
"last_loaded": datetime.now().isoformat(),
"category": category,
"api_version": api_version
}
else:
st.error("❌ API returned an empty response")
else:
st.error(f"Unsupported model category: {category}")
except ImportError as ie:
st.error(f"Module import error: {str(ie)}")
st.info("Try installing required packages: openai, azure-ai-inference and azure-core")
except Exception as e:
st.error(f"❌ API test failed: {str(e)}")
import traceback
st.code(traceback.format_exc())
# Model selection with enhanced UI
st.markdown("### 🤖 Model Selection")
st.markdown("Select an AI model for generating animation code:")
# Group models by category for better organization
model_categories = {}
for model_name in MODEL_CONFIGS:
if model_name != "default":
category = MODEL_CONFIGS[model_name].get("category", "Other")
if category not in model_categories:
model_categories[category] = []
model_categories[category].append(model_name)
# Create tabbed interface for model categories
category_tabs = st.tabs(sorted(model_categories.keys()))
for i, category in enumerate(sorted(model_categories.keys())):
with category_tabs[i]:
for model_name in sorted(model_categories[category]):
config = MODEL_CONFIGS[model_name]
is_selected = model_name == st.session_state.custom_model
warning = config.get("warning")
# Create styled card for each model
warning_html = f'<p style="color: #ff9800; font-size: 0.8rem; margin-top: 5px;">⚠️ {warning}</p>' if warning else ""
st.markdown(f"""
<div class="model-card {'selected-model' if is_selected else ''}">
<h4>{model_name}</h4>
<div class="model-details">
<p>Max Tokens: {config.get(config['param_name'], 'Unknown')}</p>
<p>Category: {config['category']}</p>
<p>API Version: {config['api_version'] if config['api_version'] else 'Default'}</p>
{warning_html}
</div>
</div>
""", unsafe_allow_html=True)
# Button to select this model
button_label = "Selected ✓" if is_selected else "Select Model"
if st.button(button_label, key=f"model_{model_name}", disabled=is_selected):
st.session_state.custom_model = model_name
if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
st.session_state.ai_models['model_name'] = model_name
st.rerun()
# Display current model selection
st.info(f"🤖 **Currently using: {st.session_state.custom_model}**")
# Add a refresh button to update model connection
if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"):
if st.session_state.ai_models and 'client' in st.session_state.ai_models:
try:
# Test connection with minimal prompt
from azure.ai.inference.models import UserMessage
model_name = st.session_state.custom_model
# Prepare parameters
messages = [UserMessage("Hello")]
api_params, config = prepare_api_params(messages, model_name)
# Check if we need a new client with specific API version
if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"):
# Create version-specific client if needed
token = get_secret("github_token_api")
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint=st.session_state.ai_models["endpoint"],
credential=AzureKeyCredential(token),
api_version=config["api_version"]
)
response = client.complete(**api_params)
# Update session state with the new client
st.session_state.ai_models["client"] = client
st.session_state.ai_models["api_version"] = config["api_version"]
else:
response = st.session_state.ai_models["client"].complete(**api_params)
st.success(f"✅ Connection to {model_name} successful!")
st.session_state.ai_models["model_name"] = model_name
except Exception as e:
st.error(f"❌ Connection error: {str(e)}")
st.info("Please try the Debug Connection section to re-initialize the API connection.")
# AI code generation
if st.session_state.ai_models and "client" in st.session_state.ai_models:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generate Animation from Description")
st.write("Describe the animation you want to create, or provide partial code to complete.")
# Predefined animation ideas dropdown
animation_ideas = [
"Select an idea...",
"Create a 3D animation showing a sphere morphing into a torus",
"Show a visual proof of the Pythagorean theorem",
"Visualize a Fourier transform converting a signal from time domain to frequency domain",
"Create an animation explaining neural network forward propagation",
"Illustrate the concept of integration with area under a curve"
]
selected_idea = st.selectbox(
"Try one of these ideas",
options=animation_ideas
)
prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
code_input = st.text_area(
"Your Prompt or Code",
value=prompt_value,
placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
height=150
)
if st.button("Generate Animation Code", key="gen_ai_code"):
if code_input:
with st.spinner("AI is generating your animation code..."):
try:
# Get the client and model name
client = st.session_state.ai_models["client"]
model_name = st.session_state.ai_models["model_name"]
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_input}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
# Prepare API parameters
from azure.ai.inference.models import UserMessage
messages = [UserMessage(prompt)]
api_params, config = prepare_api_params(messages, model_name)
# Make the API call with proper parameters
response = client.complete(**api_params)
# Process the response
if response and response.choices and len(response.choices) > 0:
completed_code = response.choices[0].message.content
# Extract code from markdown if present
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
# Store the generated code
st.session_state.generated_code = completed_code
else:
st.error("Failed to generate code. API returned an empty response.")
except Exception as e:
st.error(f"Error generating code: {str(e)}")
import traceback
st.code(traceback.format_exc())
else:
st.warning("Please enter a description or prompt first")
# AI generated code display and actions
if "generated_code" in st.session_state and st.session_state.generated_code:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generated Animation Code")
st.code(st.session_state.generated_code, language="python")
col_ai1, col_ai2 = st.columns(2)
with col_ai1:
if st.button("Use This Code", key="use_gen_code"):
st.session_state.code = st.session_state.generated_code
st.session_state.temp_code = st.session_state.generated_code
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_ai2:
if st.button("Render Preview", key="render_preview"):
with st.spinner("Rendering preview..."):
video_data, status = generate_manim_video(
st.session_state.generated_code,
"mp4",
"480p", # Use lowest quality for preview
ANIMATION_SPEEDS["Normal"],
fps=st.session_state.settings["fps"]
)
if video_data:
st.video(video_data)
st.download_button(
label="Download Preview",
data=video_data,
file_name=f"manim_preview_{int(time.time())}.mp4",
mime="video/mp4"
)
else:
st.error(f"Failed to generate preview: {status}")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
else:
st.info("Please enter the correct password to access AI features")
# ASSETS TAB
with tabs[2]:
st.markdown("### 🎨 Asset Management")
asset_col1, asset_col2 = st.columns([1, 1])
with asset_col1:
# Image uploader section
st.markdown("#### 📸 Image Assets")
st.markdown("Upload images to use in your animations:")
# Allow multiple image uploads
uploaded_images = st.file_uploader(
"Upload Images",
type=["jpg", "png", "jpeg", "svg"],
accept_multiple_files=True,
key="image_uploader_tab"
)
if uploaded_images:
# Create a unique image directory if it doesn't exist
image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
os.makedirs(image_dir, exist_ok=True)
# Process each uploaded image
for uploaded_image in uploaded_images:
# Generate a unique filename and save the image
file_extension = uploaded_image.name.split(".")[-1]
unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
image_path = os.path.join(image_dir, unique_filename)
with open(image_path, "wb") as f:
f.write(uploaded_image.getvalue())
# Store the path in session state
if "image_paths" not in st.session_state:
st.session_state.image_paths = []
# Check if this image was already added
image_already_added = False
for img in st.session_state.image_paths:
if img["name"] == uploaded_image.name:
image_already_added = True
break
if not image_already_added:
st.session_state.image_paths.append({
"name": uploaded_image.name,
"path": image_path
})
# Display uploaded images in a grid
st.markdown("##### Uploaded Images:")
image_cols = st.columns(3)
for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
with image_cols[i % 3]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=150)
# Show code snippet for this specific image
if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
image_code = f"""
# Load and display image
image = ImageMobject(r"{img_info['path']}")
image.scale(2) # Adjust size as needed
self.play(FadeIn(image))
self.wait(1)
"""
if not st.session_state.code:
base_code = """from manim import *
class ImageScene(Scene):
def construct(self):
"""
st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ")
else:
st.session_state.code += "\n" + image_code
st.session_state.temp_code = st.session_state.code
st.success(f"Added {img_info['name']} to your code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error loading image {img_info['name']}: {e}")
# Display previously uploaded images
if st.session_state.image_paths:
with st.expander("Previously Uploaded Images"):
# Group images by 3 in each row
for i in range(0, len(st.session_state.image_paths), 3):
prev_cols = st.columns(3)
for j in range(3):
if i+j < len(st.session_state.image_paths):
img_info = st.session_state.image_paths[i+j]
with prev_cols[j]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=100)
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
except:
st.markdown(f"**{img_info['name']}**")
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
with asset_col2:
# Audio uploader section
st.markdown("#### 🎵 Audio Assets")
st.markdown("Upload audio files for background or narration:")
uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
if uploaded_audio:
# Create a unique audio directory if it doesn't exist
audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename and save the audio
file_extension = uploaded_audio.name.split(".")[-1]
unique_filename = f"audio_{int(time.time())}.{file_extension}"
audio_path = os.path.join(audio_dir, unique_filename)
with open(audio_path, "wb") as f:
f.write(uploaded_audio.getvalue())
# Store the path in session state
st.session_state.audio_path = audio_path
# Display audio player
st.audio(uploaded_audio)
st.markdown(f"""
<div class="asset-card">
<p><strong>Audio: {uploaded_audio.name}</strong></p>
<p class="small-text">Path: {audio_path}</p>
</div>
""", unsafe_allow_html=True)
# Two options for audio usage
st.markdown("#### Add Audio to Your Animation")
option = st.radio(
"Choose how to use audio:",
["Background Audio", "Generate Audio from Text"]
)
if option == "Background Audio":
st.markdown("##### Code to add background audio:")
# For with_sound decorator
audio_code1 = f"""
# Add this import at the top of your file
from manim.scene.scene_file_writer import SceneFileWriter
# Add this decorator before your scene class
@with_sound("{audio_path}")
class YourScene(Scene):
def construct(self):
# Your animation code here
"""
st.code(audio_code1, language="python")
if st.button("Use This Audio in Animation", key="use_audio_btn"):
st.success("Audio set for next render!")
elif option == "Generate Audio from Text":
# Text-to-speech input
tts_text = st.text_area(
"Enter text for narration",
placeholder="Type the narration text here...",
height=100
)
if st.button("Create Narration", key="create_narration_btn"):
try:
# Use basic TTS (placeholder for actual implementation)
st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
st.session_state.audio_path = audio_path
st.success("Audio set for next render!")
except Exception as e:
st.error(f"Error creating narration: {str(e)}")
# TIMELINE EDITOR TAB
with tabs[3]:
# New code for reordering animation steps
updated_code = create_timeline_editor(st.session_state.code)
# If code was modified by the timeline editor, update the session state
if updated_code != st.session_state.code:
st.session_state.code = updated_code
st.session_state.temp_code = updated_code
# EDUCATIONAL EXPORT TAB
with tabs[4]:
st.markdown("### 🎓 Educational Export Options")
# Check if we have an animation to export
if not st.session_state.video_data:
st.warning("Generate an animation first before using educational export features.")
else:
st.markdown("Create various educational assets from your animation:")
# Animation title and explanation
animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
st.markdown("#### Explanation Text")
st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
explanation_text = st.text_area(
"Explanation (markdown supported)",
height=150,
placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
)
# Export format selection
edu_format = st.selectbox(
"Export Format",
options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
)
# Format-specific options
if edu_format == "PowerPoint Presentation":
st.info("Creates a PowerPoint file with your animation and explanation text.")
elif edu_format == "Interactive HTML":
st.info("Creates an interactive HTML webpage with playback controls and explanation.")
include_controls = st.checkbox("Include interactive controls", value=True)
elif edu_format == "Explanation Sequence PDF":
st.info("Creates a PDF with key frames and step-by-step explanations.")
frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
# Export button
if st.button("Export Educational Material", key="export_edu_btn"):
with st.spinner(f"Creating {edu_format}..."):
# Map selected format to internal format type
format_map = {
"PowerPoint Presentation": "powerpoint",
"Interactive HTML": "html",
"Explanation Sequence PDF": "sequence"
}
# Create a temporary directory for export
temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
# Process the export
exported_data, file_type = export_to_educational_format(
st.session_state.video_data,
format_map[edu_format],
animation_title,
explanation_text,
temp_export_dir
)
if exported_data:
# File extension mapping
ext_map = {
"powerpoint": "pptx",
"html": "html",
"pdf": "pdf"
}
# Download button
ext = ext_map.get(file_type, "zip")
filename = f"{animation_title.replace(' ', '_')}.{ext}"
st.success(f"{edu_format} created successfully!")
st.download_button(
label=f"⬇️ Download {edu_format}",
data=exported_data,
file_name=filename,
mime=f"application/{ext}",
use_container_width=True
)
# For HTML, also offer to open in browser
if file_type == "html":
html_path = os.path.join(temp_export_dir, filename)
st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True)
else:
st.error(f"Failed to create {edu_format}. Check logs for details.")
# Show usage examples and tips
with st.expander("Usage Tips"):
st.markdown("""
### Educational Export Tips
**PowerPoint Presentations**
- Great for lectures and classroom presentations
- Animation will autoplay when clicked
- Add detailed explanations in notes section
**Interactive HTML**
- Perfect for websites and online learning platforms
- Students can control playback speed and navigation
- Mobile-friendly for learning on any device
**Explanation Sequence**
- Ideal for printed materials and study guides
- Use ## headers to mark different explanation sections
- Each section will be paired with a key frame
""")
# PYTHON RUNNER TAB
with tabs[5]:
st.markdown("### 🐍 Python Script Runner")
st.markdown("Execute Python scripts and visualize the results directly.")
# New UI elements for advanced features
with st.expander("🔧 Advanced Python Features"):
py_feature_col1, py_feature_col2 = st.columns(2)
with py_feature_col1:
enable_debugging = st.checkbox("Enable Debugging", value=False, key="py_debug_enable")
enable_profiling = st.checkbox("Enable Profiling", value=False, key="py_profile_enable")
with py_feature_col2:
py_libs = st.multiselect(
"Additional Libraries",
options=["numpy", "scipy", "pandas", "matplotlib", "seaborn", "plotly", "scikit-learn", "tensorflow", "pytorch", "sympy"],
default=["numpy", "matplotlib"],
key="py_additional_libs"
)
# Multi-file project support
with st.expander("📁 Multi-file Project"):
st.markdown("Add multiple Python files to your project")
# File manager
if "py_project_files" not in st.session_state:
st.session_state.py_project_files = {"main.py": st.session_state.python_script}
# File selector
current_file = st.selectbox(
"Select File",
options=list(st.session_state.py_project_files.keys()),
key="py_current_file"
)
# New file creation
new_file_col1, new_file_col2 = st.columns([3, 1])
with new_file_col1:
new_filename = st.text_input("New File Name", value="", key="py_new_filename")
with new_file_col2:
if st.button("Add File", key="py_add_file_btn"):
if new_filename and new_filename not in st.session_state.py_project_files:
if not new_filename.endswith(".py"):
new_filename += ".py"
st.session_state.py_project_files[new_filename] = "# New Python file\n\n"
st.session_state.py_current_file = new_filename
st.experimental_rerun()
# Update the current file content in session state
if current_file in st.session_state.py_project_files:
st.session_state.py_project_files[current_file] = st.session_state.python_script
# Update main script if we're editing the main file
if current_file == "main.py":
st.session_state.python_script = st.session_state.python_script
# Real-time visualization toggle
real_time_viz = st.checkbox("Enable Real-time Visualization", value=False, key="py_realtime_viz")
# Predefined example scripts
example_scripts = {
"Select an example...": "",
"Basic Matplotlib Plot": """import matplotlib.pyplot as plt
import numpy as np
# Create data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
""",
"User Input Example": """# This example demonstrates how to handle user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
# Let's get some numbers and calculate the average
num_count = int(input("How many numbers would you like to average? "))
total = 0
for i in range(num_count):
num = float(input(f"Enter number {i+1}: "))
total += num
average = total / num_count
print(f"The average of your {num_count} numbers is: {average}")
""",
"Pandas DataFrame": """import pandas as pd
import numpy as np
# Create a sample dataframe
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
'Age': [25, 30, 35, 40, 45],
'Salary': [50000, 60000, 70000, 80000, 90000],
'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
}
df = pd.DataFrame(data)
# Display the dataframe
print("Sample DataFrame:")
print(df)
# Basic statistics
print("\\nSummary Statistics:")
print(df.describe())
# Filtering
print("\\nEmployees older than 30:")
print(df[df['Age'] > 30])
""",
"Seaborn Visualization": """import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# Set the style
sns.set_style("whitegrid")
# Create sample data
np.random.seed(42)
data = np.random.randn(100, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
# Create a paired plot
sns.pairplot(df, hue='category', palette='viridis')
# Create another plot
plt.figure(figsize=(10, 6))
sns.violinplot(x='category', y='A', data=df, palette='magma')
plt.title('Distribution of A by Category')
"""
}
# Select example script
selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
# Python code editor
if selected_example != "Select an example..." and selected_example in example_scripts:
python_code = example_scripts[selected_example]
else:
python_code = st.session_state.python_script
if ACE_EDITOR_AVAILABLE:
python_code = st_ace(
value=python_code,
language="python",
theme="monokai",
min_lines=15,
key=f"python_editor_{st.session_state.editor_key}"
)
else:
python_code = st.text_area(
"Python Code",
value=python_code,
height=400,
key=f"python_textarea_{st.session_state.editor_key}"
)
# Store script in session state (without clearing existing code)
st.session_state.python_script = python_code
# Check for input() calls
input_calls = detect_input_calls(python_code)
user_inputs = []
if input_calls:
st.markdown("### Input Values")
st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
for i, input_call in enumerate(input_calls):
user_input = st.text_input(
f"{input_call['prompt']} (Line {input_call['line']})",
key=f"input_{i}"
)
user_inputs.append(user_input)
# Options and execution
col1, col2 = st.columns([2, 1])
with col1:
timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
with col2:
run_btn = st.button("▶️ Run Script", use_container_width=True)
if run_btn:
with st.spinner("Executing Python script..."):
# Use the enhanced function
result = run_python_script_enhanced(
python_code,
inputs=user_inputs,
timeout=timeout_seconds,
enable_debug=enable_debugging,
enable_profile=enable_profiling,
additional_libs=py_libs,
project_files=st.session_state.py_project_files if "py_project_files" in st.session_state else None,
realtime_viz=real_time_viz
)
st.session_state.python_result = result
# Display results
if st.session_state.python_result:
display_python_script_results_enhanced(st.session_state.python_result)
# Provide option to save the script
if st.button("📄 Save This Script", key="save_script_btn"):
# Generate a unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
script_filename = f"script_{timestamp}.py"
# Offer download button for the script
st.download_button(
label="⬇️ Download Script",
data=python_code,
file_name=script_filename,
mime="text/plain"
)
# Show advanced examples and tips
with st.expander("Python Script Runner Tips"):
st.markdown("""
### Python Script Runner Tips
**What can I run?**
- Any Python code that doesn't require direct UI interaction
- Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
- Data processing and visualization code
- Scripts that ask for user input (now supported!)
**What can't I run?**
- Streamlit, Gradio, Dash, or other web UIs
- Long-running operations (timeout will occur)
- Code that requires file access outside the temporary environment
**Working with visualizations:**
- All Matplotlib/Seaborn plots will be automatically captured
- Pandas DataFrames are detected and displayed as tables
- Use `print()` to show text output
**Handling user input:**
- The app detects input() calls and automatically creates text fields
- Input values you provide will be passed to the script when it runs
- Type conversion (like int(), float()) is preserved
**Adding to animations:**
- Charts and plots can be directly added to your Manim animations
- Generated images will be properly scaled for your animation
- Perfect for educational content combining data and animations
""")
# C/C++ RUNNER TAB
with tabs[6]: # Assuming this is the 7th tab (index 6)
st.markdown("### 🔧 C/C++ Runner")
st.markdown("Write, compile, and run C/C++ code with advanced features.")
# Create a tabbed interface for different C++ features
cpp_tabs = st.tabs(["Code Editor", "Project Files", "Libraries", "Build Settings", "Debugger"])
with cpp_tabs[0]: # Code Editor tab
# Compiler options
cpp_col1, cpp_col2, cpp_col3 = st.columns(3)
with cpp_col1:
compiler = st.selectbox(
"Compiler",
options=["g++", "clang++", "gcc", "msvc"],
index=["g++", "clang++", "gcc", "msvc"].index(st.session_state.cpp_settings["compiler"]),
key="cpp_compiler"
)
st.session_state.cpp_settings["compiler"] = compiler
with cpp_col2:
std_version = st.selectbox(
"Standard",
options=["c++11", "c++14", "c++17", "c++20"],
index=["c++11", "c++14", "c++17", "c++20"].index(st.session_state.cpp_settings["std"]),
key="cpp_std"
)
st.session_state.cpp_settings["std"] = std_version
with cpp_col3:
optimization = st.selectbox(
"Optimization",
options=["-O0", "-O1", "-O2", "-O3"],
index=["-O0", "-O1", "-O2", "-O3"].index(st.session_state.cpp_settings["optimization"]),
key="cpp_opt"
)
st.session_state.cpp_settings["optimization"] = optimization
# Example code templates
cpp_examples = {
"Select an example...": "",
"Hello World": """#include <iostream>
int main() {
std::cout << "Hello, World!" << std::endl;
return 0;
}""",
"Calculate Prime Numbers": """#include <iostream>
#include <vector>
#include <chrono>
bool isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
int main() {
int limit = 10000;
std::vector<int> primes;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 2; i <= limit; i++) {
if (isPrime(i)) {
primes.push_back(i);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "Found " << primes.size() << " prime numbers up to " << limit << std::endl;
std::cout << "First 10 primes: ";
for (int i = 0; i < std::min(10, (int)primes.size()); i++) {
std::cout << primes[i] << " ";
}
std::cout << std::endl;
std::cout << "Computation time: " << duration.count() << " ms" << std::endl;
return 0;
}""",
"Image Generation (PPM)": """#include <iostream>
#include <fstream>
#include <cmath>
// Generate a simple gradient image in PPM format
int main() {
const int width = 800;
const int height = 600;
// Create a PPM file (P3 format - ASCII)
std::ofstream image("output.ppm");
image << "P3\\n" << width << " " << height << "\\n255\\n";
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// Create a gradient based on position
int r = static_cast<int>(255.0 * x / width);
int g = static_cast<int>(255.0 * y / height);
int b = static_cast<int>(255.0 * (x + y) / (width + height));
// Write RGB values
image << r << " " << g << " " << b << "\\n";
}
}
image.close();
std::cout << "Generated gradient image: output.ppm" << std::endl;
return 0;
}""",
"Data Processing with Vectors": """#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <random>
#include <iomanip>
int main() {
const int data_size = 1000;
// Generate random data
std::vector<double> data(data_size);
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<double> dist(100.0, 15.0);
std::cout << "Generating " << data_size << " random values..." << std::endl;
for (auto& value : data) {
value = dist(gen);
}
// Calculate statistics
double sum = std::accumulate(data.begin(), data.end(), 0.0);
double mean = sum / data.size();
std::vector<double> deviations(data_size);
std::transform(data.begin(), data.end(), deviations.begin(),
[mean](double x) { return x - mean; });
double sq_sum = std::inner_product(deviations.begin(), deviations.end(),
deviations.begin(), 0.0);
double stddev = std::sqrt(sq_sum / data.size());
// Sort data
std::sort(data.begin(), data.end());
double median = data.size() % 2 == 0 ?
(data[data.size()/2 - 1] + data[data.size()/2]) / 2 :
data[data.size()/2];
// Output results
std::cout << std::fixed << std::setprecision(2);
std::cout << "Data analysis results:" << std::endl;
std::cout << "Mean: " << mean << std::endl;
std::cout << "Median: " << median << std::endl;
std::cout << "StdDev: " << stddev << std::endl;
std::cout << "Min: " << data.front() << std::endl;
std::cout << "Max: " << data.back() << std::endl;
return 0;
}""",
"Interactive User Input": """#include <iostream>
#include <string>
#include <vector>
int main() {
std::string name;
int age;
// Get user input
std::cout << "Enter your name: ";
std::getline(std::cin, name);
std::cout << "Enter your age: ";
std::cin >> age;
std::cin.ignore(); // Clear the newline from the buffer
std::cout << "Hello, " << name << "! ";
std::cout << "In 10 years, you will be " << age + 10 << " years old." << std::endl;
// Get multiple numbers
int num_count;
std::cout << "How many numbers would you like to enter? ";
std::cin >> num_count;
std::vector<double> numbers;
double total = 0.0;
for (int i = 0; i < num_count; i++) {
double num;
std::cout << "Enter number " << (i+1) << ": ";
std::cin >> num;
numbers.push_back(num);
total += num;
}
if (!numbers.empty()) {
double average = total / numbers.size();
std::cout << "The average of your numbers is: " << average << std::endl;
}
return 0;
}""",
"Eigen Matrix Operations": """#include <iostream>
#include <Eigen/Dense>
using Eigen::MatrixXd;
using Eigen::VectorXd;
int main() {
// Create a 3x3 matrix
MatrixXd A(3, 3);
A << 1, 2, 3,
4, 5, 6,
7, 8, 9;
// Create a 3D vector
VectorXd b(3);
b << 1, 2, 3;
// Perform operations
std::cout << "Matrix A:\\n" << A << std::endl;
std::cout << "Vector b:\\n" << b << std::endl;
std::cout << "A * b:\\n" << A * b << std::endl;
std::cout << "A transpose:\\n" << A.transpose() << std::endl;
// Solve a linear system Ax = b
VectorXd x = A.colPivHouseholderQr().solve(b);
std::cout << "Solution to Ax = b:\\n" << x << std::endl;
// Compute eigenvalues and eigenvectors
Eigen::EigenSolver<MatrixXd> solver(A);
std::cout << "Eigenvalues:\\n" << solver.eigenvalues() << std::endl;
std::cout << "Eigenvectors:\\n" << solver.eigenvectors() << std::endl;
return 0;
}""",
"OpenCV Image Processing": """#include <iostream>
#include <opencv2/opencv.hpp>
int main() {
// Load an image (this will create a blank image if no file is found)
cv::Mat image = cv::Mat::zeros(500, 500, CV_8UC3);
// Draw a circle
cv::circle(image, cv::Point(250, 250), 100, cv::Scalar(0, 0, 255), 5);
// Draw a rectangle
cv::rectangle(image, cv::Point(150, 150), cv::Point(350, 350), cv::Scalar(0, 255, 0), 3);
// Add text
cv::putText(image, "OpenCV Example", cv::Point(100, 50), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2);
// Save the image
cv::imwrite("opencv_output.png", image);
std::cout << "Image created and saved as 'opencv_output.png'" << std::endl;
return 0;
}"""
}
# Example selection
selected_cpp_example = st.selectbox("Example code:", options=list(cpp_examples.keys()))
# Set initial code from example or session state
if selected_cpp_example != "Select an example..." and cpp_examples[selected_cpp_example] != "":
initial_code = cpp_examples[selected_cpp_example]
else:
if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
initial_code = st.session_state.cpp_project_files[st.session_state.cpp_current_file]
else:
initial_code = st.session_state.cpp_code
# Code editor for C++
if ACE_EDITOR_AVAILABLE:
cpp_code = st_ace(
value=initial_code,
language="c_cpp",
theme="monokai",
min_lines=15,
key=f"cpp_editor_{st.session_state.editor_key}"
)
else:
cpp_code = st.text_area(
"C/C++ Code",
value=initial_code,
height=400,
key=f"cpp_textarea_{st.session_state.editor_key}"
)
# Save the code to session state
st.session_state.cpp_code = cpp_code
# Update project files
if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
st.session_state.cpp_project_files[st.session_state.cpp_current_file] = cpp_code
# Check for standard input in the code
has_cin = "std::cin" in cpp_code or "cin" in cpp_code
# Input values section if needed
cpp_inputs = []
if has_cin:
with st.expander("Input Values"):
st.info("This program uses standard input. Please provide input values below:")
num_inputs = st.number_input("Number of input lines:", min_value=1, max_value=10, value=1)
for i in range(int(num_inputs)):
cpp_input = st.text_input(f"Input line {i+1}:", key=f"cpp_input_{i}")
cpp_inputs.append(cpp_input)
with cpp_tabs[1]: # Project Files tab
st.markdown("### Project Files")
st.markdown("Manage multiple source files for your C/C++ project")
# File selector
cpp_current_file = st.selectbox(
"Current File",
options=list(st.session_state.cpp_project_files.keys()),
index=list(st.session_state.cpp_project_files.keys()).index(st.session_state.cpp_current_file) if "cpp_current_file" in st.session_state else 0,
key="cpp_file_selector"
)
# Update the current file in session state
st.session_state.cpp_current_file = cpp_current_file
# Create new file form
new_file_col1, new_file_col2 = st.columns([3, 1])
with new_file_col1:
new_cpp_filename = st.text_input("New File Name", placeholder="e.g., utils.h, helper.cpp", key="new_cpp_file")
with new_file_col2:
if st.button("Add File", key="add_cpp_file"):
if new_cpp_filename and new_cpp_filename not in st.session_state.cpp_project_files:
# Add file extension if missing
if not new_cpp_filename.endswith((".cpp", ".h", ".hpp", ".c", ".cc")):
new_cpp_filename += ".cpp"
# Create a template based on file type
if new_cpp_filename.endswith((".h", ".hpp")):
template = f"""#ifndef {new_cpp_filename.split('.')[0].upper()}_H
#define {new_cpp_filename.split('.')[0].upper()}_H
// Your header content here
#endif // {new_cpp_filename.split('.')[0].upper()}_H
"""
else:
template = f"""#include <iostream>
// Your implementation here
"""
st.session_state.cpp_project_files[new_cpp_filename] = template
st.session_state.cpp_current_file = new_cpp_filename
st.experimental_rerun()
# File actions
file_action_col1, file_action_col2 = st.columns(2)
with file_action_col1:
if st.button("Delete Current File", key="delete_cpp_file"):
if cpp_current_file != "main.cpp" and cpp_current_file in st.session_state.cpp_project_files:
del st.session_state.cpp_project_files[cpp_current_file]
st.session_state.cpp_current_file = "main.cpp"
st.experimental_rerun()
else:
st.error("Cannot delete main.cpp")
with file_action_col2:
if st.button("Download Project Files", key="download_cpp_project"):
# Create a zip file with all project files
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp:
with zipfile.ZipFile(tmp.name, 'w') as zipf:
for filename, content in st.session_state.cpp_project_files.items():
# Add file to zip
zipf.writestr(filename, content)
# Download the zip file
with open(tmp.name, "rb") as f:
zip_data = f.read()
st.download_button(
label="Download ZIP",
data=zip_data,
file_name="cpp_project.zip",
mime="application/zip"
)
# Project structure visualization
st.markdown("### Project Structure")
# Group files by type
headers = []
sources = []
others = []
for filename in st.session_state.cpp_project_files:
if filename.endswith((".h", ".hpp")):
headers.append(filename)
elif filename.endswith((".cpp", ".c", ".cc")):
sources.append(filename)
else:
others.append(filename)
# Display structure
st.markdown("#### Header Files")
if headers:
for header in sorted(headers):
st.markdown(f"- `{header}`")
else:
st.markdown("No header files")
st.markdown("#### Source Files")
if sources:
for source in sorted(sources):
st.markdown(f"- `{source}`")
else:
st.markdown("No source files")
if others:
st.markdown("#### Other Files")
for other in sorted(others):
st.markdown(f"- `{other}`")
with cpp_tabs[2]: # Libraries tab
st.markdown("### Library Manager")
st.markdown("Configure libraries and dependencies for your C/C++ project")
# Common library selection
common_libs = st.multiselect(
"Common Libraries",
options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL", "stb_image", "nlohmann_json", "fmt"],
default=st.session_state.cpp_settings.get("libraries", []),
key="cpp_common_libs"
)
# Update libraries in settings
st.session_state.cpp_settings["libraries"] = common_libs
# Include paths
st.markdown("#### Include Paths")
include_paths = st.text_area(
"Include Directories (one per line)",
value="\n".join(st.session_state.cpp_settings.get("include_paths", [])),
height=100,
key="cpp_include_paths"
)
# Update include paths in settings
st.session_state.cpp_settings["include_paths"] = [path for path in include_paths.split("\n") if path.strip()]
# Library paths
st.markdown("#### Library Paths")
library_paths = st.text_area(
"Library Directories (one per line)",
value="\n".join(st.session_state.cpp_settings.get("library_paths", [])),
height=100,
key="cpp_library_paths"
)
# Update library paths in settings
st.session_state.cpp_settings["library_paths"] = [path for path in library_paths.split("\n") if path.strip()]
# Additional libraries
st.markdown("#### Additional Libraries")
additional_libs = st.text_area(
"Additional Libraries (one per line, without -l prefix)",
value="\n".join(st.session_state.cpp_settings.get("additional_libs", [])),
height=100,
key="cpp_additional_libs"
)
# Update additional libraries in settings
st.session_state.cpp_settings["additional_libs"] = [lib for lib in additional_libs.split("\n") if lib.strip()]
# Library detection
if st.button("Detect Installed Libraries", key="detect_libs"):
with st.spinner("Detecting libraries..."):
# This is a placeholder - in a real implementation, you'd scan the system
detected_libs = []
# Check for Eigen
try:
result = subprocess.run(
["find", "/usr/include", "-name", "Eigen"],
capture_output=True,
text=True,
timeout=5
)
if "Eigen" in result.stdout:
detected_libs.append("Eigen")
except:
pass
# Check for Boost
try:
result = subprocess.run(
["find", "/usr/include", "-name", "boost"],
capture_output=True,
text=True,
timeout=5
)
if "boost" in result.stdout:
detected_libs.append("Boost")
except:
pass
# Check for OpenCV
try:
result = subprocess.run(
["pkg-config", "--exists", "opencv4"],
capture_output=True,
timeout=5
)
if result.returncode == 0:
detected_libs.append("OpenCV")
except:
pass
# Display detected libraries
if detected_libs:
st.success(f"Detected libraries: {', '.join(detected_libs)}")
# Add to selected libraries if not already present
for lib in detected_libs:
if lib not in st.session_state.cpp_settings["libraries"]:
st.session_state.cpp_settings["libraries"].append(lib)
else:
st.warning("No common libraries detected")
with cpp_tabs[3]: # Build Settings tab
st.markdown("### Build Configuration")
# Build type
build_type = st.radio(
"Build Type",
options=["Debug", "Release", "RelWithDebInfo"],
index=1, # Default to Release
key="cpp_build_type"
)
# Update build type in settings
st.session_state.cpp_settings["build_type"] = build_type
# Advanced compiler flags
st.markdown("#### Advanced Compiler Flags")
advanced_flags = st.text_area(
"Additional Compiler Flags",
value=st.session_state.cpp_settings.get("advanced_flags", ""),
height=100,
key="cpp_advanced_flags"
)
# Update advanced flags in settings
st.session_state.cpp_settings["advanced_flags"] = advanced_flags
# Preprocessor definitions
st.markdown("#### Preprocessor Definitions")
definitions = st.text_area(
"Preprocessor Definitions (one per line)",
value="\n".join(st.session_state.cpp_settings.get("definitions", [])),
height=100,
placeholder="Example:\nDEBUG\nVERSION=1.0\nUSE_FEATURE_X",
key="cpp_definitions"
)
# Update definitions in settings
st.session_state.cpp_settings["definitions"] = [d for d in definitions.split("\n") if d.strip()]
# Generate CMakeLists.txt
if st.button("Generate CMakeLists.txt", key="gen_cmake"):
# Create CMakeLists.txt content
cmake_content = f"""cmake_minimum_required(VERSION 3.10)
project(ManimCppProject)
set(CMAKE_CXX_STANDARD {st.session_state.cpp_settings["std"].replace("c++", "")})
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
# Build type
set(CMAKE_BUILD_TYPE {build_type})
# Preprocessor definitions
"""
# Add definitions
for definition in st.session_state.cpp_settings.get("definitions", []):
if "=" in definition:
name, value = definition.split("=", 1)
cmake_content += f'add_definitions(-D{name}="{value}")\n'
else:
cmake_content += f"add_definitions(-D{definition})\n"
# Add include paths
if st.session_state.cpp_settings.get("include_paths", []):
cmake_content += "\n# Include directories\n"
for path in st.session_state.cpp_settings["include_paths"]:
cmake_content += f"include_directories({path})\n"
# Add library paths
if st.session_state.cpp_settings.get("library_paths", []):
cmake_content += "\n# Library directories\n"
for path in st.session_state.cpp_settings["library_paths"]:
cmake_content += f"link_directories({path})\n"
# Add common libraries
if "Eigen" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# Eigen\n"
cmake_content += "find_package(Eigen3 REQUIRED)\n"
cmake_content += "include_directories(${EIGEN3_INCLUDE_DIR})\n"
if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# OpenCV\n"
cmake_content += "find_package(OpenCV REQUIRED)\n"
cmake_content += "include_directories(${OpenCV_INCLUDE_DIRS})\n"
if "Boost" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# Boost\n"
cmake_content += "find_package(Boost REQUIRED)\n"
cmake_content += "include_directories(${Boost_INCLUDE_DIRS})\n"
# Add source files
cmake_content += "\n# Source files\n"
source_files = [f for f in st.session_state.cpp_project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
cmake_content += "add_executable(main\n"
for src in source_files:
cmake_content += f" {src}\n"
cmake_content += ")\n"
# Add libraries to link
cmake_content += "\n# Link libraries\n"
cmake_content += "target_link_libraries(main\n"
if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += " ${OpenCV_LIBS}\n"
if "Boost" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += " ${Boost_LIBRARIES}\n"
# Additional libraries
for lib in st.session_state.cpp_settings.get("additional_libs", []):
cmake_content += f" {lib}\n"
cmake_content += ")\n"
# Save CMakeLists.txt to project files
st.session_state.cpp_project_files["CMakeLists.txt"] = cmake_content
# Show the generated file
st.success("CMakeLists.txt generated!")
st.code(cmake_content, language="cmake")
with cpp_tabs[4]: # Debugger tab
st.markdown("### C++ Debugger")
st.markdown("Debug your C++ code with breakpoints and variable inspection")
# Enable debugging
enable_cpp_debug = st.checkbox("Enable Debugging", value=False, key="cpp_debug_enable")
if enable_cpp_debug:
# Breakpoints
st.markdown("#### Breakpoints")
st.markdown("Enter line numbers for breakpoints (one per line)")
breakpoints = st.text_area(
"Breakpoints",
placeholder="Example:\n10\n15\n20",
height=100,
key="cpp_breakpoints"
)
breakpoint_lines = []
for line in breakpoints.split("\n"):
try:
line_num = int(line.strip())
if line_num > 0:
breakpoint_lines.append(line_num)
except:
pass
# Watch variables
st.markdown("#### Watch Variables")
st.markdown("Enter variable names to watch (one per line)")
watch_vars = st.text_area(
"Watch Variables",
placeholder="Example:\ni\nsum\nresult",
height=100,
key="cpp_watch_vars"
)
watch_variables = [var.strip() for var in watch_vars.split("\n") if var.strip()]
# Compilation and execution options
st.markdown("### Run Configuration")
run_options_col1, run_options_col2 = st.columns(2)
with run_options_col1:
cpp_timeout = st.slider("Execution Timeout (seconds)", 1, 60, 10)
with run_options_col2:
compile_btn = st.button("🛠️ Compile and Run", use_container_width=True)
# Compile and run the C++ code
if compile_btn:
with st.spinner("Compiling C++ code..."):
cpp_code_to_compile = st.session_state.cpp_code
if "cpp_project_files" in st.session_state and st.session_state.cpp_project_files:
# Use project files
executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
cpp_code_to_compile,
st.session_state.cpp_settings,
project_files=st.session_state.cpp_project_files,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
else:
# Use single file
executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
cpp_code_to_compile,
st.session_state.cpp_settings,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
if compile_error:
st.error("Compilation Error:")
st.code(compile_error, language="bash")
else:
st.success("Compilation successful!")
with st.spinner("Running program..."):
result = run_cpp_executable_enhanced(
executable_path,
temp_dir,
inputs=cpp_inputs if "cpp_inputs" in locals() else None,
timeout=cpp_timeout,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
st.session_state.cpp_result = result
# Display results
if "cpp_result" in st.session_state and st.session_state.cpp_result:
result = st.session_state.cpp_result
st.markdown("### Results")
# Execution information
info_cols = st.columns(3)
with info_cols[0]:
st.info(f"Execution Time: {result['execution_time']:.3f} seconds")
with info_cols[1]:
if result.get("memory_usage"):
st.info(f"Memory Usage: {result['memory_usage']:.2f} MB")
with info_cols[2]:
if result["exception"]:
st.error(f"Exception: {result['exception']}")
# Show debug output if available
if result.get("debug_output"):
with st.expander("Debug Output", expanded=True):
st.code(result["debug_output"], language="bash")
# Result tabs
result_tabs = st.tabs(["Output", "Images", "Manim Integration"])
with result_tabs[0]: # Output tab
# Show stdout if any
if result["stdout"]:
st.markdown("#### Standard Output")
st.code(result["stdout"], language="bash")
# Show stderr if any
if result["stderr"]:
st.markdown("#### Standard Error")
st.code(result["stderr"], language="bash")
with result_tabs[1]: # Images tab
# Show images if any
if result["images"]:
st.markdown("#### Generated Images")
img_cols = st.columns(min(3, len(result["images"])))
for i, img in enumerate(result["images"]):
with img_cols[i % len(img_cols)]:
st.image(img["data"], caption=img["name"])
else:
st.info("No images were generated by the program.")
with result_tabs[2]: # Manim Integration tab
st.markdown("#### Integrate C++ Results with Manim")
# Create options for integration
integration_type = st.radio(
"Integration Type",
options=["Data Visualization", "Image Import", "Animation Sequence"],
key="cpp_integration_type"
)
if integration_type == "Data Visualization":
# Extract numerical data from stdout if possible
lines = result["stdout"].strip().split("\n")
data_options = []
for i, line in enumerate(lines):
# Check if line contains numbers
numbers = []
try:
# Try to extract numbers from the line
numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
if numbers:
data_options.append(f"Line {i+1}: {line[:30]}{'...' if len(line) > 30 else ''}")
except:
pass
if data_options:
selected_data_line = st.selectbox(
"Select Data to Visualize",
options=["Select a line..."] + data_options,
key="cpp_data_line"
)
if selected_data_line != "Select a line...":
line_idx = int(selected_data_line.split(":")[0].replace("Line ", "")) - 1
line = lines[line_idx]
# Extract numbers
try:
numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
# Preview the data
st.markdown(f"**Extracted Data:** {numbers}")
# Create visualization code
if st.button("Create Manim Visualization", key="cpp_create_viz"):
viz_code = f"""
# Visualize data from C++ output
values = {numbers}
axes = Axes(
x_range=[0, {len(numbers)}, 1],
y_range=[{min(numbers) if numbers else 0}, {max(numbers) if numbers else 10}, {(max(numbers)-min(numbers))/10 if numbers and max(numbers) > min(numbers) else 1}],
axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(values)]
dots = VGroup(*[Dot(point, color=RED) for point in points])
graph = VMobject(color=YELLOW)
graph.set_points_as_corners(points)
self.play(Create(axes))
self.play(Create(dots), run_time=2)
self.play(Create(graph), run_time=2)
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + viz_code
else:
st.session_state.code = f"""from manim import *
class CppDataVisualizationScene(Scene):
def construct(self):
{viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ data visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error extracting numbers: {str(e)}")
else:
st.warning("No numeric data detected in the output.")
elif integration_type == "Image Import":
# Handle image import
if result["images"]:
st.markdown("#### Select Images to Import")
for i, img in enumerate(result["images"]):
st.markdown(f"**{img['name']}**")
st.image(img["data"], width=300)
if st.button(f"Use in Manim", key=f"use_cpp_img_{i}"):
# Save image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{img['name']}") as tmp:
tmp.write(img["data"])
img_path = tmp.name
# Generate Manim code
image_code = f"""
# Load and display image generated from C++
cpp_image = ImageMobject(r"{img_path}")
cpp_image.scale(2) # Adjust size as needed
self.play(FadeIn(cpp_image))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + image_code
else:
st.session_state.code = f"""from manim import *
class CppImageScene(Scene):
def construct(self):
{image_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added C++ generated image to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
else:
st.warning("No images were generated by the C++ program.")
elif integration_type == "Animation Sequence":
st.markdown("#### Create Animation Sequence")
st.info("This will create a Manim animation that visualizes the execution of your C++ program.")
# Animation type options
animation_style = st.selectbox(
"Animation Style",
options=["Algorithm Visualization", "Data Flow", "Memory Model"],
key="cpp_anim_style"
)
if st.button("Generate Animation Sequence", key="cpp_gen_anim_seq"):
# Create different animations based on selected style
if animation_style == "Algorithm Visualization":
# Example code for algorithm visualization
algo_code = f"""
# C++ Algorithm Visualization
title = Text("C++ Algorithm Visualization")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create an array representation
values = [5, 2, 8, 1, 9, 3, 7, 4, 6] # Example values
squares = VGroup(*[Square(side_length=0.7, fill_opacity=0.8, fill_color=BLUE) for _ in values])
squares.arrange(RIGHT, buff=0.1)
labels = VGroup(*[Text(str(v), font_size=24) for v in values])
for label, square in zip(labels, squares):
label.move_to(square.get_center())
array = VGroup(squares, labels)
array_label = Text("Array", font_size=20).next_to(array, UP)
self.play(FadeIn(array), Write(array_label))
self.wait(1)
# Simulate sorting algorithm
for i in range(len(values)-1):
# Highlight current element
self.play(squares[i].animate.set_fill(RED))
for j in range(i+1, len(values)):
# Highlight comparison element
self.play(squares[j].animate.set_fill(YELLOW))
# Simulate comparison
if values[i] > values[j]:
# Swap animation
self.play(
labels[i].animate.move_to(squares[j].get_center()),
labels[j].animate.move_to(squares[i].get_center())
)
# Update values and labels
labels[i], labels[j] = labels[j], labels[i]
values[i], values[j] = values[j], values[i]
# Reset comparison element
self.play(squares[j].animate.set_fill(BLUE))
# Mark current element as processed
self.play(squares[i].animate.set_fill(GREEN))
# Mark the last element as processed
self.play(squares[-1].animate.set_fill(GREEN))
# Show sorted array
sorted_label = Text("Sorted Array", font_size=20).next_to(array, DOWN)
self.play(Write(sorted_label))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + algo_code
else:
st.session_state.code = f"""from manim import *
class CppAlgorithmScene(Scene):
def construct(self):
{algo_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ algorithm visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
elif animation_style == "Data Flow":
# Example code for data flow visualization
data_flow_code = f"""
# C++ Data Flow Visualization
title = Text("C++ Data Flow")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create nodes for data flow
input_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=BLUE)
process_node = Square(side_length=1, fill_opacity=0.8, fill_color=GREEN)
output_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=RED)
# Position nodes
input_node.move_to(LEFT*4)
process_node.move_to(ORIGIN)
output_node.move_to(RIGHT*4)
# Add labels
input_label = Text("Input", font_size=20).next_to(input_node, DOWN)
process_label = Text("Process", font_size=20).next_to(process_node, DOWN)
output_label = Text("Output", font_size=20).next_to(output_node, DOWN)
# Create arrows
arrow1 = Arrow(input_node.get_right(), process_node.get_left(), buff=0.2)
arrow2 = Arrow(process_node.get_right(), output_node.get_left(), buff=0.2)
# Display nodes and arrows
self.play(FadeIn(input_node), Write(input_label))
self.wait(0.5)
self.play(FadeIn(process_node), Write(process_label))
self.wait(0.5)
self.play(FadeIn(output_node), Write(output_label))
self.wait(0.5)
self.play(Create(arrow1), Create(arrow2))
self.wait(1)
# Simulate data flow
data = Text("Data", font_size=16).move_to(input_node.get_center())
self.play(FadeIn(data))
self.wait(0.5)
# Move data along the flow
self.play(data.animate.move_to(arrow1.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(process_node.get_center()))
self.wait(0.5)
transformed_data = Text("Processed", font_size=16, color=YELLOW)
transformed_data.move_to(process_node.get_center())
self.play(Transform(data, transformed_data))
self.wait(0.5)
self.play(data.animate.move_to(arrow2.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(output_node.get_center()))
self.wait(1)
result_text = Text("Final Result", font_size=24).to_edge(DOWN)
self.play(Write(result_text))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + data_flow_code
else:
st.session_state.code = f"""from manim import *
class CppDataFlowScene(Scene):
def construct(self):
{data_flow_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ data flow visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
elif animation_style == "Memory Model":
# Example code for memory model visualization
memory_code = f"""
# C++ Memory Model Visualization
title = Text("C++ Memory Model")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create memory blocks
stack_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=BLUE)
stack_rect.move_to(LEFT*3.5)
stack_label = Text("Stack", font_size=20).next_to(stack_rect, UP)
heap_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=RED)
heap_rect.move_to(RIGHT*3.5)
heap_label = Text("Heap", font_size=20).next_to(heap_rect, UP)
# Display memory areas
self.play(
Create(stack_rect), Write(stack_label),
Create(heap_rect), Write(heap_label)
)
self.wait(1)
# Create variables on the stack
int_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_C)
int_var.move_to(stack_rect.get_center() + UP*1)
int_label = Text("int x = 5", font_size=16).next_to(int_var, RIGHT)
pointer_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_D)
pointer_var.move_to(stack_rect.get_center())
pointer_label = Text("int* ptr", font_size=16).next_to(pointer_var, RIGHT)
# Display stack variables
self.play(FadeIn(int_var), Write(int_label))
self.wait(0.5)
self.play(FadeIn(pointer_var), Write(pointer_label))
self.wait(1)
# Create heap allocation
heap_alloc = Rectangle(height=0.8, width=2, fill_opacity=0.8, fill_color=RED_C)
heap_alloc.move_to(heap_rect.get_center() + UP*0.5)
heap_label = Text("new int[4]", font_size=16).next_to(heap_alloc, LEFT)
# Display heap allocation
self.play(FadeIn(heap_alloc), Write(heap_label))
self.wait(1)
# Create arrow from pointer to heap
arrow = Arrow(pointer_var.get_right(), heap_alloc.get_left(), buff=0.2, color=YELLOW)
self.play(Create(arrow))
self.wait(0.5)
# Simulate pointer assignment
assign_text = Text("ptr = new int[4]", font_size=24).to_edge(DOWN)
self.play(Write(assign_text))
self.wait(1)
# Simulate memory deallocation
delete_text = Text("delete[] ptr", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, delete_text))
self.play(FadeOut(arrow), FadeOut(heap_alloc), FadeOut(heap_label))
self.wait(1)
# Simulate end of scope
end_scope = Text("End of scope", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, end_scope))
self.play(FadeOut(int_var), FadeOut(int_label), FadeOut(pointer_var), FadeOut(pointer_label))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + memory_code
else:
st.session_state.code = f"""from manim import *
class CppMemoryModelScene(Scene):
def construct(self):
{memory_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ memory model visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
# C++ Information and tips
with st.expander("C/C++ Runner Information"):
st.markdown("""
### C/C++ Runner Tips
**Compilation Options:**
- Choose the appropriate compiler based on your platform
- Select the C++ standard version for your code
- Optimization levels affect performance and debugging
**Library Support:**
- Common libraries like Eigen, OpenCV, and Boost are supported
- Add custom include paths and library paths as needed
- Use the library detection feature to find installed libraries
**Input/Output:**
- Standard input/output (cin/cout) is fully supported
- File I/O works within the execution directory
- For interactive programs, provide input values in advance
**Debugging:**
- Set breakpoints at specific line numbers
- Watch variables to track their values
- Debug with GDB for detailed analysis
**Project Management:**
- Create multi-file projects with headers and source files
- Generate CMakeLists.txt for complex projects
- Download project files as a ZIP archive
**Images and Visualization:**
- Generate images in PPM, PNG, JPG formats
- Use OpenCV for more advanced image processing
- All generated images can be used in Manim animations
**Manim Integration:**
- Create algorithm visualizations from C++ code
- Import C++ generated images into Manim scenes
- Visualize data structures and memory models
**Performance:**
- Use release mode for best performance
- Profile your code to identify bottlenecks
- C++ is ideal for computationally intensive tasks
""")
# Help section
with st.sidebar.expander("ℹ️ Help & Info"):
st.markdown("""
### About Manim Animation Studio
This app allows you to create mathematical animations using Manim,
an animation engine for explanatory math videos.
### Example Code
```python
from manim import *
class SimpleExample(Scene):
def construct(self):
circle = Circle(color=BLUE)
self.play(Create(circle))
square = Square(color=RED).next_to(circle, RIGHT)
self.play(Create(square))
text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
self.play(Write(text))
self.wait(2)
```
""")
# Handle tab switching with session state to prevent refresh loop
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch = None
# Set tabs active state
for i, tab in enumerate(tabs):
if i == st.session_state.active_tab:
tab.active = True
# Mark first load as complete to prevent unnecessary refreshes
if not st.session_state.first_load_complete:
st.session_state.first_load_complete = True
if __name__ == "__main__":
main() |