File size: 207,040 Bytes
2bdb7ce
aef7e3e
 
 
 
 
 
2bdb7ce
aef7e3e
 
 
 
e9acc95
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdb7ce
aef7e3e
b9621c6
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
02a25f1
aef7e3e
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6181a36
aef7e3e
 
 
 
 
 
 
 
6181a36
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef6cca
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
e9acc95
aef7e3e
 
 
 
 
 
 
 
 
 
 
cce8261
e9acc95
 
 
aef7e3e
 
 
 
 
 
e9acc95
 
 
 
aef7e3e
cce8261
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
aef7e3e
e9acc95
 
 
aef7e3e
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
e9acc95
 
 
 
 
 
 
 
aef7e3e
 
e9acc95
 
 
 
 
 
 
 
aef7e3e
e9acc95
 
 
aef7e3e
 
 
 
 
 
 
e9acc95
aef7e3e
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
e9acc95
 
aef7e3e
 
 
 
 
 
cce8261
aef7e3e
 
 
cce8261
aef7e3e
 
 
cce8261
e9acc95
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
e9acc95
aef7e3e
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
4892ac0
aef7e3e
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
cce8261
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
 
aef7e3e
 
 
 
cce8261
aef7e3e
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72d949d
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
e9acc95
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce8261
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9acc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef7e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer, CppLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO

# Set up enhanced logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Model configuration mapping for different API requirements and limits
MODEL_CONFIGS = {
    "DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
    "DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
    "gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    "gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    "gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    "gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    "o3": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    "o4-mini": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
    # Default configuration for other models
    "default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}

# Try to import Streamlit Ace
try:
    from streamlit_ace import st_ace
    ACE_EDITOR_AVAILABLE = True
except ImportError:
    ACE_EDITOR_AVAILABLE = False
    logger.warning("streamlit-ace not available, falling back to standard text editor")

def prepare_api_params(messages, model_name):
    """Create appropriate API parameters based on model configuration"""
    # Get model configuration
    config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
    
    # Base parameters common to all models
    api_params = {
        "messages": messages,
        "model": model_name
    }
    
    # Add the appropriate token parameter based on model's parameter name
    token_param = config["param_name"]
    token_value = config[token_param]  # Get the actual value from the config
    
    # Add the parameter to the API params
    api_params[token_param] = token_value
    
    return api_params, config

# New functions for accessing secrets and password verification
def get_secret(github_token_api):
    """Retrieve a secret from HuggingFace Spaces environment variables"""
    secret_value = os.environ.get(github_token_api)
    if not secret_value:
        logger.warning(f"Secret '{github_token_api}' not found")
        return None
    return secret_value

def check_password():
    """Returns True if the user entered the correct password"""
    # Get the password from secrets
    correct_password = get_secret("password")
    if not correct_password:
        st.error("Admin password not configured in HuggingFace Spaces secrets")
        return False
        
    # Password input
    if "password_entered" not in st.session_state:
        st.session_state.password_entered = False
        
    if not st.session_state.password_entered:
        password = st.text_input("Enter password to access AI features", type="password")
        if password:
            if password == correct_password:
                st.session_state.password_entered = True
                return True
            else:
                st.error("Incorrect password")
                return False
        return False
    return True

def ensure_packages():
    required_packages = {
        'manim': '0.17.3',
        'Pillow': '9.0.0',
        'numpy': '1.22.0',
        'transformers': '4.30.0',
        'torch': '2.0.0',
        'pygments': '2.15.1',
        'streamlit-ace': '0.1.1',
        'pydub': '0.25.1',  # For audio processing
        'plotly': '5.14.0',  # For timeline editor
        'pandas': '2.0.0',   # For data manipulation
        'python-pptx': '0.6.21',  # For PowerPoint export
        'markdown': '3.4.3',  # For markdown processing
        'fpdf': '1.7.2',     # For PDF generation
        'matplotlib': '3.5.0',  # For Python script runner
        'seaborn': '0.11.2',  # For enhanced visualizations
        'scipy': '1.7.3',    # For scientific computations
        'huggingface_hub': '0.16.0',  # For Hugging Face API
    }
    
    with st.spinner("Checking required packages..."):
        # First, quickly check if packages are already installed
        missing_packages = {}
        for package, version in required_packages.items():
            try:
                # Try to import the package to check if it's available
                if package == 'manim':
                    import manim
                elif package == 'Pillow':
                    import PIL
                elif package == 'numpy':
                    import numpy
                elif package == 'transformers':
                    import transformers
                elif package == 'torch':
                    import torch
                elif package == 'pygments':
                    import pygments
                elif package == 'streamlit-ace':
                    # This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
                    pass
                elif package == 'pydub':
                    import pydub
                elif package == 'plotly':
                    import plotly
                elif package == 'pandas':
                    import pandas
                elif package == 'python-pptx':
                    import pptx
                elif package == 'markdown':
                    import markdown
                elif package == 'fpdf':
                    import fpdf
                elif package == 'matplotlib':
                    import matplotlib
                elif package == 'seaborn':
                    import seaborn
                elif package == 'scipy':
                    import scipy
                elif package == 'huggingface_hub':
                    import huggingface_hub
            except ImportError:
                missing_packages[package] = version
        
        # If no packages are missing, return success immediately
        if not missing_packages:
            logger.info("All required packages already installed.")
            return True
        
        # If there are missing packages, install them with progress reporting
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        for i, (package, version) in enumerate(missing_packages.items()):
            try:
                progress = (i / len(missing_packages))
                progress_bar.progress(progress)
                status_text.text(f"Installing {package}...")
                
                result = subprocess.run(
                    [sys.executable, "-m", "pip", "install", f"{package}>={version}"], 
                    capture_output=True, 
                    text=True
                )
                
                if result.returncode != 0:
                    st.error(f"Failed to install {package}: {result.stderr}")
                    logger.error(f"Package installation failed: {package}")
                    return False
                    
            except Exception as e:
                st.error(f"Error installing {package}: {str(e)}")
                logger.error(f"Package installation error: {str(e)}")
                return False
        
        progress_bar.progress(1.0)
        status_text.text("All packages installed successfully!")
        time.sleep(0.5)
        progress_bar.empty()
        status_text.empty()
        return True

def install_custom_packages(package_list):
    """Install custom packages specified by the user without page refresh"""
    if not package_list.strip():
        return True, "No packages specified"
    
    # Split and clean package list
    packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
    
    if not packages:
        return True, "No valid packages specified"
    
    status_placeholder = st.sidebar.empty()
    progress_bar = st.sidebar.progress(0)
    
    results = []
    success = True
    
    for i, package in enumerate(packages):
        try:
            progress = (i / len(packages))
            progress_bar.progress(progress)
            status_placeholder.text(f"Installing {package}...")
            
            result = subprocess.run(
                [sys.executable, "-m", "pip", "install", package], 
                capture_output=True, 
                text=True
            )
            
            if result.returncode != 0:
                error_msg = f"Failed to install {package}: {result.stderr}"
                results.append(error_msg)
                logger.error(error_msg)
                success = False
            else:
                results.append(f"Successfully installed {package}")
                logger.info(f"Successfully installed custom package: {package}")
                
        except Exception as e:
            error_msg = f"Error installing {package}: {str(e)}"
            results.append(error_msg)
            logger.error(error_msg)
            success = False
    
    progress_bar.progress(1.0)
    status_placeholder.text("Installation complete!")
    time.sleep(0.5)
    progress_bar.empty()
    status_placeholder.empty()
    
    return success, "\n".join(results)

@st.cache_resource(ttl=3600)
def init_ai_models_direct():
    """Direct implementation using the exact pattern from the example code"""
    try:
        # Get token from secrets
        token = get_secret("github_token_api")
        if not token:
            st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
            return None
        
        # Log what we're doing - for debugging
        logger.info(f"Initializing AI model with token: {token[:5]}...")
        
        # Use exact imports as in your example
        import os
        from azure.ai.inference import ChatCompletionsClient
        from azure.ai.inference.models import SystemMessage, UserMessage
        from azure.core.credentials import AzureKeyCredential
        
        # Use exact endpoint as in your example
        endpoint = "https://models.inference.ai.azure.com"
        
        # Use default model
        model_name = "gpt-4o"
        
        # Create client exactly as in your example
        client = ChatCompletionsClient(
            endpoint=endpoint,
            credential=AzureKeyCredential(token),
        )
        
        # Return the necessary information
        return {
            "client": client,
            "model_name": model_name,
            "endpoint": endpoint
        }
    except ImportError as ie:
        st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
        logger.error(f"Import error: {str(ie)}")
        return None
    except Exception as e:
        st.error(f"Error initializing AI model: {str(e)}")
        logger.error(f"Initialization error: {str(e)}")
        return None
        
def suggest_code_completion(code_snippet, models):
    """Generate code completion using the AI model"""
    if not models:
        st.error("AI models not properly initialized.")
        return None
    
    try:
        # Create the prompt
        prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
        
        with st.spinner("AI is generating your animation code..."):
            # Get the current model name and base URL
            model_name = models["model_name"]
            
            # Convert message to the appropriate format based on model category
            config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
            category = config.get("category", "Other")
            
            if category == "OpenAI":
                # Import OpenAI client
                from openai import OpenAI
                
                # Get token
                token = get_secret("github_token_api")
                
                # Create or get client
                if "openai_client" not in models:
                    client = OpenAI(
                        base_url="https://models.github.ai/inference",
                        api_key=token
                    )
                    models["openai_client"] = client
                else:
                    client = models["openai_client"]
                
                # For OpenAI models, we need role-based messages
                messages = [
                    {"role": "system", "content": "You are an expert in Manim animations."},
                    {"role": "user", "content": prompt}
                ]
                
                # Create params
                params = {
                    "messages": messages,
                    "model": model_name
                }
                
                # Add token parameter
                token_param = config["param_name"]
                params[token_param] = config[token_param]
                
                # Make API call
                response = client.chat.completions.create(**params)
                completed_code = response.choices[0].message.content
                
            else:
                # Use Azure client
                from azure.ai.inference.models import UserMessage
                
                # Convert message format for Azure
                messages = [UserMessage(prompt)]
                api_params, _ = prepare_api_params(messages, model_name)
                
                # Make API call with Azure client
                response = models["client"].complete(**api_params)
                completed_code = response.choices[0].message.content
            
            # Process the code
            if "```python" in completed_code:
                completed_code = completed_code.split("```python")[1].split("```")[0]
            elif "```" in completed_code:
                completed_code = completed_code.split("```")[1].split("```")[0]
            
            # Add Scene class if missing
            if "Scene" not in completed_code:
                completed_code = f"""from manim import *
class MyScene(Scene):
    def construct(self):
        {completed_code}"""
            
            return completed_code
            
    except Exception as e:
        st.error(f"Error generating code: {str(e)}")
        st.code(traceback.format_exc())
        return None

def check_model_freshness():
    """Check if models need to be reloaded based on TTL"""
    if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
        return False
    
    if 'last_loaded' not in st.session_state.ai_models:
        return False
    
    last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
    ttl_hours = 1  # 1 hour TTL
    
    return datetime.now() - last_loaded < timedelta(hours=ttl_hours)

def extract_scene_class_name(python_code):
    """Extract the scene class name from Python code."""
    import re
    scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
    
    if scene_classes:
        # Return the first scene class found
        return scene_classes[0]
    else:
        # If no scene class is found, use a default name
        return "MyScene"

def suggest_code_completion(code_snippet, models):
    if not models or "code_model" not in models:
        st.error("AI models not properly initialized")
        return None
        
    try:
        prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
```python
"""
        with st.spinner("AI is generating your animation code..."):
            response = models["code_model"](
                prompt, 
                max_length=1024,
                do_sample=True,
                temperature=0.2,
                top_p=0.95,
                top_k=50,
                num_return_sequences=1,
                truncation=True,
                pad_token_id=50256
            )
        
        if not response or not response[0].get('generated_text'):
            st.error("No valid completion generated")
            return None
            
        completed_code = response[0]['generated_text']
        if "```python" in completed_code:
            completed_code = completed_code.split("```python")[1].split("```")[0]
        
        if "Scene" not in completed_code:
            completed_code = f"""from manim import *
class MyScene(Scene):
    def construct(self):
        {completed_code}"""
        
        return completed_code
    except Exception as e:
        st.error(f"Error suggesting code: {str(e)}")
        logger.error(f"Code suggestion error: {str(e)}")
        return None

# Quality presets
QUALITY_PRESETS = {
    "480p": {"resolution": "480p", "fps": "30"},
    "720p": {"resolution": "720p", "fps": "30"},
    "1080p": {"resolution": "1080p", "fps": "60"},
    "4K": {"resolution": "2160p", "fps": "60"},
    "8K": {"resolution": "4320p", "fps": "60"}  # Added 8K option
}

# Animation speeds
ANIMATION_SPEEDS = {
    "Slow": 0.5,
    "Normal": 1.0,
    "Fast": 2.0,
    "Very Fast": 3.0
}

# Export formats
EXPORT_FORMATS = {
    "MP4 Video": "mp4",
    "GIF Animation": "gif",
    "WebM Video": "webm",
    "PNG Image Sequence": "png_sequence",
    "SVG Image": "svg"
}

# FPS options
FPS_OPTIONS = [15, 24, 30, 60, 120]

def highlight_code(code):
    formatter = HtmlFormatter(style='monokai')
    highlighted = highlight(code, PythonLexer(), formatter)
    return highlighted, formatter.get_style_defs()

def generate_manim_preview(python_code):
    """Generate a lightweight preview of the Manim animation"""
    try:
        # Extract scene components for preview
        scene_objects = []
        if "Circle" in python_code:
            scene_objects.append("circle")
        if "Square" in python_code:
            scene_objects.append("square")
        if "MathTex" in python_code or "Tex" in python_code:
            scene_objects.append("equation")
        if "Text" in python_code:
            scene_objects.append("text")
        if "Axes" in python_code:
            scene_objects.append("graph")
        if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
            scene_objects.append("3D scene")
        if "Sphere" in python_code:
            scene_objects.append("sphere")
        if "Cube" in python_code:
            scene_objects.append("cube")
            
        # Generate a more detailed visual preview based on extracted objects
        object_icons = {
            "circle": "⭕",
            "square": "🔲",
            "equation": "📊",
            "text": "📝",
            "graph": "📈",
            "3D scene": "🧊",
            "sphere": "🌐",
            "cube": "🧊"
        }
        
        icon_html = ""
        for obj in scene_objects:
            if obj in object_icons:
                icon_html += f'<span style="font-size:2rem; margin:0.3rem;">{object_icons[obj]}</span>'
        
        preview_html = f"""
        <div style="background-color:#000000; width:100%; height:220px; border-radius:10px; display:flex; flex-direction:column; align-items:center; justify-content:center; color:white; text-align:center;">
            <h3 style="margin-bottom:10px;">Animation Preview</h3>
            <div style="margin-bottom:15px;">
                {icon_html if icon_html else '<span style="font-size:2rem;">🎬</span>'}
            </div>
            <p>Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}</p>
            <div style="margin-top:10px; font-size:0.8rem; opacity:0.8;">Full rendering required for accurate preview</div>
        </div>
        """
        return preview_html
    except Exception as e:
        logger.error(f"Preview generation error: {str(e)}")
        return f"""
        <div style="background-color:#FF0000; width:100%; height:200px; border-radius:10px; display:flex; align-items:center; justify-content:center; color:white; text-align:center;">
            <div>
                <h3>Preview Error</h3>
                <p>{str(e)}</p>
            </div>
        </div>
        """

def prepare_audio_for_manim(audio_file, target_dir):
    """Process audio file and return path for use in Manim"""
    try:
        # Create audio directory if it doesn't exist
        audio_dir = os.path.join(target_dir, "audio")
        os.makedirs(audio_dir, exist_ok=True)
        
        # Generate a unique filename
        filename = f"audio_{int(time.time())}.mp3"
        output_path = os.path.join(audio_dir, filename)
        
        # Save audio file
        with open(output_path, "wb") as f:
            f.write(audio_file.getvalue())
        
        return output_path
    except Exception as e:
        logger.error(f"Audio processing error: {str(e)}")
        return None

def mp4_to_gif(mp4_path, output_path, fps=15):
    """Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
    try:
        # Use ffmpeg for conversion with optimized settings
        command = [
            "ffmpeg",
            "-i", mp4_path,
            "-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
            "-loop", "0",
            output_path
        ]
        
        # Run the conversion
        result = subprocess.run(command, capture_output=True, text=True)
        
        if result.returncode != 0:
            logger.error(f"FFmpeg conversion error: {result.stderr}")
            return None
            
        return output_path
        
    except Exception as e:
        logger.error(f"GIF conversion error: {str(e)}")
        return None

def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None, fps=None):
    temp_dir = None
    progress_placeholder = st.empty()
    status_placeholder = st.empty()
    log_placeholder = st.empty()
    video_data = None  # Initialize video data variable
    
    try:
        if not python_code or not format_type:
            raise ValueError("Missing required parameters")
            
        # Create temporary directory
        temp_dir = tempfile.mkdtemp(prefix="manim_render_")
        
        # Extract the scene class name from the code
        scene_class = extract_scene_class_name(python_code)
        logger.info(f"Detected scene class: {scene_class}")
        
        # If audio is provided, we need to modify the code to include it
        if audio_path:
            # Check if the code already has a with_sound decorator
            if "with_sound" not in python_code:
                # Add the necessary import
                if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
                    python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
                
                # Add sound to the scene
                scene_def_pattern = f"class {scene_class}\\(.*?\\):"
                scene_def_match = re.search(scene_def_pattern, python_code)
                
                if scene_def_match:
                    scene_def = scene_def_match.group(0)
                    scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
                    python_code = python_code.replace(scene_def, scene_def_with_sound)
                else:
                    logger.warning("Could not find scene definition to add audio")
        
        # Write the code to a file
        scene_file = os.path.join(temp_dir, "scene.py")
        with open(scene_file, "w", encoding="utf-8") as f:
            f.write(python_code)
        
        # Map quality preset to Manim quality flag
        quality_map = {
            "480p": "-ql",  # Low quality
            "720p": "-qm",  # Medium quality
            "1080p": "-qh",  # High quality
            "4K": "-qk",     # 4K quality
            "8K": "-qp"      # 8K quality (production quality)
        }
        quality_flag = quality_map.get(quality_preset, "-qm")
        
        # Handle special formats
        if format_type == "png_sequence":
            # For PNG sequence, we need additional flags
            format_arg = "--format=png"
            extra_args = ["--save_pngs"]
        elif format_type == "svg":
            # For SVG, we need a different format
            format_arg = "--format=svg"
            extra_args = []
        else:
            # Standard video formats
            format_arg = f"--format={format_type}"
            extra_args = []
        
        # Add custom FPS if specified
        if fps is not None:
            extra_args.append(f"--fps={fps}")
        
        # Show status and create progress bar
        status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
        progress_bar = progress_placeholder.progress(0)
        
        # Build command
        command = [
            "manim",
            scene_file,
            scene_class,
            quality_flag,
            format_arg
        ]
        command.extend(extra_args)
        
        logger.info(f"Running command: {' '.join(command)}")
        
        # Execute the command
        process = subprocess.Popen(
            command,
            stdout=subprocess.PIPE,
            stderr=subprocess.STDOUT,
            text=True
        )
        
        # Track output
        full_output = []
        output_file_path = None
        mp4_output_path = None  # Track MP4 output for GIF fallback
        
        # Animation tracking variables
        total_animations = None
        current_animation = 0
        total_frames = None
        current_frame = 0
        
        while True:
            line = process.stdout.readline()
            if not line and process.poll() is not None:
                break
            
            full_output.append(line)
            log_placeholder.code("".join(full_output[-10:]))
            
            # Try to detect total animations
            if "Rendering animation number" in line or "Processing animation" in line:
                try:
                    # Extract current animation number
                    anim_match = re.search(r"(?:Rendering animation number|Processing animation) (\d+) (?:out of|/) (\d+)", line)
                    if anim_match:
                        current_animation = int(anim_match.group(1))
                        total_animations = int(anim_match.group(2))
                        logger.info(f"Animation progress: {current_animation}/{total_animations}")
                        
                        # Calculate progress based on animations
                        animation_progress = current_animation / total_animations
                        progress_bar.progress(animation_progress)
                        status_placeholder.info(f"Rendering {scene_class}: Animation {current_animation}/{total_animations} ({int(animation_progress*100)}%)")
                except Exception as e:
                    logger.error(f"Error parsing animation progress: {str(e)}")
            
            # Try to extract total frames information as fallback
            elif "Render animations with total frames:" in line and not total_animations:
                try:
                    total_frames = int(line.split("Render animations with total frames:")[1].strip().split()[0])
                    logger.info(f"Total frames to render: {total_frames}")
                except Exception as e:
                    logger.error(f"Error parsing total frames: {str(e)}")
            
            # Update progress bar based on frame information if animation count not available
            elif "Rendering frame" in line and total_frames and not total_animations:
                try:
                    # Extract current frame number
                    frame_match = re.search(r"Rendering frame (\d+)", line)
                    if frame_match:
                        current_frame = int(frame_match.group(1))
                        # Calculate progress as current frame / total frames
                        frame_progress = min(0.99, current_frame / total_frames)
                        progress_bar.progress(frame_progress)
                        # Update status with frame information
                        status_placeholder.info(f"Rendering {scene_class}: Frame {current_frame}/{total_frames} ({int(frame_progress*100)}%)")
                except Exception as e:
                    logger.error(f"Error parsing frame progress: {str(e)}")
            elif "%" in line and not total_animations and not total_frames:
                try:
                    # Fallback to percentage if available
                    percent = float(line.split("%")[0].strip().split()[-1])
                    progress_bar.progress(min(0.99, percent / 100))
                except:
                    pass
                    
            # Try to capture the output file path from Manim's output
            if "File ready at" in line:
                try:
                    # Combine next few lines to get the full path
                    path_parts = []
                    path_parts.append(line.split("File ready at")[-1].strip())
                    
                    # Read up to 5 more lines to get the complete path
                    for _ in range(5):
                        additional_line = process.stdout.readline()
                        if additional_line:
                            full_output.append(additional_line)
                            path_parts.append(additional_line.strip())
                            if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
                                break
                    
                    # Join all parts and clean up
                    potential_path = ''.join(path_parts).replace("'", "").strip()
                    # Look for path pattern surrounded by quotes
                    path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
                    if path_match:
                        output_file_path = path_match.group(2)
                        logger.info(f"Found output path in logs: {output_file_path}")
                        
                        # Track MP4 file for potential GIF fallback
                        if output_file_path.endswith('.mp4'):
                            mp4_output_path = output_file_path
                except Exception as e:
                    logger.error(f"Error parsing output path: {str(e)}")
        
        # Wait for the process to complete
        process.wait()
        progress_bar.progress(1.0)
        
        # IMPORTANT: Wait a moment for file system to catch up
        time.sleep(3)
        
        # Rest of the function remains the same
        
        # Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
        if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
            status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
            
            # Generate a GIF using FFmpeg
            gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
            gif_path = mp4_to_gif(mp4_output_path, gif_output_path, fps=fps if fps else 15)
            
            if gif_path and os.path.exists(gif_path):
                output_file_path = gif_path
                logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
        
        # For PNG sequence, we need to collect the PNGs
        if format_type == "png_sequence":
            # Find the PNG directory
            png_dirs = []
            search_dirs = [
                os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
                os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
                "/tmp/media/images", 
            ]
            
            for search_dir in search_dirs:
                if os.path.exists(search_dir):
                    for root, dirs, _ in os.walk(search_dir):
                        for d in dirs:
                            if os.path.exists(os.path.join(root, d)):
                                png_dirs.append(os.path.join(root, d))
            
            if png_dirs:
                # Get the newest directory
                newest_dir = max(png_dirs, key=os.path.getctime)
                
                # Create a zip file with all PNGs
                png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
                if png_files:
                    zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
                    
                    with zipfile.ZipFile(zip_path, 'w') as zipf:
                        for png in png_files:
                            png_path = os.path.join(newest_dir, png)
                            zipf.write(png_path, os.path.basename(png_path))
                    
                    with open(zip_path, 'rb') as f:
                        video_data = f.read()
                    
                    logger.info(f"Created PNG sequence zip: {zip_path}")
                else:
                    logger.error("No PNG files found in directory")
            else:
                logger.error("No PNG directories found")
        elif output_file_path and os.path.exists(output_file_path):
            # For other formats, read the output file directly
            with open(output_file_path, 'rb') as f:
                video_data = f.read()
            logger.info(f"Read output file from path: {output_file_path}")
        else:
            # If we didn't find the output path, search for files
            search_paths = [
                os.path.join(os.getcwd(), "media", "videos"),
                os.path.join(os.getcwd(), "media", "videos", "scene"),
                os.path.join(os.getcwd(), "media", "videos", scene_class),
                "/tmp/media/videos",
                temp_dir,
                os.path.join(temp_dir, "media", "videos"),
            ]
            
            # Add quality-specific paths
            for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
                search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
                search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
            
            # For SVG format
            if format_type == "svg":
                search_paths.extend([
                    os.path.join(os.getcwd(), "media", "designs"),
                    os.path.join(os.getcwd(), "media", "designs", scene_class),
                ])
            
            # Find all output files in the search paths
            output_files = []
            for search_path in search_paths:
                if os.path.exists(search_path):
                    for root, _, files in os.walk(search_path):
                        for file in files:
                            if file.endswith(f".{format_type}") and "partial" not in file:
                                file_path = os.path.join(root, file)
                                if os.path.exists(file_path):
                                    output_files.append(file_path)
                                    logger.info(f"Found output file: {file_path}")
            
            if output_files:
                # Get the newest file
                latest_file = max(output_files, key=os.path.getctime)
                with open(latest_file, 'rb') as f:
                    video_data = f.read()
                logger.info(f"Read output from file search: {latest_file}")
                
                # If the format is GIF but we got an MP4, try to convert it
                if format_type == "gif" and latest_file.endswith('.mp4'):
                    gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
                    gif_path = mp4_to_gif(latest_file, gif_output_path, fps=fps if fps else 15)
                    
                    if gif_path and os.path.exists(gif_path):
                        with open(gif_path, 'rb') as f:
                            video_data = f.read()
                        logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
        
        # If we got output data, return it
        if video_data:
            file_size_mb = len(video_data) / (1024 * 1024)
            
            # Clear placeholders
            progress_placeholder.empty()
            status_placeholder.empty()
            log_placeholder.empty()
            
            return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)"
        else:
            output_str = ''.join(full_output)
            logger.error(f"No output files found. Full output: {output_str}")
            
            # Check if we have an MP4 but need a GIF (special handling for GIF issues)
            if format_type == "gif":
                # Try one more aggressive search for any MP4 file
                mp4_files = []
                for search_path in [os.getcwd(), temp_dir, "/tmp"]:
                    for root, _, files in os.walk(search_path):
                        for file in files:
                            if file.endswith('.mp4') and scene_class.lower() in file.lower():
                                mp4_path = os.path.join(root, file)
                                if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
                                    mp4_files.append(mp4_path)
                
                if mp4_files:
                    newest_mp4 = max(mp4_files, key=os.path.getctime)
                    logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
                    
                    # Convert to GIF
                    gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
                    gif_path = mp4_to_gif(newest_mp4, gif_output_path, fps=fps if fps else 15)
                    
                    if gif_path and os.path.exists(gif_path):
                        with open(gif_path, 'rb') as f:
                            video_data = f.read()
                        
                        # Clear placeholders
                        progress_placeholder.empty()
                        status_placeholder.empty()
                        log_placeholder.empty()
                        
                        file_size_mb = len(video_data) / (1024 * 1024)
                        return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
            
            return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
    
    except Exception as e:
        logger.error(f"Error: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        
        if progress_placeholder:
            progress_placeholder.empty()
        if status_placeholder:
            status_placeholder.error(f"Rendering Error: {str(e)}")
        if log_placeholder:
            log_placeholder.empty()
        
        return None, f"❌ Error: {str(e)}"
    
    finally:
        # CRITICAL: Only cleanup after we've captured the output data
        if temp_dir and os.path.exists(temp_dir) and video_data is not None:
            try:
                shutil.rmtree(temp_dir)
                logger.info(f"Cleaned up temp dir: {temp_dir}")
            except Exception as e:
                logger.error(f"Failed to clean temp dir: {str(e)}")

# ENHANCED PYTHON RUNNER FUNCTIONS
def detect_input_calls(code):
    """Detect input() calls in Python code to prepare for handling"""
    input_calls = []
    lines = code.split('\n')
    for i, line in enumerate(lines):
        if 'input(' in line and not line.strip().startswith('#'):
            # Try to extract the prompt if available
            prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
            prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
            input_calls.append({"line": i+1, "prompt": prompt})
    return input_calls

def run_python_script_enhanced(code, inputs=None, timeout=60, enable_debug=False, enable_profile=False, 
                              additional_libs=None, project_files=None, realtime_viz=False):
    """Enhanced version of run_python_script with debugging, profiling, etc."""
    result = {
        "stdout": "",
        "stderr": "",
        "exception": None,
        "plots": [],
        "dataframes": [],
        "execution_time": 0,
        "profile_data": None,
        "debug_steps": [],
        "realtime_data": []
    }
    
    # Create a tempdir for script execution
    with tempfile.TemporaryDirectory() as temp_dir:
        # Path for saving plots
        plot_dir = os.path.join(temp_dir, 'plots')
        os.makedirs(plot_dir, exist_ok=True)
        
        # Handle multi-file project if provided
        if project_files:
            for filename, file_content in project_files.items():
                with open(os.path.join(temp_dir, filename), 'w', encoding='utf-8') as f:
                    f.write(file_content)
            
            # Set the main script path
            main_script = os.path.join(temp_dir, "main.py")
        else:
            # Write the single code file
            main_script = os.path.join(temp_dir, "script.py")
            with open(main_script, 'w', encoding='utf-8') as f:
                f.write(code)
        
        # Add library imports if specified
        if additional_libs:
            lib_imports = "\n".join([f"import {lib}" for lib in additional_libs if lib != "numpy" and lib != "matplotlib"])
            if lib_imports:
                with open(main_script, 'r+', encoding='utf-8') as f:
                    content = f.read()
                    f.seek(0, 0)
                    f.write(lib_imports + "\n\n" + content)
        
        # Add debugging setup if enabled
        if enable_debug:
            debug_setup = """
import pdb
import sys
import traceback

class StringIODebugger:
    def __init__(self):
        self.steps = []
        
    def add_step(self, frame, event, arg):
        if event == 'line':
            self.steps.append({
                'file': frame.f_code.co_filename,
                'line': frame.f_lineno,
                'function': frame.f_code.co_name,
                'locals': {k: str(v) for k, v in frame.f_locals.items() if not k.startswith('__')}
            })
        return self

debug_steps = []
def trace_calls(frame, event, arg):
    if event != 'call':
        return
    co = frame.f_code
    func_name = co.co_name
    if func_name == 'write':
        return
    line_no = frame.f_lineno
    filename = co.co_filename
    if 'debugger' in filename or func_name.startswith('__'):
        return
    debug_steps.append(f"Calling {func_name} in {filename} at line {line_no}")
    return trace_calls

sys.settrace(trace_calls)
"""
            with open(main_script, 'r+', encoding='utf-8') as f:
                content = f.read()
                f.seek(0, 0)
                f.write(debug_setup + "\n" + content)
        
        # Add profiling if enabled
        if enable_profile:
            profile_setup = """
import cProfile
import pstats
import io

# Set up profiler
profiler = cProfile.Profile()
profiler.enable()
"""
            profile_teardown = """
# Finish profiling
profiler.disable()
s = io.StringIO()
ps = pstats.Stats(profiler, stream=s).sort_stats('cumulative')
ps.print_stats()
with open('profile_results.txt', 'w') as f:
    f.write(s.getvalue())
"""
            with open(main_script, 'r+', encoding='utf-8') as f:
                content = f.read()
                f.seek(0, 0)
                f.write(profile_setup + "\n" + content + "\n" + profile_teardown)
        
        # Add real-time visualization if enabled
        if realtime_viz:
            realtime_viz_setup = """
# Setup for real-time visualization
import threading
import json
import time

class RealTimeData:
    def __init__(self):
        self.data = []
        
    def add_data(self, label, value):
        self.data.append({'label': label, 'value': value, 'time': time.time()})
        # Write to file for real-time monitoring
        with open('realtime_data.json', 'w') as f:
            json.dump(self.data, f)

rt_data = RealTimeData()

# Example usage: rt_data.add_data("iteration", i)
"""
            with open(main_script, 'r+', encoding='utf-8') as f:
                content = f.read()
                f.seek(0, 0)
                f.write(realtime_viz_setup + "\n" + content)
        
        # Add input handling code
        if inputs and len(inputs) > 0:
            # Modify the code to use predefined inputs instead of waiting for user input
            input_handling = """
# Input values provided by the user
__INPUT_VALUES = {}
__INPUT_INDEX = 0
# Override the built-in input function
def input(prompt=''):
    global __INPUT_INDEX
    print(prompt, end='')
    if __INPUT_INDEX < len(__INPUT_VALUES):
        value = __INPUT_VALUES[__INPUT_INDEX]
        __INPUT_INDEX += 1
        print(value)  # Echo the input
        return value
    else:
        print("\\n[WARNING] No more predefined inputs available, using empty string")
        return ""
""".format(inputs)
            
            with open(main_script, 'r+', encoding='utf-8') as f:
                content = f.read()
                f.seek(0, 0)
                f.write(input_handling + "\n" + content)
        
        # Add matplotlib and pandas handling
        data_handling = """
# Add plot saving code if matplotlib is used
import os

# For matplotlib plots
if 'matplotlib' in globals() or 'matplotlib.pyplot' in globals() or 'plt' in globals():
    import matplotlib
    matplotlib.use('Agg')  # Use non-interactive backend
    import matplotlib.pyplot as plt
    
    # Hook to save all figures
    original_show = plt.show
    def custom_show(*args, **kwargs):
        for i, fig in enumerate(map(plt.figure, plt.get_fignums())):
            fig.savefig(os.path.join('{}', f'plot_{{i}}.png'))
        return original_show(*args, **kwargs)
    plt.show = custom_show

# For pandas DataFrames
if 'pandas' in globals() or 'pd' in globals():
    import pandas as pd
    import json
    
    # Save DataFrames
    original_df_repr_html = pd.DataFrame._repr_html_
    def custom_df_repr_html(self):
        try:
            df_info = {{
                "name": str(id(self)),
                "shape": self.shape,
                "columns": list(map(str, self.columns)),
                "preview_html": self.head().to_html()
            }}
            with open(f'df_{{id(self)}}.json', 'w') as f:
                json.dump(df_info, f)
        except:
            pass
        return original_df_repr_html(self)
    pd.DataFrame._repr_html_ = custom_df_repr_html
""".format(plot_dir.replace('\\', '\\\\'))
        
        with open(main_script, 'r+', encoding='utf-8') as f:
            content = f.read()
            f.seek(0, 0)
            f.write(data_handling + "\n" + content)
        
        # Files for capturing stdout and stderr
        stdout_file = os.path.join(temp_dir, 'stdout.txt')
        stderr_file = os.path.join(temp_dir, 'stderr.txt')
        
        # Execute with timeout
        start_time = time.time()
        try:
            # Run the script with stdout and stderr redirection
            with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
                process = subprocess.Popen(
                    [sys.executable, main_script],
                    stdout=stdout_f,
                    stderr=stderr_f,
                    cwd=temp_dir
                )
                
                # Real-time monitoring for real-time visualization
                if realtime_viz:
                    realtime_data_file = os.path.join(temp_dir, 'realtime_data.json')
                    while process.poll() is None:
                        if os.path.exists(realtime_data_file):
                            try:
                                with open(realtime_data_file, 'r') as f:
                                    result["realtime_data"] = json.load(f)
                            except:
                                pass
                        time.sleep(0.1)
                        
                        # Check for timeout
                        if time.time() - start_time > timeout:
                            process.kill()
                            result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
                            result["exception"] = "TimeoutError"
                            break
                else:
                    try:
                        process.wait(timeout=timeout)
                    except subprocess.TimeoutExpired:
                        process.kill()
                        result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
                        result["exception"] = "TimeoutError"
            
            # Read the output
            with open(stdout_file, 'r') as f:
                result["stdout"] = f.read()
            
            with open(stderr_file, 'r') as f:
                result["stderr"] = f.read()
            
            # Collect plots
            if os.path.exists(plot_dir):
                plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
                for plot_file in plot_files:
                    with open(os.path.join(plot_dir, plot_file), 'rb') as f:
                        result["plots"].append(f.read())
            
            # Collect dataframes
            df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
            for df_file in df_files:
                with open(os.path.join(temp_dir, df_file), 'r') as f:
                    result["dataframes"].append(json.load(f))
            
            # Collect profiling data if enabled
            if enable_profile and os.path.exists(os.path.join(temp_dir, 'profile_results.txt')):
                with open(os.path.join(temp_dir, 'profile_results.txt'), 'r') as f:
                    result["profile_data"] = f.read()
            
            # Collect debug data if enabled
            if enable_debug and 'debug_steps' in globals():
                result["debug_steps"] = debug_steps
            
            # Calculate execution time
            result["execution_time"] = time.time() - start_time
            
        except Exception as e:
            result["exception"] = str(e)
            result["stderr"] += f"\nError executing script: {str(e)}"
            
    return result

def display_python_script_results_enhanced(result):
    """Display the enhanced results from the Python script execution"""
    if not result:
        st.error("No results to display.")
        return
    
    # Display execution time
    st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
    
    # Display any errors
    if result["exception"]:
        st.error(f"Exception occurred: {result['exception']}")
    
    if result["stderr"]:
        st.error("Errors:")
        st.code(result["stderr"], language="bash")
    
    # Display profiling data if available
    if result.get("profile_data"):
        with st.expander("Profiling Results"):
            st.code(result["profile_data"], language="bash")
    
    # Display debugging steps if available
    if result.get("debug_steps"):
        with st.expander("Debugging Steps"):
            for i, step in enumerate(result["debug_steps"]):
                st.markdown(f"**Step {i+1}**: {step}")
    
    # Display plots if any
    if result["plots"]:
        st.markdown("### Plots")
        cols = st.columns(min(3, len(result["plots"])))
        for i, plot_data in enumerate(result["plots"]):
            cols[i % len(cols)].image(plot_data, use_column_width=True)
            
            # Add button to use this plot in Manim
            if cols[i % len(cols)].button(f"Use in Manim", key=f"use_plot_{i}"):
                # Create a temporary file
                with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
                    tmp.write(plot_data)
                    plot_path = tmp.name
                
                # Generate Manim code
                plot_code = f"""
# Import the plot image
plot_image = ImageMobject(r"{plot_path}")
plot_image.scale(2)  # Adjust size as needed
self.play(FadeIn(plot_image))
self.wait(1)
"""
                if st.session_state.code:
                    st.session_state.code += "\n" + plot_code
                else:
                    st.session_state.code = f"""from manim import *
class PlotScene(Scene):
    def construct(self):
        {plot_code}
"""
                st.session_state.temp_code = st.session_state.code
                st.success(f"Added plot to your Manim code!")
                # Set pending tab switch to editor tab
                st.session_state.pending_tab_switch = 0
                st.rerun()
    
    # Display dataframes if any
    if result["dataframes"]:
        st.markdown("### DataFrames")
        for df_info in result["dataframes"]:
            with st.expander(f"{df_info.get('name', 'DataFrame')} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"):
                st.markdown(df_info["preview_html"], unsafe_allow_html=True)
                
                # Add button to visualize this dataframe in Manim
                if st.button(f"Visualize in Manim", key=f"viz_df_{df_info.get('name', 'df')}"):
                    # Generate Manim code for dataframe visualization
                    df_viz_code = f"""
# Create a simple table visualization
columns = {df_info['columns']}
table = Table(
    col_labels=[Text(col, font_size=24) for col in columns]
)

# Add data rows (showing first 5 rows)
for i in range(min(5, {df_info['shape'][0]})):
    # This is a placeholder - in a real implementation, you'd extract actual data
    table.add_row(*[Text(f"Row {{i}}, Col {{j}}", font_size=20) for j in range(len(columns))])

self.play(Create(table))
self.wait(1)
"""
                    if st.session_state.code:
                        st.session_state.code += "\n" + df_viz_code
                    else:
                        st.session_state.code = f"""from manim import *
class DataFrameScene(Scene):
    def construct(self):
        {df_viz_code}
"""
                    st.session_state.temp_code = st.session_state.code
                    st.success(f"Added DataFrame visualization to your Manim code!")
                    # Set pending tab switch to editor tab
                    st.session_state.pending_tab_switch = 0
                    st.rerun()
    
    # Display standard output
    if result["stdout"]:
        st.markdown("### Standard Output")
        st.code(result["stdout"], language="bash")
    
    # Display real-time data if available
    if result.get("realtime_data"):
        st.markdown("### Real-time Data")
        
        # Convert to DataFrame for easier visualization
        import pandas as pd
        rt_df = pd.DataFrame(result["realtime_data"])
        
        # Create a plotly chart
        import plotly.express as px
        if not rt_df.empty and "time" in rt_df.columns and "value" in rt_df.columns:
            fig = px.line(rt_df, x="time", y="value", color="label" if "label" in rt_df.columns else None,
                        title="Real-time Data Visualization")
            st.plotly_chart(fig, use_container_width=True)
            
            # Add button to create Manim animation from this data
            if st.button("Create Manim Animation from Data", key="create_manim_from_rt"):
                # Extract data points
                data_points = []
                for _, row in rt_df.iterrows():
                    if "value" in row:
                        data_points.append(float(row["value"]))
                
                # Generate Manim code
                rt_viz_code = f"""
# Visualize real-time data
data = {data_points}
axes = Axes(
    x_range=[0, {len(data_points)}, 1],
    y_range=[{min(data_points) if data_points else 0}, {max(data_points) if data_points else 10}, {(max(data_points)-min(data_points))/10 if data_points and max(data_points) > min(data_points) else 1}],
    axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(data)]
graph = VMobject(color=RED)
graph.set_points_as_corners(points)

self.play(Create(axes))
self.play(Create(graph), run_time=2)
self.wait(1)
"""
                if st.session_state.code:
                    st.session_state.code += "\n" + rt_viz_code
                else:
                    st.session_state.code = f"""from manim import *
class DataVisualizationScene(Scene):
    def construct(self):
        {rt_viz_code}
"""
                st.session_state.temp_code = st.session_state.code
                st.success(f"Added real-time data visualization to your Manim code!")
                # Set pending tab switch to editor tab
                st.session_state.pending_tab_switch = 0
                st.rerun()

# C/C++ RUNNER FUNCTIONS
def compile_cpp_code_enhanced(code, settings, project_files=None, enable_debug=False, breakpoints=None, watch_vars=None):
    """Enhanced function to compile C++ code with advanced options."""
    try:
        # Create a temporary directory for compilation
        temp_dir = tempfile.mkdtemp(prefix="cpp_runner_")
        
        # Write the project files
        if project_files:
            for filename, content in project_files.items():
                file_path = os.path.join(temp_dir, filename)
                with open(file_path, "w") as f:
                    f.write(content)
            # Set main file for single file mode
            cpp_file = os.path.join(temp_dir, "main.cpp")
        else:
            # Write the single code file
            cpp_file = os.path.join(temp_dir, "main.cpp")
            with open(cpp_file, "w") as f:
                f.write(code)
        
        # Output executable path
        exe_file = os.path.join(temp_dir, "program.exe" if platform.system() == "Windows" else "program")
        
        # Build the compilation command
        compiler = settings.get("compiler", "g++")
        std_version = settings.get("std", "c++17")
        optimization = settings.get("optimization", "-O2")
        
        compile_cmd = [
            compiler,
            "-std=" + std_version,
            optimization
        ]
        
        # Add debug flag if debugging is enabled
        if enable_debug:
            compile_cmd.append("-g")
        
        # Add preprocessor definitions
        for definition in settings.get("definitions", []):
            if "=" in definition:
                name, value = definition.split("=", 1)
                compile_cmd.append(f"-D{name}={value}")
            else:
                compile_cmd.append(f"-D{definition}")
        
        # Add include paths
        for path in settings.get("include_paths", []):
            compile_cmd.append(f"-I{path}")
        
        # Add library paths
        for path in settings.get("library_paths", []):
            compile_cmd.append(f"-L{path}")
        
        # Add files to compile
        if project_files:
            source_files = [os.path.join(temp_dir, f) for f in project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
            compile_cmd.extend(source_files)
        else:
            compile_cmd.append(cpp_file)
        
        # Output file
        compile_cmd.extend(["-o", exe_file])
        
        # Add libraries
        for lib in settings.get("libraries", []):
            if lib == "Eigen":
                # Eigen is header-only, nothing to link
                pass
            elif lib == "OpenCV":
                # Add OpenCV libraries
                try:
                    # Get OpenCV libraries using pkg-config
                    pkg_config = subprocess.run(
                        ["pkg-config", "--libs", "opencv4"],
                        capture_output=True,
                        text=True,
                        check=False
                    )
                    if pkg_config.returncode == 0:
                        compile_cmd.extend(pkg_config.stdout.strip().split())
                    else:
                        # Try opencv instead of opencv4
                        pkg_config = subprocess.run(
                            ["pkg-config", "--libs", "opencv"],
                            capture_output=True,
                            text=True,
                            check=False
                        )
                        if pkg_config.returncode == 0:
                            compile_cmd.extend(pkg_config.stdout.strip().split())
                        else:
                            # Fallback to common OpenCV libraries
                            compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
                except:
                    # Fallback to common OpenCV libraries
                    compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
            elif lib == "Boost":
                # Add common Boost libraries
                compile_cmd.extend(["-lboost_system", "-lboost_filesystem"])
            elif lib == "FFTW":
                compile_cmd.append("-lfftw3")
            elif lib == "SDL2":
                compile_cmd.append("-lSDL2")
            elif lib == "SFML":
                compile_cmd.extend(["-lsfml-graphics", "-lsfml-window", "-lsfml-system"])
            elif lib == "OpenGL":
                compile_cmd.extend(["-lGL", "-lGLU", "-lglut"])
        
        # Add additional libraries
        for lib in settings.get("additional_libs", []):
            compile_cmd.append(f"-l{lib}")
        
        # Add advanced flags
        if settings.get("advanced_flags"):
            compile_cmd.extend(settings["advanced_flags"].split())
        
        # Run the compilation process
        logger.info(f"Compiling with command: {' '.join(compile_cmd)}")
        result = subprocess.run(
            compile_cmd,
            capture_output=True,
            text=True,
            check=False,
            cwd=temp_dir
        )
        
        if result.returncode != 0:
            return None, result.stderr, temp_dir
        
        return exe_file, None, temp_dir
    except Exception as e:
        return None, str(e), None

def run_cpp_executable_enhanced(exe_path, temp_dir, inputs=None, timeout=30, enable_debug=False, breakpoints=None, watch_vars=None):
    """Enhanced function to run C++ executable with debugging support."""
    result = {
        "stdout": "",
        "stderr": "",
        "execution_time": 0,
        "images": [],
        "exception": None,
        "debug_output": None,
        "memory_usage": None
    }
    
    try:
        # Prepare input data if provided
        input_data = "\n".join(inputs) if inputs else None
        
        # Start timing
        start_time = time.time()
        
        if enable_debug and breakpoints:
            # Run with GDB for debugging
            gdb_commands = ["set pagination off"]
            
            # Add breakpoints
            for bp in breakpoints:
                gdb_commands.append(f"break {bp}")
            
            # Add watchpoints for variables
            if watch_vars:
                for var in watch_vars:
                    gdb_commands.append(f"watch {var}")
            
            # Run the program
            gdb_commands.append("run")
            
            # Continue to end
            gdb_commands.append("continue")
            
            # Quit GDB
            gdb_commands.append("quit")
            
            # Create GDB command file
            gdb_cmd_file = os.path.join(temp_dir, "gdb_commands.txt")
            with open(gdb_cmd_file, "w") as f:
                f.write("\n".join(gdb_commands))
            
            # Run with GDB
            process = subprocess.run(
                ["gdb", "-x", gdb_cmd_file, "-batch", exe_path],
                input=input_data,
                text=True,
                capture_output=True,
                timeout=timeout,
                cwd=temp_dir
            )
            
            # Capture outputs
            result["stdout"] = process.stdout
            result["stderr"] = process.stderr
            result["debug_output"] = process.stdout
        else:
            # Run normally
            process = subprocess.run(
                [exe_path],
                input=input_data,
                text=True,
                capture_output=True,
                timeout=timeout,
                cwd=temp_dir
            )
            
            # Capture outputs
            result["stdout"] = process.stdout
            result["stderr"] = process.stderr
        
        # Calculate execution time
        result["execution_time"] = time.time() - start_time
        
        # Look for generated images in the executable directory
        for ext in [".png", ".jpg", ".jpeg", ".bmp", ".ppm"]:
            image_files = [f for f in os.listdir(temp_dir) if f.endswith(ext)]
            for img_file in image_files:
                try:
                    img_path = os.path.join(temp_dir, img_file)
                    
                    # For PPM files, convert to PNG for easier display
                    if img_file.endswith(".ppm"):
                        # Create output path
                        png_path = os.path.join(temp_dir, img_file.replace(".ppm", ".png"))
                        
                        # Convert using PIL
                        from PIL import Image
                        Image.open(img_path).save(png_path)
                        img_path = png_path
                        img_file = img_file.replace(".ppm", ".png")
                    
                    with open(img_path, "rb") as f:
                        result["images"].append({
                            "name": img_file,
                            "data": f.read()
                        })
                except Exception as e:
                    logger.error(f"Error processing image {img_file}: {str(e)}")
        
        # Estimate memory usage
        try:
            if platform.system() != "Windows":
                # Use ps command to get memory usage
                ps_output = subprocess.run(
                    ["ps", "-p", str(process.pid), "-o", "rss="],
                    capture_output=True,
                    text=True,
                    check=False
                )
                if ps_output.returncode == 0:
                    mem_kb = int(ps_output.stdout.strip())
                    result["memory_usage"] = mem_kb / 1024  # Convert to MB
        except:
            pass
        
        return result
    except subprocess.TimeoutExpired:
        result["stderr"] += f"\nProgram execution timed out after {timeout} seconds."
        result["exception"] = "TimeoutError"
        return result
    except Exception as e:
        result["stderr"] += f"\nError executing program: {str(e)}"
        result["exception"] = str(e)
        return result

def parse_animation_steps(python_code):
    """Parse Manim code to extract animation steps for timeline editor"""
    animation_steps = []
    
    # Look for self.play calls in the code
    play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
    wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
    
    # Extract animation objects from play calls
    for i, play_call in enumerate(play_calls):
        # Parse the arguments to self.play()
        animations = [arg.strip() for arg in play_call.split(',')]
        
        # Get wait time after this animation if available
        wait_time = 1.0  # Default wait time
        if i < len(wait_calls):
            wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
            if wait_match:
                wait_time = float(wait_match.group(1))
        
        # Add to animation steps
        animation_steps.append({
            "id": i+1,
            "type": "play",
            "animations": animations,
            "duration": wait_time,
            "start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
            "code": f"self.play({play_call})"
        })
    
    return animation_steps

def generate_code_from_timeline(animation_steps, original_code):
    """Generate Manim code from the timeline data"""
    # Extract the class definition and setup
    class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
    
    if not class_match:
        return original_code  # Can't find proper structure to modify
        
    setup_code = class_match.group(1)
    
    # Build the new construct method
    new_code = [setup_code]
    indent = "        "  # Standard Manim indentation
    
    # Add each animation step in order
    for step in sorted(animation_steps, key=lambda x: x["id"]):
        new_code.append(f"{indent}{step['code']}")
        if "duration" in step and step["duration"] > 0:
            new_code.append(f"{indent}self.wait({step['duration']})")
    
    # Add any code that might come after animations
    end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
    if end_match:
        new_code.append(end_match.group(1))
        
    # Combine the code parts with proper indentation
    return "\n".join(new_code)

def create_timeline_editor(code):
    """Create an interactive timeline editor for animation sequences"""
    st.markdown("### 🎞️ Animation Timeline Editor")
    
    if not code:
        st.warning("Add animation code first to use the timeline editor.")
        return code
    
    # Parse animation steps from the code
    animation_steps = parse_animation_steps(code)
    
    if not animation_steps:
        st.warning("No animation steps detected in your code.")
        return code
    
    # Convert to DataFrame for easier manipulation
    df = pd.DataFrame(animation_steps)
    
    # Create an interactive Gantt chart with plotly
    st.markdown("#### Animation Timeline")
    st.markdown("Drag timeline elements to reorder or resize to change duration")
    
    # Create the Gantt chart
    fig = px.timeline(
        df, 
        x_start="start_time", 
        x_end=df["start_time"] + df["duration"],
        y="id",
        color="type",
        hover_name="animations",
        labels={"id": "Step", "start_time": "Time (seconds)"}
    )
    
    # Make it interactive
    fig.update_layout(
        height=400,
        xaxis=dict(
            title="Time (seconds)",
            rangeslider_visible=True
        )
    )
    
    # Add buttons and interactivity
    timeline_chart = st.plotly_chart(fig, use_container_width=True)
    
    # Control panel
    st.markdown("#### Timeline Controls")
    controls_col1, controls_col2, controls_col3 = st.columns(3)
    
    with controls_col1:
        selected_step = st.selectbox(
            "Select Step to Edit:",
            options=list(range(1, len(animation_steps) + 1)),
            format_func=lambda x: f"Step {x}"
        )
    
    with controls_col2:
        new_duration = st.number_input(
            "Duration (seconds):",
            min_value=0.1,
            max_value=10.0,
            value=float(df[df["id"] == selected_step]["duration"].values[0]),
            step=0.1
        )
    
    with controls_col3:
        step_action = st.selectbox(
            "Action:",
            options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
        )
    
    apply_btn = st.button("Apply Change", key="apply_timeline_change")
    
    # Handle timeline modifications
    if apply_btn:
        modified = False
        
        if step_action == "Update Duration":
            # Update the duration of the selected step
            idx = df[df["id"] == selected_step].index[0]
            df.at[idx, "duration"] = new_duration
            modified = True
            
        elif step_action == "Move Up" and selected_step > 1:
            # Swap with the step above
            idx1 = df[df["id"] == selected_step].index[0]
            idx2 = df[df["id"] == selected_step - 1].index[0]
            
            # Swap IDs to maintain order
            df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
            modified = True
            
        elif step_action == "Move Down" and selected_step < len(animation_steps):
            # Swap with the step below
            idx1 = df[df["id"] == selected_step].index[0]
            idx2 = df[df["id"] == selected_step + 1].index[0]
            
            # Swap IDs to maintain order
            df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
            modified = True
            
        elif step_action == "Delete Step":
            # Remove the selected step
            df = df[df["id"] != selected_step]
            # Reindex remaining steps
            new_ids = list(range(1, len(df) + 1))
            df["id"] = new_ids
            modified = True
        
        if modified:
            # Recalculate start times
            df = df.sort_values("id")
            cumulative_time = 0
            for idx, row in df.iterrows():
                df.at[idx, "start_time"] = cumulative_time
                cumulative_time += row["duration"]
            
            # Regenerate animation code
            animation_steps = df.to_dict('records')
            new_code = generate_code_from_timeline(animation_steps, code)
            
            st.success("Timeline updated! Code has been regenerated.")
            return new_code
    
    # Visual keyframe editor
    st.markdown("#### Visual Keyframe Editor")
    st.markdown("Add keyframes for smooth property transitions")
    
    keyframe_obj = st.selectbox(
        "Select object to animate:",
        options=[f"Object {i+1}" for i in range(5)]  # Placeholder for actual objects
    )
    
    keyframe_prop = st.selectbox(
        "Select property:",
        options=["position", "scale", "rotation", "opacity", "color"]
    )
    
    # Keyframe timeline visualization
    keyframe_times = [0, 1, 2, 3, 4]  # Placeholder
    keyframe_values = [0, 0.5, 0.8, 0.2, 1.0]  # Placeholder
    
    keyframe_df = pd.DataFrame({
        "time": keyframe_times,
        "value": keyframe_values
    })
    
    keyframe_fig = px.line(
        keyframe_df, 
        x="time", 
        y="value",
        markers=True,
        title=f"{keyframe_prop.capitalize()} Keyframes"
    )
    
    keyframe_fig.update_layout(
        xaxis_title="Time (seconds)",
        yaxis_title="Value",
        height=250
    )
    
    st.plotly_chart(keyframe_fig, use_container_width=True)
    
    keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
    with keyframe_col1:
        keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
    with keyframe_col2:
        keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
    with keyframe_col3:
        add_keyframe = st.button("Add Keyframe")
    
    # Return the original code or modified code
    return code

def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
    """Export animation to various educational formats"""
    try:
        if format_type == "powerpoint":
            # Make sure python-pptx is installed
            try:
                import pptx
                from pptx.util import Inches
            except ImportError:
                logger.error("python-pptx not installed")
                subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
                import pptx
                from pptx.util import Inches
            
            # Create PowerPoint presentation
            prs = pptx.Presentation()
            
            # Title slide
            title_slide = prs.slides.add_slide(prs.slide_layouts[0])
            title_slide.shapes.title.text = animation_title
            title_slide.placeholders[1].text = "Created with Manim Animation Studio"
            
            # Video slide
            video_slide = prs.slides.add_slide(prs.slide_layouts[5])
            video_slide.shapes.title.text = "Animation"
            
            # Save video to temp file
            video_path = os.path.join(temp_dir, "animation.mp4")
            with open(video_path, "wb") as f:
                f.write(video_data)
            
            # Add video to slide
            try:
                left = Inches(1)
                top = Inches(1.5)
                width = Inches(8)
                height = Inches(4.5)
                video_slide.shapes.add_movie(video_path, left, top, width, height)
            except Exception as e:
                logger.error(f"Error adding video to PowerPoint: {str(e)}")
                # Fallback to adding a picture with link
                img_path = os.path.join(temp_dir, "thumbnail.png")
                # Generate thumbnail with ffmpeg
                subprocess.run([
                    "ffmpeg", "-i", video_path, "-ss", "00:00:01.000", 
                    "-vframes", "1", img_path
                ], check=True)
                
                if os.path.exists(img_path):
                    pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
                    video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
            
            # Explanation slide
            if explanation_text:
                text_slide = prs.slides.add_slide(prs.slide_layouts[1])
                text_slide.shapes.title.text = "Explanation"
                text_slide.placeholders[1].text = explanation_text
            
            # Save presentation
            output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
            prs.save(output_path)
            
            # Read the file to return it
            with open(output_path, "rb") as f:
                return f.read(), "powerpoint"
                
        elif format_type == "html":
            # Create interactive HTML animation
            html_template = """
            <!DOCTYPE html>
            <html>
            <head>
                <title>{title}</title>
                <style>
                    body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }}
                    .animation-container {{ margin: 20px 0; }}
                    .controls {{ display: flex; margin: 10px 0; }}
                    .controls button {{ margin-right: 10px; padding: 5px 10px; }}
                    .explanation {{ margin-top: 20px; padding: 15px; background: #f5f5f5; border-radius: 5px; }}
                </style>
                <script>
                    document.addEventListener('DOMContentLoaded', function() {{
                        const video = document.getElementById('animation');
                        const playBtn = document.getElementById('play');
                        const pauseBtn = document.getElementById('pause');
                        const restartBtn = document.getElementById('restart');
                        const slowBtn = document.getElementById('slow');
                        const normalBtn = document.getElementById('normal');
                        const fastBtn = document.getElementById('fast');
                        
                        playBtn.addEventListener('click', function() {{ video.play(); }});
                        pauseBtn.addEventListener('click', function() {{ video.pause(); }});
                        restartBtn.addEventListener('click', function() {{ video.currentTime = 0; video.play(); }});
                        slowBtn.addEventListener('click', function() {{ video.playbackRate = 0.5; }});
                        normalBtn.addEventListener('click', function() {{ video.playbackRate = 1.0; }});
                        fastBtn.addEventListener('click', function() {{ video.playbackRate = 2.0; }});
                    }});
                </script>
            </head>
            <body>
                <h1>{title}</h1>
                
                <div class="animation-container">
                    <video id="animation" width="100%" controls>
                        <source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
                        Your browser does not support the video tag.
                    </video>
                    
                    <div class="controls">
                        <button id="play">Play</button>
                        <button id="pause">Pause</button>
                        <button id="restart">Restart</button>
                        <button id="slow">0.5x Speed</button>
                        <button id="normal">1x Speed</button>
                        <button id="fast">2x Speed</button>
                    </div>
                </div>
                
                <div class="explanation">
                    <h2>Explanation</h2>
                    {explanation_html}
                </div>
                
                <footer>
                    <p>Created with Manim Animation Studio</p>
                </footer>
            </body>
            </html>
            """
            
            # Convert video data to base64
            video_base64 = base64.b64encode(video_data).decode('utf-8')
            
            # Convert markdown explanation to HTML
            explanation_html = markdown.markdown(explanation_text) if explanation_text else "<p>No explanation provided.</p>"
            
            # Format the HTML template
            html_content = html_template.format(
                title=animation_title,
                video_base64=video_base64,
                explanation_html=explanation_html
            )
            
            # Save to file
            output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
            with open(output_path, "w", encoding="utf-8") as f:
                f.write(html_content)
                
            # Read the file to return it
            with open(output_path, "rb") as f:
                return f.read(), "html"
                
        elif format_type == "sequence":
            # Generate animation sequence with explanatory text
            # Make sure FPDF is installed
            try:
                from fpdf import FPDF
            except ImportError:
                logger.error("fpdf not installed")
                subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
                from fpdf import FPDF
            
            # Save video temporarily
            temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
            with open(temp_video_path, "wb") as f:
                f.write(video_data)
            
            # Create frames directory
            frames_dir = os.path.join(temp_dir, "frames")
            os.makedirs(frames_dir, exist_ok=True)
            
            # Extract frames using ffmpeg (assuming it's installed)
            frame_count = 5  # Number of key frames to extract
            try:
                subprocess.run([
                    "ffmpeg", 
                    "-i", temp_video_path, 
                    "-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
                    "-vsync", "0", 
                    os.path.join(frames_dir, "frame_%03d.png")
                ], check=True)
            except Exception as e:
                logger.error(f"Error extracting frames: {str(e)}")
                # Try a simpler approach
                subprocess.run([
                    "ffmpeg",
                    "-i", temp_video_path,
                    "-r", "1",  # 1 frame per second
                    os.path.join(frames_dir, "frame_%03d.png")
                ], check=True)
            
            # Parse explanation text into segments (assuming sections divided by ##)
            explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
            
            # Create a PDF with frames and explanations
            pdf = FPDF()
            pdf.set_auto_page_break(auto=True, margin=15)
            
            # Title page
            pdf.add_page()
            pdf.set_font("Arial", "B", 20)
            pdf.cell(190, 10, animation_title, ln=True, align="C")
            pdf.ln(10)
            pdf.set_font("Arial", "", 12)
            pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
            
            # Add each frame with explanation
            frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
            
            for i, frame_file in enumerate(frame_files):
                pdf.add_page()
                
                # Add frame image
                frame_path = os.path.join(frames_dir, frame_file)
                pdf.image(frame_path, x=10, y=10, w=190)
                
                # Add explanation text
                pdf.ln(140)  # Move below the image
                pdf.set_font("Arial", "B", 12)
                pdf.cell(190, 10, f"Step {i+1}", ln=True)
                pdf.set_font("Arial", "", 10)
                
                # Use the corresponding explanation segment if available
                explanation = explanation_segments[min(i, len(explanation_segments)-1)]
                pdf.multi_cell(190, 5, explanation.strip())
            
            # Save PDF
            output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
            pdf.output(output_path)
            
            # Read the file to return it
            with open(output_path, "rb") as f:
                return f.read(), "pdf"
                
        return None, None
                
    except Exception as e:
        logger.error(f"Educational export error: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        return None, None

def main():
    # Initialize session state variables if they don't exist
    if 'init' not in st.session_state:
        st.session_state.init = True
        st.session_state.video_data = None
        st.session_state.status = None
        st.session_state.ai_models = None
        st.session_state.generated_code = ""
        st.session_state.code = ""
        st.session_state.temp_code = ""
        st.session_state.editor_key = str(uuid.uuid4())
        st.session_state.packages_checked = False  # Track if packages were already checked
        st.session_state.audio_path = None
        st.session_state.image_paths = []
        st.session_state.custom_library_result = ""
        st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
        st.session_state.python_result = None
        st.session_state.active_tab = 0  # Track currently active tab
        st.session_state.settings = {
            "quality": "720p",
            "format_type": "mp4",
            "animation_speed": "Normal",
            "fps": 30  # Default FPS
        }
        st.session_state.password_entered = False  # Track password authentication
        st.session_state.custom_model = "gpt-4o"  # Default model
        st.session_state.first_load_complete = False  # Prevent refreshes on first load
        st.session_state.pending_tab_switch = None  # Track pending tab switches
        # C++ runner state
        st.session_state.cpp_code = """#include <iostream>
#include <vector>
#include <algorithm>

int main() {
    std::cout << "Hello, Manim Animation Studio!" << std::endl;
    
    // Create a vector of numbers
    std::vector<int> numbers = {5, 2, 8, 1, 9, 3, 7, 4, 6};
    
    // Sort the vector
    std::sort(numbers.begin(), numbers.end());
    
    // Print the sorted numbers
    std::cout << "Sorted numbers: ";
    for (int num : numbers) {
        std::cout << num << " ";
    }
    std::cout << std::endl;
    
    return 0;
}"""
        st.session_state.cpp_result = None
        st.session_state.cpp_project_files = {"main.cpp": st.session_state.cpp_code}
        st.session_state.cpp_settings = {
            "compiler": "g++",
            "std": "c++17",
            "optimization": "-O2",
            "include_paths": [],
            "library_paths": [],
            "libraries": []
        }

    # Page configuration with improved layout
    st.set_page_config(
        page_title="Manim Animation Studio",
        page_icon="🎬",
        layout="wide",
        initial_sidebar_state="expanded"
    )

    # Custom CSS for improved UI
    st.markdown("""
    <style>
    .main-header {
        font-size: 2.5rem;
        font-weight: 700;
        background: linear-gradient(90deg, #4F46E5, #818CF8);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        margin-bottom: 1rem;
        text-align: center;
    }
    /* Improved Cards */
    .card {
        background-color: #ffffff;
        border-radius: 12px;
        padding: 1.8rem;
        box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08);
        margin-bottom: 1.8rem;
        border-left: 5px solid #4F46E5;
        transition: all 0.3s ease;
    }
    .card:hover {
        box-shadow: 0 8px 16px rgba(0, 0, 0, 0.12);
        transform: translateY(-2px);
    }
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 2px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 45px;
        white-space: pre-wrap;
        border-radius: 4px 4px 0 0;
        font-weight: 500;
    }
    .stTabs [aria-selected="true"] {
        background-color: #f0f4fd;
        border-bottom: 2px solid #4F46E5;
    }
    /* Buttons */
    .stButton button {
        border-radius: 6px;
        font-weight: 500;
        transition: all 0.2s ease;
    }
    .stButton button:hover {
        transform: translateY(-1px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    /* Model selection */
    .model-group {
        margin-bottom: 1.5rem;
        padding: 15px;
        border-radius: 8px;
        background-color: #f8f9fa;
    }
    .model-card {
        background-color: #f8f9fa;
        border-radius: 10px;
        padding: 15px;
        margin-bottom: 10px;
        border-left: 4px solid #4F46E5;
        transition: all 0.3s ease;
    }
    .model-card:hover {
        box-shadow: 0 4px 8px rgba(0,0,0,0.1);
        transform: translateY(-2px);
    }
    .model-category {
        font-size: 1.2rem;
        font-weight: 600;
        padding: 10px 5px;
        margin-top: 15px;
        border-bottom: 2px solid #e9ecef;
        color: #333;
    }
    .model-details {
        font-size: 0.8rem;
        color: #666;
        margin-top: 5px;
    }
    .selected-model {
        background-color: #e8f4fe;
        border-left: 4px solid #0d6efd;
    }
    .preview-container {
        border: 1px solid #e0e0e0;
        border-radius: 10px;
        padding: 1rem;
        margin-bottom: 1rem;
        min-height: 200px;
    }
    .small-text {
        font-size: 0.8rem;
        color: #6c757d;
    }
    .asset-card {
        background-color: #f0f2f5;
        border-radius: 8px;
        padding: 1rem;
        margin-bottom: 1rem;
        border-left: 4px solid #4F46E5;
    }
    .timeline-container {
        background-color: #f8f9fa;
        border-radius: 10px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
    }
    .keyframe {
        width: 12px;
        height: 12px;
        border-radius: 50%;
        background-color: #4F46E5;
        position: absolute;
        transform: translate(-50%, -50%);
        cursor: pointer;
    }
    .educational-export-container {
        background-color: #f0f7ff;
        border-radius: 10px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
        border: 1px solid #c2e0ff;
    }
    .code-output {
        background-color: #f8f9fa;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 1rem;
        border-left: 4px solid #10b981;
        max-height: 400px;
        overflow-y: auto;
    }
    .error-output {
        background-color: #fef2f2;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 1rem;
        border-left: 4px solid #ef4444;
    }
    </style>
    """, unsafe_allow_html=True)

    # Header
    st.markdown("""
    <div class="main-header">
        🎬 Manim Animation Studio
    </div>
    <p style="text-align: center; margin-bottom: 2rem;">Create mathematical animations with Manim</p>
    """, unsafe_allow_html=True)

    # Check for packages ONLY ONCE per session
    if not st.session_state.packages_checked:
        if ensure_packages():
            st.session_state.packages_checked = True
        else:
            st.error("Failed to install required packages. Please try again.")
            st.stop()
    
    # Create main tabs
    tab_names = ["✨ Editor", "🤖 AI Assistant", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner", "🔧 C/C++ Runner"]
    tabs = st.tabs(tab_names)
    
    # Sidebar for rendering settings and custom libraries
    with st.sidebar:
        # Rendering settings section
        st.markdown("## ⚙️ Rendering Settings")
        
        col1, col2 = st.columns(2)
        with col1:
            quality = st.selectbox(
                "🎯 Quality",
                options=list(QUALITY_PRESETS.keys()),
                index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
                key="quality_select"
            )
        
        with col2:
            format_type_display = st.selectbox(
                "📦 Format",
                options=list(EXPORT_FORMATS.keys()),
                index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"]) 
                      if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
                key="format_select_display"
            )
            # Convert display name to actual format value
            format_type = EXPORT_FORMATS[format_type_display]
        
        # Add FPS control
        fps = st.selectbox(
            "🎞️ FPS",
            options=FPS_OPTIONS,
            index=FPS_OPTIONS.index(st.session_state.settings["fps"]) if st.session_state.settings["fps"] in FPS_OPTIONS else 2,  # Default to 30 FPS (index 2)
            key="fps_select"
        )
        
        animation_speed = st.selectbox(
            "⚡ Speed",
            options=list(ANIMATION_SPEEDS.keys()),
            index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
            key="speed_select"
        )
        
        # Apply the settings without requiring a button
        st.session_state.settings = {
            "quality": quality,
            "format_type": format_type,
            "animation_speed": animation_speed,
            "fps": fps
        }
        
        # Custom libraries section
        st.markdown("## 📚 Custom Libraries")
        st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
        
        custom_libraries = st.text_area(
            "Libraries to install",
            placeholder="e.g., scipy, networkx, matplotlib",
            key="custom_libraries"
        )
        
        if st.button("Install Libraries", key="install_libraries_btn"):
            success, result = install_custom_packages(custom_libraries)
            st.session_state.custom_library_result = result
            
            if success:
                st.success("Installation complete!")
            else:
                st.error("Installation failed for some packages.")
        
        if st.session_state.custom_library_result:
            with st.expander("Installation Results"):
                st.code(st.session_state.custom_library_result)
                
        # C/C++ Library Options
        with st.sidebar.expander("C/C++ Library Options"):
            st.markdown("### Advanced C/C++ Settings")
            
            cpp_libs = st.multiselect(
                "Include Libraries",
                options=["Eigen", "Boost", "OpenCV", "FFTW", "Matplotlib-cpp"],
                default=st.session_state.cpp_settings.get("libraries", [])
            )
            
            st.session_state.cpp_settings["libraries"] = cpp_libs
            
            custom_include = st.text_input("Custom Include Path:")
            custom_lib = st.text_input("Custom Library Path:")
            
            if custom_include and custom_include not in st.session_state.cpp_settings.get("include_paths", []):
                if "include_paths" not in st.session_state.cpp_settings:
                    st.session_state.cpp_settings["include_paths"] = []
                st.session_state.cpp_settings["include_paths"].append(custom_include)
                
            if custom_lib and custom_lib not in st.session_state.cpp_settings.get("library_paths", []):
                if "library_paths" not in st.session_state.cpp_settings:
                    st.session_state.cpp_settings["library_paths"] = []
                st.session_state.cpp_settings["library_paths"].append(custom_lib)
            
            if st.button("Update Library Settings"):
                st.success("Library settings updated!")

    # EDITOR TAB
    with tabs[0]:
        col1, col2 = st.columns([3, 2])
        
        with col1:
            st.markdown("### 📝 Animation Editor")
            
            # Toggle between upload and type
            editor_mode = st.radio(
                "Choose how to input your code:",
                ["Type Code", "Upload File"],
                key="editor_mode"
            )
            
            if editor_mode == "Upload File":
                uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
                if uploaded_file:
                    code_content = uploaded_file.getvalue().decode("utf-8")
                    if code_content.strip():  # Only update if file has content
                        st.session_state.code = code_content
                        st.session_state.temp_code = code_content
            
            # Code editor
            if ACE_EDITOR_AVAILABLE:
                current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
                st.session_state.temp_code = st_ace(
                    value=current_code,
                    language="python",
                    theme="monokai",
                    min_lines=20,
                    key=f"ace_editor_{st.session_state.editor_key}"
                )
            else:
                current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
                st.session_state.temp_code = st.text_area(
                    "Manim Python Code",
                    value=current_code,
                    height=400,
                    key=f"code_textarea_{st.session_state.editor_key}"
                )
            
            # Update code in session state if it changed
            if st.session_state.temp_code != st.session_state.code:
                st.session_state.code = st.session_state.temp_code
            
            # Generate button (use a form to prevent page reloads)
            generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn")
            if generate_btn:
                if not st.session_state.code:
                    st.error("Please enter some code before generating animation")
                else:
                    # Extract scene class name
                    scene_class = extract_scene_class_name(st.session_state.code)
                    
                    # If no valid scene class found, add a basic one
                    if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
                        default_scene = """
class MyScene(Scene):
    def construct(self):
        text = Text("Default Scene")
        self.play(Write(text))
        self.wait(2)
"""
                        st.session_state.code += default_scene
                        st.session_state.temp_code = st.session_state.code
                        st.warning("No scene class found. Added a default scene.")
                        
                    with st.spinner("Generating animation..."):
                        video_data, status = generate_manim_video(
                            st.session_state.code,
                            st.session_state.settings["format_type"],
                            st.session_state.settings["quality"],
                            ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
                            st.session_state.audio_path,
                            st.session_state.settings["fps"]
                        )
                        st.session_state.video_data = video_data
                        st.session_state.status = status
        
        with col2:
            st.markdown("### 🖥️ Preview & Output")
            
            # Preview container
            if st.session_state.code:
                with st.container():
                    st.markdown("<div class='preview-container'>", unsafe_allow_html=True)
                    preview_html = generate_manim_preview(st.session_state.code)
                    components.html(preview_html, height=250)
                    st.markdown("</div>", unsafe_allow_html=True)
            
            # Generated output display
            if st.session_state.video_data:
                # Different handling based on format type
                format_type = st.session_state.settings["format_type"]
                
                if format_type == "png_sequence":
                    st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
                    
                    # Add download button for ZIP
                    st.download_button(
                        label="⬇️ Download PNG Sequence (ZIP)",
                        data=st.session_state.video_data,
                        file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
                        mime="application/zip",
                        use_container_width=True
                    )
                elif format_type == "svg":
                    # Display SVG preview
                    try:
                        svg_data = st.session_state.video_data.decode('utf-8')
                        components.html(svg_data, height=400)
                    except Exception as e:
                        st.error(f"Error displaying SVG: {str(e)}")
                    
                    # Download button for SVG
                    st.download_button(
                        label="⬇️ Download SVG",
                        data=st.session_state.video_data,
                        file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
                        mime="image/svg+xml",
                        use_container_width=True
                    )
                else:
                    # Standard video display for MP4, GIF, WebM
                    try:
                        st.video(st.session_state.video_data, format=format_type)
                    except Exception as e:
                        st.error(f"Error displaying video: {str(e)}")
                        # Fallback for GIF if st.video fails
                        if format_type == "gif":
                            st.markdown("GIF preview:")
                            gif_b64 = base64.b64encode(st.session_state.video_data).decode()
                            st.markdown(f'<img src="data:image/gif;base64,{gif_b64}" alt="animation" style="width:100%">', unsafe_allow_html=True)
                    
                    # Add download button
                    st.download_button(
                        label=f"⬇️ Download {format_type.upper()}",
                        data=st.session_state.video_data,
                        file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
                        mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
                        use_container_width=True
                    )
            
            if st.session_state.status:
                if "Error" in st.session_state.status:
                    st.error(st.session_state.status)
                    
                    # Show troubleshooting tips
                    with st.expander("🔍 Troubleshooting Tips"):
                        st.markdown("""
                        ### Common Issues:
                        1. **Syntax Errors**: Check your Python code for any syntax issues
                        2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
                        3. **High Resolution Issues**: Try a lower quality preset for complex animations
                        4. **Memory Issues**: For 4K animations, reduce complexity or try again
                        5. **Format Issues**: Some formats require specific Manim configurations
                        6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
                        
                        ### Example Code:
                        ```python
                        from manim import *
                        
                        class MyScene(Scene):
                            def construct(self):
                                circle = Circle(color=RED)
                                self.play(Create(circle))
                                self.wait(1)
                        ```
                        """)
                else:
                    st.success(st.session_state.status)

    # AI ASSISTANT TAB
    with tabs[1]:
        st.markdown("### 🤖 AI Animation Assistant")
        
        # Check password before allowing access
        if check_password():
            # Debug section
            with st.expander("🔧 Debug Connection"):
                st.markdown("Test the AI model connection directly")
                
                if st.button("Test API Connection", key="test_api_btn"):
                    with st.spinner("Testing API connection..."):
                        try:
                            # Get token from secrets
                            token = get_secret("github_token_api")
                            if not token:
                                st.error("GitHub token not found in secrets")
                                st.stop()
                            
                            # Get model details
                            model_name = st.session_state.custom_model
                            config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
                            category = config.get("category", "Other")
                            
                            if category == "OpenAI":
                                # Use OpenAI client for GitHub AI models
                                try:
                                    from openai import OpenAI
                                except ImportError:
                                    st.error("OpenAI package not installed. Please run 'pip install openai'")
                                    st.stop()
                                
                                # Create OpenAI client with GitHub AI endpoint
                                client = OpenAI(
                                    base_url="https://models.github.ai/inference",
                                    api_key=token,
                                )
                                
                                # For GitHub AI models, ensure the model_name includes the publisher
                                # If it doesn't have a publisher prefix, add "openai/"
                                if "/" not in model_name:
                                    full_model_name = f"openai/{model_name}"
                                    st.info(f"Using full model name: {full_model_name}")
                                else:
                                    full_model_name = model_name
                                
                                # Prepare parameters based on model configuration
                                params = {
                                    "messages": [
                                        {"role": "system", "content": "You are a helpful assistant."},
                                        {"role": "user", "content": "Hello, this is a connection test."}
                                    ],
                                    "model": full_model_name
                                }
                                
                                # Add appropriate token parameter
                                token_param = config["param_name"]
                                params[token_param] = config[token_param]
                                
                                # Make API call
                                response = client.chat.completions.create(**params)
                                
                                # Check if response is valid
                                if response and response.choices and len(response.choices) > 0:
                                    test_response = response.choices[0].message.content
                                    st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
                                    
                                    # Save working connection to session state
                                    st.session_state.ai_models = {
                                        "openai_client": client,
                                        "model_name": full_model_name,  # Store the full model name
                                        "endpoint": "https://models.github.ai/inference",
                                        "last_loaded": datetime.now().isoformat(),
                                        "category": category
                                    }
                                else:
                                    st.error("❌ API returned an empty response")
                            
                            elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]:
                                # Use Azure client for Azure API models
                                try:
                                    from azure.ai.inference import ChatCompletionsClient
                                    from azure.ai.inference.models import SystemMessage, UserMessage
                                    from azure.core.credentials import AzureKeyCredential
                                except ImportError:
                                    st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'")
                                    st.stop()
                                
                                # Define endpoint
                                endpoint = "https://models.inference.ai.azure.com"
                                
                                # Prepare API parameters
                                messages = [UserMessage("Hello, this is a connection test.")]
                                api_params, config = prepare_api_params(messages, model_name)
                                
                                # Create client with appropriate API version
                                api_version = config.get("api_version")
                                if api_version:
                                    client = ChatCompletionsClient(
                                        endpoint=endpoint,
                                        credential=AzureKeyCredential(token),
                                        api_version=api_version
                                    )
                                else:
                                    client = ChatCompletionsClient(
                                        endpoint=endpoint,
                                        credential=AzureKeyCredential(token),
                                    )
                                
                                # Test with the prepared parameters
                                response = client.complete(**api_params)
                                
                                # Check if response is valid
                                if response and response.choices and len(response.choices) > 0:
                                    test_response = response.choices[0].message.content
                                    st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
                                    
                                    # Save working connection to session state
                                    st.session_state.ai_models = {
                                        "client": client,
                                        "model_name": model_name,
                                        "endpoint": endpoint,
                                        "last_loaded": datetime.now().isoformat(),
                                        "category": category,
                                        "api_version": api_version
                                    }
                                else:
                                    st.error("❌ API returned an empty response")
                            
                            else:
                                st.error(f"Unsupported model category: {category}")
                        
                        except ImportError as ie:
                            st.error(f"Module import error: {str(ie)}")
                            st.info("Try installing required packages: openai, azure-ai-inference and azure-core")
                        except Exception as e:
                            st.error(f"❌ API test failed: {str(e)}")
                            import traceback
                            st.code(traceback.format_exc())
                            
            # Model selection with enhanced UI
            st.markdown("### 🤖 Model Selection")
            st.markdown("Select an AI model for generating animation code:")

            # Group models by category for better organization
            model_categories = {}
            for model_name in MODEL_CONFIGS:
                if model_name != "default":
                    category = MODEL_CONFIGS[model_name].get("category", "Other")
                    if category not in model_categories:
                        model_categories[category] = []
                    model_categories[category].append(model_name)

            # Create tabbed interface for model categories
            category_tabs = st.tabs(sorted(model_categories.keys()))

            for i, category in enumerate(sorted(model_categories.keys())):
                with category_tabs[i]:
                    for model_name in sorted(model_categories[category]):
                        config = MODEL_CONFIGS[model_name]
                        is_selected = model_name == st.session_state.custom_model
                        warning = config.get("warning")
                        
                        # Create styled card for each model
                        warning_html = f'<p style="color: #ff9800; font-size: 0.8rem; margin-top: 5px;">⚠️ {warning}</p>' if warning else ""
                        
                        st.markdown(f"""
                        <div class="model-card {'selected-model' if is_selected else ''}">
                            <h4>{model_name}</h4>
                            <div class="model-details">
                                <p>Max Tokens: {config.get(config['param_name'], 'Unknown')}</p>
                                <p>Category: {config['category']}</p>
                                <p>API Version: {config['api_version'] if config['api_version'] else 'Default'}</p>
                                {warning_html}
                            </div>
                        </div>
                    """, unsafe_allow_html=True)
                        
                        # Button to select this model
                        button_label = "Selected ✓" if is_selected else "Select Model"
                        if st.button(button_label, key=f"model_{model_name}", disabled=is_selected):
                            st.session_state.custom_model = model_name
                            if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
                                st.session_state.ai_models['model_name'] = model_name
                            st.rerun()

            # Display current model selection
            st.info(f"🤖 **Currently using: {st.session_state.custom_model}**")

            # Add a refresh button to update model connection
            if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"):
                if st.session_state.ai_models and 'client' in st.session_state.ai_models:
                    try:
                        # Test connection with minimal prompt
                        from azure.ai.inference.models import UserMessage
                        model_name = st.session_state.custom_model
                        
                        # Prepare parameters
                        messages = [UserMessage("Hello")]
                        api_params, config = prepare_api_params(messages, model_name)
                        
                        # Check if we need a new client with specific API version
                        if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"):
                            # Create version-specific client if needed
                            token = get_secret("github_token_api")
                            from azure.ai.inference import ChatCompletionsClient
                            from azure.core.credentials import AzureKeyCredential
                            
                            client = ChatCompletionsClient(
                                endpoint=st.session_state.ai_models["endpoint"],
                                credential=AzureKeyCredential(token),
                                api_version=config["api_version"]
                            )
                            response = client.complete(**api_params)
                            
                            # Update session state with the new client
                            st.session_state.ai_models["client"] = client
                            st.session_state.ai_models["api_version"] = config["api_version"]
                        else:
                            response = st.session_state.ai_models["client"].complete(**api_params)
                            
                        st.success(f"✅ Connection to {model_name} successful!")
                        st.session_state.ai_models["model_name"] = model_name
                        
                    except Exception as e:
                        st.error(f"❌ Connection error: {str(e)}")
                        st.info("Please try the Debug Connection section to re-initialize the API connection.")
            
            # AI code generation
            if st.session_state.ai_models and "client" in st.session_state.ai_models:
                st.markdown("<div class='card'>", unsafe_allow_html=True)
                st.markdown("#### Generate Animation from Description")
                st.write("Describe the animation you want to create, or provide partial code to complete.")
                
                # Predefined animation ideas dropdown
                animation_ideas = [
                    "Select an idea...",
                    "Create a 3D animation showing a sphere morphing into a torus",
                    "Show a visual proof of the Pythagorean theorem",
                    "Visualize a Fourier transform converting a signal from time domain to frequency domain",
                    "Create an animation explaining neural network forward propagation",
                    "Illustrate the concept of integration with area under a curve"
                ]
                
                selected_idea = st.selectbox(
                    "Try one of these ideas", 
                    options=animation_ideas
                )
                
                prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
                
                code_input = st.text_area(
                    "Your Prompt or Code",
                    value=prompt_value,
                    placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
                    height=150
                )
                
                if st.button("Generate Animation Code", key="gen_ai_code"):
                    if code_input:
                        with st.spinner("AI is generating your animation code..."):
                            try:
                                # Get the client and model name
                                client = st.session_state.ai_models["client"]
                                model_name = st.session_state.ai_models["model_name"]
                                
                                # Create the prompt
                                prompt = f"""Write a complete Manim animation scene based on this code or idea:
                {code_input}
                
                The code should be a complete, working Manim animation that includes:
                - Proper Scene class definition
                - Constructor with animations
                - Proper use of self.play() for animations
                - Proper wait times between animations
                
                Here's the complete Manim code:
                """
                                
                                # Prepare API parameters
                                from azure.ai.inference.models import UserMessage
                                messages = [UserMessage(prompt)]
                                api_params, config = prepare_api_params(messages, model_name)
                                
                                # Make the API call with proper parameters
                                response = client.complete(**api_params)
                                
                                # Process the response
                                if response and response.choices and len(response.choices) > 0:
                                    completed_code = response.choices[0].message.content
                                    
                                    # Extract code from markdown if present
                                    if "```python" in completed_code:
                                        completed_code = completed_code.split("```python")[1].split("```")[0]
                                    elif "```" in completed_code:
                                        completed_code = completed_code.split("```")[1].split("```")[0]
                                    
                                    # Add Scene class if missing
                                    if "Scene" not in completed_code:
                                        completed_code = f"""from manim import *
                
class MyScene(Scene):
    def construct(self):
                        {completed_code}"""
                                    
                                    # Store the generated code
                                    st.session_state.generated_code = completed_code
                                else:
                                    st.error("Failed to generate code. API returned an empty response.")
                            except Exception as e:
                                st.error(f"Error generating code: {str(e)}")
                                import traceback
                                st.code(traceback.format_exc())
                    else:
                        st.warning("Please enter a description or prompt first")
                        
                
                # AI generated code display and actions
                if "generated_code" in st.session_state and st.session_state.generated_code:
                    st.markdown("<div class='card'>", unsafe_allow_html=True)
                    st.markdown("#### Generated Animation Code")
                    st.code(st.session_state.generated_code, language="python")
                    
                    col_ai1, col_ai2 = st.columns(2)
                    with col_ai1:
                        if st.button("Use This Code", key="use_gen_code"):
                            st.session_state.code = st.session_state.generated_code
                            st.session_state.temp_code = st.session_state.generated_code
                            # Set pending tab switch to editor tab
                            st.session_state.pending_tab_switch = 0
                            st.rerun()
                    
                    with col_ai2:
                        if st.button("Render Preview", key="render_preview"):
                            with st.spinner("Rendering preview..."):
                                video_data, status = generate_manim_video(
                                    st.session_state.generated_code, 
                                    "mp4", 
                                    "480p",  # Use lowest quality for preview
                                    ANIMATION_SPEEDS["Normal"],
                                    fps=st.session_state.settings["fps"]
                                )
                                
                                if video_data:
                                    st.video(video_data)
                                    st.download_button(
                                        label="Download Preview",
                                        data=video_data,
                                        file_name=f"manim_preview_{int(time.time())}.mp4",
                                        mime="video/mp4"
                                    )
                                else:
                                    st.error(f"Failed to generate preview: {status}")
                    st.markdown("</div>", unsafe_allow_html=True)
            else:
                st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
        else:
            st.info("Please enter the correct password to access AI features")

    # ASSETS TAB
    with tabs[2]:
        st.markdown("### 🎨 Asset Management")
        
        asset_col1, asset_col2 = st.columns([1, 1])
        
        with asset_col1:
            # Image uploader section
            st.markdown("#### 📸 Image Assets")
            st.markdown("Upload images to use in your animations:")
            
            # Allow multiple image uploads
            uploaded_images = st.file_uploader(
                "Upload Images", 
                type=["jpg", "png", "jpeg", "svg"], 
                accept_multiple_files=True,
                key="image_uploader_tab"
            )
            
            if uploaded_images:
                # Create a unique image directory if it doesn't exist
                image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
                os.makedirs(image_dir, exist_ok=True)
                
                # Process each uploaded image
                for uploaded_image in uploaded_images:
                    # Generate a unique filename and save the image
                    file_extension = uploaded_image.name.split(".")[-1]
                    unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
                    image_path = os.path.join(image_dir, unique_filename)
                    
                    with open(image_path, "wb") as f:
                        f.write(uploaded_image.getvalue())
                    
                    # Store the path in session state
                    if "image_paths" not in st.session_state:
                        st.session_state.image_paths = []
                    
                    # Check if this image was already added
                    image_already_added = False
                    for img in st.session_state.image_paths:
                        if img["name"] == uploaded_image.name:
                            image_already_added = True
                            break
                    
                    if not image_already_added:
                        st.session_state.image_paths.append({
                            "name": uploaded_image.name, 
                            "path": image_path
                        })
                
                # Display uploaded images in a grid
                st.markdown("##### Uploaded Images:")
                image_cols = st.columns(3)
                
                for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
                    with image_cols[i % 3]:
                        try:
                            img = Image.open(img_info["path"])
                            st.image(img, caption=img_info["name"], width=150)
                            
                            # Show code snippet for this specific image
                            if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
                                image_code = f"""
# Load and display image
image = ImageMobject(r"{img_info['path']}")
image.scale(2)  # Adjust size as needed
self.play(FadeIn(image))
self.wait(1)
"""
                                if not st.session_state.code:
                                    base_code = """from manim import *
class ImageScene(Scene):
    def construct(self):
"""
                                    st.session_state.code = base_code + "\n        " + image_code.replace("\n", "\n        ")
                                else:
                                    st.session_state.code += "\n" + image_code
                                
                                st.session_state.temp_code = st.session_state.code
                                st.success(f"Added {img_info['name']} to your code!")
                                
                                # Set pending tab switch to editor tab
                                st.session_state.pending_tab_switch = 0
                                st.rerun()
                        except Exception as e:
                            st.error(f"Error loading image {img_info['name']}: {e}")
            
            # Display previously uploaded images
            if st.session_state.image_paths:
                with st.expander("Previously Uploaded Images"):
                    # Group images by 3 in each row
                    for i in range(0, len(st.session_state.image_paths), 3):
                        prev_cols = st.columns(3)
                        for j in range(3):
                            if i+j < len(st.session_state.image_paths):
                                img_info = st.session_state.image_paths[i+j]
                                with prev_cols[j]:
                                    try:
                                        img = Image.open(img_info["path"])
                                        st.image(img, caption=img_info["name"], width=100)
                                        st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
                                    except:
                                        st.markdown(f"**{img_info['name']}**")
                                        st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
            
        with asset_col2:
            # Audio uploader section
            st.markdown("#### 🎵 Audio Assets")
            st.markdown("Upload audio files for background or narration:")
            
            uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
            
            if uploaded_audio:
                # Create a unique audio directory if it doesn't exist
                audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
                os.makedirs(audio_dir, exist_ok=True)
                
                # Generate a unique filename and save the audio
                file_extension = uploaded_audio.name.split(".")[-1]
                unique_filename = f"audio_{int(time.time())}.{file_extension}"
                audio_path = os.path.join(audio_dir, unique_filename)
                
                with open(audio_path, "wb") as f:
                    f.write(uploaded_audio.getvalue())
                
                # Store the path in session state
                st.session_state.audio_path = audio_path
                
                # Display audio player
                st.audio(uploaded_audio)
                
                st.markdown(f"""
                <div class="asset-card">
                    <p><strong>Audio: {uploaded_audio.name}</strong></p>
                    <p class="small-text">Path: {audio_path}</p>
                </div>
                """, unsafe_allow_html=True)
                
                # Two options for audio usage
                st.markdown("#### Add Audio to Your Animation")
                
                option = st.radio(
                    "Choose how to use audio:",
                    ["Background Audio", "Generate Audio from Text"]
                )
                
                if option == "Background Audio":
                    st.markdown("##### Code to add background audio:")
                    
                    # For with_sound decorator
                    audio_code1 = f"""
# Add this import at the top of your file
from manim.scene.scene_file_writer import SceneFileWriter
# Add this decorator before your scene class
@with_sound("{audio_path}")
class YourScene(Scene):
    def construct(self):
        # Your animation code here
"""
                    st.code(audio_code1, language="python")
                    
                    if st.button("Use This Audio in Animation", key="use_audio_btn"):
                        st.success("Audio set for next render!")
                
                elif option == "Generate Audio from Text":
                    # Text-to-speech input
                    tts_text = st.text_area(
                        "Enter text for narration",
                        placeholder="Type the narration text here...",
                        height=100
                    )
                    
                    if st.button("Create Narration", key="create_narration_btn"):
                        try:
                            # Use basic TTS (placeholder for actual implementation)
                            st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
                            st.session_state.audio_path = audio_path
                            st.success("Audio set for next render!")
                        except Exception as e:
                            st.error(f"Error creating narration: {str(e)}")

    # TIMELINE EDITOR TAB
    with tabs[3]:
        # New code for reordering animation steps
        updated_code = create_timeline_editor(st.session_state.code)
        
        # If code was modified by the timeline editor, update the session state
        if updated_code != st.session_state.code:
            st.session_state.code = updated_code
            st.session_state.temp_code = updated_code

    # EDUCATIONAL EXPORT TAB
    with tabs[4]:
        st.markdown("### 🎓 Educational Export Options")
        
        # Check if we have an animation to export
        if not st.session_state.video_data:
            st.warning("Generate an animation first before using educational export features.")
        else:
            st.markdown("Create various educational assets from your animation:")
            
            # Animation title and explanation
            animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
            
            st.markdown("#### Explanation Text")
            st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
            st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
            
            explanation_text = st.text_area(
                "Explanation (markdown supported)", 
                height=150,
                placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
            )
            
            # Export format selection
            edu_format = st.selectbox(
                "Export Format",
                options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
            )
            
            # Format-specific options
            if edu_format == "PowerPoint Presentation":
                st.info("Creates a PowerPoint file with your animation and explanation text.")
                
            elif edu_format == "Interactive HTML":
                st.info("Creates an interactive HTML webpage with playback controls and explanation.")
                include_controls = st.checkbox("Include interactive controls", value=True)
                
            elif edu_format == "Explanation Sequence PDF":
                st.info("Creates a PDF with key frames and step-by-step explanations.")
                frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
            
            # Export button
            if st.button("Export Educational Material", key="export_edu_btn"):
                with st.spinner(f"Creating {edu_format}..."):
                    # Map selected format to internal format type
                    format_map = {
                        "PowerPoint Presentation": "powerpoint",
                        "Interactive HTML": "html",
                        "Explanation Sequence PDF": "sequence"
                    }
                    
                    # Create a temporary directory for export
                    temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
                    
                    # Process the export
                    exported_data, file_type = export_to_educational_format(
                        st.session_state.video_data,
                        format_map[edu_format],
                        animation_title,
                        explanation_text,
                        temp_export_dir
                    )
                    
                    if exported_data:
                        # File extension mapping
                        ext_map = {
                            "powerpoint": "pptx",
                            "html": "html",
                            "pdf": "pdf"
                        }
                        
                        # Download button
                        ext = ext_map.get(file_type, "zip")
                        filename = f"{animation_title.replace(' ', '_')}.{ext}"
                        
                        st.success(f"{edu_format} created successfully!")
                        st.download_button(
                            label=f"⬇️ Download {edu_format}",
                            data=exported_data,
                            file_name=filename,
                            mime=f"application/{ext}",
                            use_container_width=True
                        )
                        
                        # For HTML, also offer to open in browser
                        if file_type == "html":
                            html_path = os.path.join(temp_export_dir, filename)
                            st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True)
                    else:
                        st.error(f"Failed to create {edu_format}. Check logs for details.")
                        
            # Show usage examples and tips
            with st.expander("Usage Tips"):
                st.markdown("""
                ### Educational Export Tips
                
                **PowerPoint Presentations**
                - Great for lectures and classroom presentations
                - Animation will autoplay when clicked
                - Add detailed explanations in notes section
                
                **Interactive HTML**
                - Perfect for websites and online learning platforms
                - Students can control playback speed and navigation
                - Mobile-friendly for learning on any device
                
                **Explanation Sequence**
                - Ideal for printed materials and study guides
                - Use ## headers to mark different explanation sections
                - Each section will be paired with a key frame
                """)

    # PYTHON RUNNER TAB
    with tabs[5]:
        st.markdown("### 🐍 Python Script Runner")
        st.markdown("Execute Python scripts and visualize the results directly.")
        
        # New UI elements for advanced features
        with st.expander("🔧 Advanced Python Features"):
            py_feature_col1, py_feature_col2 = st.columns(2)
            
            with py_feature_col1:
                enable_debugging = st.checkbox("Enable Debugging", value=False, key="py_debug_enable")
                enable_profiling = st.checkbox("Enable Profiling", value=False, key="py_profile_enable")
                
            with py_feature_col2:
                py_libs = st.multiselect(
                    "Additional Libraries",
                    options=["numpy", "scipy", "pandas", "matplotlib", "seaborn", "plotly", "scikit-learn", "tensorflow", "pytorch", "sympy"],
                    default=["numpy", "matplotlib"],
                    key="py_additional_libs"
                )

        # Multi-file project support
        with st.expander("📁 Multi-file Project"):
            st.markdown("Add multiple Python files to your project")
            
            # File manager
            if "py_project_files" not in st.session_state:
                st.session_state.py_project_files = {"main.py": st.session_state.python_script}
            
            # File selector
            current_file = st.selectbox(
                "Select File",
                options=list(st.session_state.py_project_files.keys()),
                key="py_current_file"
            )
            
            # New file creation
            new_file_col1, new_file_col2 = st.columns([3, 1])
            with new_file_col1:
                new_filename = st.text_input("New File Name", value="", key="py_new_filename")
            with new_file_col2:
                if st.button("Add File", key="py_add_file_btn"):
                    if new_filename and new_filename not in st.session_state.py_project_files:
                        if not new_filename.endswith(".py"):
                            new_filename += ".py"
                        st.session_state.py_project_files[new_filename] = "# New Python file\n\n"
                        st.session_state.py_current_file = new_filename
                        st.experimental_rerun()
            
            # Update the current file content in session state
            if current_file in st.session_state.py_project_files:
                st.session_state.py_project_files[current_file] = st.session_state.python_script
                # Update main script if we're editing the main file
                if current_file == "main.py":
                    st.session_state.python_script = st.session_state.python_script

        # Real-time visualization toggle
        real_time_viz = st.checkbox("Enable Real-time Visualization", value=False, key="py_realtime_viz")
        
        # Predefined example scripts
        example_scripts = {
            "Select an example...": "",
            "Basic Matplotlib Plot": """import matplotlib.pyplot as plt
import numpy as np
# Create data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
""",
            "User Input Example": """# This example demonstrates how to handle user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
# Let's get some numbers and calculate the average
num_count = int(input("How many numbers would you like to average? "))
total = 0
for i in range(num_count):
    num = float(input(f"Enter number {i+1}: "))
    total += num
average = total / num_count
print(f"The average of your {num_count} numbers is: {average}")
""",
            "Pandas DataFrame": """import pandas as pd
import numpy as np
# Create a sample dataframe
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
    'Age': [25, 30, 35, 40, 45],
    'Salary': [50000, 60000, 70000, 80000, 90000],
    'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
}
df = pd.DataFrame(data)
# Display the dataframe
print("Sample DataFrame:")
print(df)
# Basic statistics
print("\\nSummary Statistics:")
print(df.describe())
# Filtering
print("\\nEmployees older than 30:")
print(df[df['Age'] > 30])
""",
            "Seaborn Visualization": """import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# Set the style
sns.set_style("whitegrid")
# Create sample data
np.random.seed(42)
data = np.random.randn(100, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
# Create a paired plot
sns.pairplot(df, hue='category', palette='viridis')
# Create another plot
plt.figure(figsize=(10, 6))
sns.violinplot(x='category', y='A', data=df, palette='magma')
plt.title('Distribution of A by Category')
"""
        }
        
        # Select example script
        selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
        
        # Python code editor
        if selected_example != "Select an example..." and selected_example in example_scripts:
            python_code = example_scripts[selected_example]
        else:
            python_code = st.session_state.python_script
        
        if ACE_EDITOR_AVAILABLE:
            python_code = st_ace(
                value=python_code,
                language="python",
                theme="monokai",
                min_lines=15,
                key=f"python_editor_{st.session_state.editor_key}"
            )
        else:
            python_code = st.text_area(
                "Python Code",
                value=python_code,
                height=400,
                key=f"python_textarea_{st.session_state.editor_key}"
            )
        
        # Store script in session state (without clearing existing code)
        st.session_state.python_script = python_code
        
        # Check for input() calls
        input_calls = detect_input_calls(python_code)
        user_inputs = []
        
        if input_calls:
            st.markdown("### Input Values")
            st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
            
            for i, input_call in enumerate(input_calls):
                user_input = st.text_input(
                    f"{input_call['prompt']} (Line {input_call['line']})",
                    key=f"input_{i}"
                )
                user_inputs.append(user_input)
        
        # Options and execution
        col1, col2 = st.columns([2, 1])
        
        with col1:
            timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
        
        with col2:
            run_btn = st.button("▶️ Run Script", use_container_width=True)
        
        if run_btn:
            with st.spinner("Executing Python script..."):
                # Use the enhanced function
                result = run_python_script_enhanced(
                    python_code, 
                    inputs=user_inputs, 
                    timeout=timeout_seconds,
                    enable_debug=enable_debugging,
                    enable_profile=enable_profiling,
                    additional_libs=py_libs,
                    project_files=st.session_state.py_project_files if "py_project_files" in st.session_state else None,
                    realtime_viz=real_time_viz
                )
                st.session_state.python_result = result
        
        # Display results
        if st.session_state.python_result:
            display_python_script_results_enhanced(st.session_state.python_result)
            
            # Provide option to save the script
            if st.button("📄 Save This Script", key="save_script_btn"):
                # Generate a unique filename
                timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                script_filename = f"script_{timestamp}.py"
                
                # Offer download button for the script
                st.download_button(
                    label="⬇️ Download Script",
                    data=python_code,
                    file_name=script_filename,
                    mime="text/plain"
                )
        
        # Show advanced examples and tips
        with st.expander("Python Script Runner Tips"):
            st.markdown("""
            ### Python Script Runner Tips
            
            **What can I run?**
            - Any Python code that doesn't require direct UI interaction
            - Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
            - Data processing and visualization code
            - Scripts that ask for user input (now supported!)
            
            **What can't I run?**
            - Streamlit, Gradio, Dash, or other web UIs
            - Long-running operations (timeout will occur)
            - Code that requires file access outside the temporary environment
            
            **Working with visualizations:**
            - All Matplotlib/Seaborn plots will be automatically captured
            - Pandas DataFrames are detected and displayed as tables
            - Use `print()` to show text output
            
            **Handling user input:**
            - The app detects input() calls and automatically creates text fields
            - Input values you provide will be passed to the script when it runs
            - Type conversion (like int(), float()) is preserved
            
            **Adding to animations:**
            - Charts and plots can be directly added to your Manim animations
            - Generated images will be properly scaled for your animation
            - Perfect for educational content combining data and animations
            """)

    # C/C++ RUNNER TAB
    with tabs[6]:  # Assuming this is the 7th tab (index 6)
        st.markdown("### 🔧 C/C++ Runner")
        st.markdown("Write, compile, and run C/C++ code with advanced features.")
        
        # Create a tabbed interface for different C++ features
        cpp_tabs = st.tabs(["Code Editor", "Project Files", "Libraries", "Build Settings", "Debugger"])
        
        with cpp_tabs[0]:  # Code Editor tab
            # Compiler options
            cpp_col1, cpp_col2, cpp_col3 = st.columns(3)
            
            with cpp_col1:
                compiler = st.selectbox(
                    "Compiler",
                    options=["g++", "clang++", "gcc", "msvc"],
                    index=["g++", "clang++", "gcc", "msvc"].index(st.session_state.cpp_settings["compiler"]),
                    key="cpp_compiler"
                )
                st.session_state.cpp_settings["compiler"] = compiler
            
            with cpp_col2:
                std_version = st.selectbox(
                    "Standard",
                    options=["c++11", "c++14", "c++17", "c++20"],
                    index=["c++11", "c++14", "c++17", "c++20"].index(st.session_state.cpp_settings["std"]),
                    key="cpp_std"
                )
                st.session_state.cpp_settings["std"] = std_version
            
            with cpp_col3:
                optimization = st.selectbox(
                    "Optimization",
                    options=["-O0", "-O1", "-O2", "-O3"],
                    index=["-O0", "-O1", "-O2", "-O3"].index(st.session_state.cpp_settings["optimization"]),
                    key="cpp_opt"
                )
                st.session_state.cpp_settings["optimization"] = optimization
            
            # Example code templates
            cpp_examples = {
                "Select an example...": "",
                "Hello World": """#include <iostream>

int main() {
    std::cout << "Hello, World!" << std::endl;
    return 0;
}""",
                "Calculate Prime Numbers": """#include <iostream>
#include <vector>
#include <chrono>

bool isPrime(int n) {
    if (n <= 1) return false;
    if (n <= 3) return true;
    if (n % 2 == 0 || n % 3 == 0) return false;
    
    for (int i = 5; i * i <= n; i += 6) {
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
    return true;
}

int main() {
    int limit = 10000;
    std::vector<int> primes;
    
    auto start = std::chrono::high_resolution_clock::now();
    
    for (int i = 2; i <= limit; i++) {
        if (isPrime(i)) {
            primes.push_back(i);
        }
    }
    
    auto end = std::chrono::high_resolution_clock::now();
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
    
    std::cout << "Found " << primes.size() << " prime numbers up to " << limit << std::endl;
    std::cout << "First 10 primes: ";
    for (int i = 0; i < std::min(10, (int)primes.size()); i++) {
        std::cout << primes[i] << " ";
    }
    std::cout << std::endl;
    std::cout << "Computation time: " << duration.count() << " ms" << std::endl;
    
    return 0;
}""",
                "Image Generation (PPM)": """#include <iostream>
#include <fstream>
#include <cmath>

// Generate a simple gradient image in PPM format
int main() {
    const int width = 800;
    const int height = 600;
    
    // Create a PPM file (P3 format - ASCII)
    std::ofstream image("output.ppm");
    image << "P3\\n" << width << " " << height << "\\n255\\n";
    
    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            // Create a gradient based on position
            int r = static_cast<int>(255.0 * x / width);
            int g = static_cast<int>(255.0 * y / height);
            int b = static_cast<int>(255.0 * (x + y) / (width + height));
            
            // Write RGB values
            image << r << " " << g << " " << b << "\\n";
        }
    }
    
    image.close();
    std::cout << "Generated gradient image: output.ppm" << std::endl;
    return 0;
}""",
                "Data Processing with Vectors": """#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <random>
#include <iomanip>

int main() {
    const int data_size = 1000;
    
    // Generate random data
    std::vector<double> data(data_size);
    
    std::random_device rd;
    std::mt19937 gen(rd());
    std::normal_distribution<double> dist(100.0, 15.0);
    
    std::cout << "Generating " << data_size << " random values..." << std::endl;
    for (auto& value : data) {
        value = dist(gen);
    }
    
    // Calculate statistics
    double sum = std::accumulate(data.begin(), data.end(), 0.0);
    double mean = sum / data.size();
    
    std::vector<double> deviations(data_size);
    std::transform(data.begin(), data.end(), deviations.begin(),
                  [mean](double x) { return x - mean; });
    
    double sq_sum = std::inner_product(deviations.begin(), deviations.end(),
                                      deviations.begin(), 0.0);
    double stddev = std::sqrt(sq_sum / data.size());
    
    // Sort data
    std::sort(data.begin(), data.end());
    double median = data.size() % 2 == 0 ?
                   (data[data.size()/2 - 1] + data[data.size()/2]) / 2 :
                   data[data.size()/2];
    
    // Output results
    std::cout << std::fixed << std::setprecision(2);
    std::cout << "Data analysis results:" << std::endl;
    std::cout << "Mean:   " << mean << std::endl;
    std::cout << "Median: " << median << std::endl;
    std::cout << "StdDev: " << stddev << std::endl;
    std::cout << "Min:    " << data.front() << std::endl;
    std::cout << "Max:    " << data.back() << std::endl;
    
    return 0;
}""",
                "Interactive User Input": """#include <iostream>
#include <string>
#include <vector>

int main() {
    std::string name;
    int age;
    
    // Get user input
    std::cout << "Enter your name: ";
    std::getline(std::cin, name);
    
    std::cout << "Enter your age: ";
    std::cin >> age;
    std::cin.ignore(); // Clear the newline from the buffer
    
    std::cout << "Hello, " << name << "! ";
    std::cout << "In 10 years, you will be " << age + 10 << " years old." << std::endl;
    
    // Get multiple numbers
    int num_count;
    std::cout << "How many numbers would you like to enter? ";
    std::cin >> num_count;
    
    std::vector<double> numbers;
    double total = 0.0;
    
    for (int i = 0; i < num_count; i++) {
        double num;
        std::cout << "Enter number " << (i+1) << ": ";
        std::cin >> num;
        numbers.push_back(num);
        total += num;
    }
    
    if (!numbers.empty()) {
        double average = total / numbers.size();
        std::cout << "The average of your numbers is: " << average << std::endl;
    }
    
    return 0;
}""",
                "Eigen Matrix Operations": """#include <iostream>
#include <Eigen/Dense>

using Eigen::MatrixXd;
using Eigen::VectorXd;

int main() {
    // Create a 3x3 matrix
    MatrixXd A(3, 3);
    A << 1, 2, 3,
         4, 5, 6,
         7, 8, 9;
    
    // Create a 3D vector
    VectorXd b(3);
    b << 1, 2, 3;
    
    // Perform operations
    std::cout << "Matrix A:\\n" << A << std::endl;
    std::cout << "Vector b:\\n" << b << std::endl;
    std::cout << "A * b:\\n" << A * b << std::endl;
    std::cout << "A transpose:\\n" << A.transpose() << std::endl;
    
    // Solve a linear system Ax = b
    VectorXd x = A.colPivHouseholderQr().solve(b);
    std::cout << "Solution to Ax = b:\\n" << x << std::endl;
    
    // Compute eigenvalues and eigenvectors
    Eigen::EigenSolver<MatrixXd> solver(A);
    std::cout << "Eigenvalues:\\n" << solver.eigenvalues() << std::endl;
    std::cout << "Eigenvectors:\\n" << solver.eigenvectors() << std::endl;
    
    return 0;
}""",
                "OpenCV Image Processing": """#include <iostream>
#include <opencv2/opencv.hpp>

int main() {
    // Load an image (this will create a blank image if no file is found)
    cv::Mat image = cv::Mat::zeros(500, 500, CV_8UC3);
    
    // Draw a circle
    cv::circle(image, cv::Point(250, 250), 100, cv::Scalar(0, 0, 255), 5);
    
    // Draw a rectangle
    cv::rectangle(image, cv::Point(150, 150), cv::Point(350, 350), cv::Scalar(0, 255, 0), 3);
    
    // Add text
    cv::putText(image, "OpenCV Example", cv::Point(100, 50), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2);
    
    // Save the image
    cv::imwrite("opencv_output.png", image);
    
    std::cout << "Image created and saved as 'opencv_output.png'" << std::endl;
    
    return 0;
}"""
            }
            
            # Example selection
            selected_cpp_example = st.selectbox("Example code:", options=list(cpp_examples.keys()))
            
            # Set initial code from example or session state
            if selected_cpp_example != "Select an example..." and cpp_examples[selected_cpp_example] != "":
                initial_code = cpp_examples[selected_cpp_example]
            else:
                if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
                    initial_code = st.session_state.cpp_project_files[st.session_state.cpp_current_file]
                else:
                    initial_code = st.session_state.cpp_code
            
            # Code editor for C++
            if ACE_EDITOR_AVAILABLE:
                cpp_code = st_ace(
                    value=initial_code,
                    language="c_cpp",
                    theme="monokai",
                    min_lines=15,
                    key=f"cpp_editor_{st.session_state.editor_key}"
                )
            else:
                cpp_code = st.text_area(
                    "C/C++ Code",
                    value=initial_code,
                    height=400,
                    key=f"cpp_textarea_{st.session_state.editor_key}"
                )
            
            # Save the code to session state
            st.session_state.cpp_code = cpp_code
            
            # Update project files
            if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
                st.session_state.cpp_project_files[st.session_state.cpp_current_file] = cpp_code
            
            # Check for standard input in the code
            has_cin = "std::cin" in cpp_code or "cin" in cpp_code
            
            # Input values section if needed
            cpp_inputs = []
            if has_cin:
                with st.expander("Input Values"):
                    st.info("This program uses standard input. Please provide input values below:")
                    
                    num_inputs = st.number_input("Number of input lines:", min_value=1, max_value=10, value=1)
                    for i in range(int(num_inputs)):
                        cpp_input = st.text_input(f"Input line {i+1}:", key=f"cpp_input_{i}")
                        cpp_inputs.append(cpp_input)
        
        with cpp_tabs[1]:  # Project Files tab
            st.markdown("### Project Files")
            st.markdown("Manage multiple source files for your C/C++ project")
            
            # File selector
            cpp_current_file = st.selectbox(
                "Current File",
                options=list(st.session_state.cpp_project_files.keys()),
                index=list(st.session_state.cpp_project_files.keys()).index(st.session_state.cpp_current_file) if "cpp_current_file" in st.session_state else 0,
                key="cpp_file_selector"
            )
            
            # Update the current file in session state
            st.session_state.cpp_current_file = cpp_current_file
            
            # Create new file form
            new_file_col1, new_file_col2 = st.columns([3, 1])
            with new_file_col1:
                new_cpp_filename = st.text_input("New File Name", placeholder="e.g., utils.h, helper.cpp", key="new_cpp_file")
            with new_file_col2:
                if st.button("Add File", key="add_cpp_file"):
                    if new_cpp_filename and new_cpp_filename not in st.session_state.cpp_project_files:
                        # Add file extension if missing
                        if not new_cpp_filename.endswith((".cpp", ".h", ".hpp", ".c", ".cc")):
                            new_cpp_filename += ".cpp"
                        
                        # Create a template based on file type
                        if new_cpp_filename.endswith((".h", ".hpp")):
                            template = f"""#ifndef {new_cpp_filename.split('.')[0].upper()}_H
#define {new_cpp_filename.split('.')[0].upper()}_H

// Your header content here

#endif // {new_cpp_filename.split('.')[0].upper()}_H
"""
                        else:
                            template = f"""#include <iostream>

// Your implementation here

"""
                        
                        st.session_state.cpp_project_files[new_cpp_filename] = template
                        st.session_state.cpp_current_file = new_cpp_filename
                        st.experimental_rerun()
            
            # File actions
            file_action_col1, file_action_col2 = st.columns(2)
            with file_action_col1:
                if st.button("Delete Current File", key="delete_cpp_file"):
                    if cpp_current_file != "main.cpp" and cpp_current_file in st.session_state.cpp_project_files:
                        del st.session_state.cpp_project_files[cpp_current_file]
                        st.session_state.cpp_current_file = "main.cpp"
                        st.experimental_rerun()
                    else:
                        st.error("Cannot delete main.cpp")
            
            with file_action_col2:
                if st.button("Download Project Files", key="download_cpp_project"):
                    # Create a zip file with all project files
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp:
                        with zipfile.ZipFile(tmp.name, 'w') as zipf:
                            for filename, content in st.session_state.cpp_project_files.items():
                                # Add file to zip
                                zipf.writestr(filename, content)
                        
                        # Download the zip file
                        with open(tmp.name, "rb") as f:
                            zip_data = f.read()
                            
                        st.download_button(
                            label="Download ZIP",
                            data=zip_data,
                            file_name="cpp_project.zip",
                            mime="application/zip"
                        )
            
            # Project structure visualization
            st.markdown("### Project Structure")
            
            # Group files by type
            headers = []
            sources = []
            others = []
            
            for filename in st.session_state.cpp_project_files:
                if filename.endswith((".h", ".hpp")):
                    headers.append(filename)
                elif filename.endswith((".cpp", ".c", ".cc")):
                    sources.append(filename)
                else:
                    others.append(filename)
            
            # Display structure
            st.markdown("#### Header Files")
            if headers:
                for header in sorted(headers):
                    st.markdown(f"- `{header}`")
            else:
                st.markdown("No header files")
            
            st.markdown("#### Source Files")
            if sources:
                for source in sorted(sources):
                    st.markdown(f"- `{source}`")
            else:
                st.markdown("No source files")
            
            if others:
                st.markdown("#### Other Files")
                for other in sorted(others):
                    st.markdown(f"- `{other}`")
                    
        with cpp_tabs[2]:  # Libraries tab
            st.markdown("### Library Manager")
            st.markdown("Configure libraries and dependencies for your C/C++ project")
            
            # Common library selection
            common_libs = st.multiselect(
                "Common Libraries",
                options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL", "stb_image", "nlohmann_json", "fmt"],
                default=st.session_state.cpp_settings.get("libraries", []),
                key="cpp_common_libs"
            )
            
            # Update libraries in settings
            st.session_state.cpp_settings["libraries"] = common_libs
            
            # Include paths
            st.markdown("#### Include Paths")
            include_paths = st.text_area(
                "Include Directories (one per line)",
                value="\n".join(st.session_state.cpp_settings.get("include_paths", [])),
                height=100,
                key="cpp_include_paths"
            )
            
            # Update include paths in settings
            st.session_state.cpp_settings["include_paths"] = [path for path in include_paths.split("\n") if path.strip()]
            
            # Library paths
            st.markdown("#### Library Paths")
            library_paths = st.text_area(
                "Library Directories (one per line)",
                value="\n".join(st.session_state.cpp_settings.get("library_paths", [])),
                height=100,
                key="cpp_library_paths"
            )
            
            # Update library paths in settings
            st.session_state.cpp_settings["library_paths"] = [path for path in library_paths.split("\n") if path.strip()]
            
            # Additional libraries
            st.markdown("#### Additional Libraries")
            additional_libs = st.text_area(
                "Additional Libraries (one per line, without -l prefix)",
                value="\n".join(st.session_state.cpp_settings.get("additional_libs", [])),
                height=100,
                key="cpp_additional_libs"
            )
            
            # Update additional libraries in settings
            st.session_state.cpp_settings["additional_libs"] = [lib for lib in additional_libs.split("\n") if lib.strip()]
            
            # Library detection
            if st.button("Detect Installed Libraries", key="detect_libs"):
                with st.spinner("Detecting libraries..."):
                    # This is a placeholder - in a real implementation, you'd scan the system
                    detected_libs = []
                    
                    # Check for Eigen
                    try:
                        result = subprocess.run(
                            ["find", "/usr/include", "-name", "Eigen"],
                            capture_output=True,
                            text=True,
                            timeout=5
                        )
                        if "Eigen" in result.stdout:
                            detected_libs.append("Eigen")
                    except:
                        pass
                    
                    # Check for Boost
                    try:
                        result = subprocess.run(
                            ["find", "/usr/include", "-name", "boost"],
                            capture_output=True,
                            text=True,
                            timeout=5
                        )
                        if "boost" in result.stdout:
                            detected_libs.append("Boost")
                    except:
                        pass
                    
                    # Check for OpenCV
                    try:
                        result = subprocess.run(
                            ["pkg-config", "--exists", "opencv4"],
                            capture_output=True,
                            timeout=5
                        )
                        if result.returncode == 0:
                            detected_libs.append("OpenCV")
                    except:
                        pass
                    
                    # Display detected libraries
                    if detected_libs:
                        st.success(f"Detected libraries: {', '.join(detected_libs)}")
                        # Add to selected libraries if not already present
                        for lib in detected_libs:
                            if lib not in st.session_state.cpp_settings["libraries"]:
                                st.session_state.cpp_settings["libraries"].append(lib)
                    else:
                        st.warning("No common libraries detected")
        
        with cpp_tabs[3]:  # Build Settings tab
            st.markdown("### Build Configuration")
            
            # Build type
            build_type = st.radio(
                "Build Type",
                options=["Debug", "Release", "RelWithDebInfo"],
                index=1,  # Default to Release
                key="cpp_build_type"
            )
            
            # Update build type in settings
            st.session_state.cpp_settings["build_type"] = build_type
            
            # Advanced compiler flags
            st.markdown("#### Advanced Compiler Flags")
            advanced_flags = st.text_area(
                "Additional Compiler Flags",
                value=st.session_state.cpp_settings.get("advanced_flags", ""),
                height=100,
                key="cpp_advanced_flags"
            )
            
            # Update advanced flags in settings
            st.session_state.cpp_settings["advanced_flags"] = advanced_flags
            
            # Preprocessor definitions
            st.markdown("#### Preprocessor Definitions")
            definitions = st.text_area(
                "Preprocessor Definitions (one per line)",
                value="\n".join(st.session_state.cpp_settings.get("definitions", [])),
                height=100,
                placeholder="Example:\nDEBUG\nVERSION=1.0\nUSE_FEATURE_X",
                key="cpp_definitions"
            )
            
            # Update definitions in settings
            st.session_state.cpp_settings["definitions"] = [d for d in definitions.split("\n") if d.strip()]
            
            # Generate CMakeLists.txt
            if st.button("Generate CMakeLists.txt", key="gen_cmake"):
                # Create CMakeLists.txt content
                cmake_content = f"""cmake_minimum_required(VERSION 3.10)
project(ManimCppProject)

set(CMAKE_CXX_STANDARD {st.session_state.cpp_settings["std"].replace("c++", "")})
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

# Build type
set(CMAKE_BUILD_TYPE {build_type})

# Preprocessor definitions
"""
                
                # Add definitions
                for definition in st.session_state.cpp_settings.get("definitions", []):
                    if "=" in definition:
                        name, value = definition.split("=", 1)
                        cmake_content += f'add_definitions(-D{name}="{value}")\n'
                    else:
                        cmake_content += f"add_definitions(-D{definition})\n"
                
                # Add include paths
                if st.session_state.cpp_settings.get("include_paths", []):
                    cmake_content += "\n# Include directories\n"
                    for path in st.session_state.cpp_settings["include_paths"]:
                        cmake_content += f"include_directories({path})\n"
                
                # Add library paths
                if st.session_state.cpp_settings.get("library_paths", []):
                    cmake_content += "\n# Library directories\n"
                    for path in st.session_state.cpp_settings["library_paths"]:
                        cmake_content += f"link_directories({path})\n"
                
                # Add common libraries
                if "Eigen" in st.session_state.cpp_settings.get("libraries", []):
                    cmake_content += "\n# Eigen\n"
                    cmake_content += "find_package(Eigen3 REQUIRED)\n"
                    cmake_content += "include_directories(${EIGEN3_INCLUDE_DIR})\n"
                
                if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
                    cmake_content += "\n# OpenCV\n"
                    cmake_content += "find_package(OpenCV REQUIRED)\n"
                    cmake_content += "include_directories(${OpenCV_INCLUDE_DIRS})\n"
                
                if "Boost" in st.session_state.cpp_settings.get("libraries", []):
                    cmake_content += "\n# Boost\n"
                    cmake_content += "find_package(Boost REQUIRED)\n"
                    cmake_content += "include_directories(${Boost_INCLUDE_DIRS})\n"
                
                # Add source files
                cmake_content += "\n# Source files\n"
                source_files = [f for f in st.session_state.cpp_project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
                cmake_content += "add_executable(main\n"
                for src in source_files:
                    cmake_content += f"    {src}\n"
                cmake_content += ")\n"
                
                # Add libraries to link
                cmake_content += "\n# Link libraries\n"
                cmake_content += "target_link_libraries(main\n"
                
                if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
                    cmake_content += "    ${OpenCV_LIBS}\n"
                
                if "Boost" in st.session_state.cpp_settings.get("libraries", []):
                    cmake_content += "    ${Boost_LIBRARIES}\n"
                
                # Additional libraries
                for lib in st.session_state.cpp_settings.get("additional_libs", []):
                    cmake_content += f"    {lib}\n"
                
                cmake_content += ")\n"
                
                # Save CMakeLists.txt to project files
                st.session_state.cpp_project_files["CMakeLists.txt"] = cmake_content
                
                # Show the generated file
                st.success("CMakeLists.txt generated!")
                st.code(cmake_content, language="cmake")
                
        with cpp_tabs[4]:  # Debugger tab
            st.markdown("### C++ Debugger")
            st.markdown("Debug your C++ code with breakpoints and variable inspection")
            
            # Enable debugging
            enable_cpp_debug = st.checkbox("Enable Debugging", value=False, key="cpp_debug_enable")
            
            if enable_cpp_debug:
                # Breakpoints
                st.markdown("#### Breakpoints")
                st.markdown("Enter line numbers for breakpoints (one per line)")
                
                breakpoints = st.text_area(
                    "Breakpoints",
                    placeholder="Example:\n10\n15\n20",
                    height=100,
                    key="cpp_breakpoints"
                )
                
                breakpoint_lines = []
                for line in breakpoints.split("\n"):
                    try:
                        line_num = int(line.strip())
                        if line_num > 0:
                            breakpoint_lines.append(line_num)
                    except:
                        pass
                
                # Watch variables
                st.markdown("#### Watch Variables")
                st.markdown("Enter variable names to watch (one per line)")
                
                watch_vars = st.text_area(
                    "Watch Variables",
                    placeholder="Example:\ni\nsum\nresult",
                    height=100,
                    key="cpp_watch_vars"
                )
                
                watch_variables = [var.strip() for var in watch_vars.split("\n") if var.strip()]
        
        # Compilation and execution options
        st.markdown("### Run Configuration")
        
        run_options_col1, run_options_col2 = st.columns(2)
        
        with run_options_col1:
            cpp_timeout = st.slider("Execution Timeout (seconds)", 1, 60, 10)
        
        with run_options_col2:
            compile_btn = st.button("🛠️ Compile and Run", use_container_width=True)
        
        # Compile and run the C++ code
        if compile_btn:
            with st.spinner("Compiling C++ code..."):
                cpp_code_to_compile = st.session_state.cpp_code
                if "cpp_project_files" in st.session_state and st.session_state.cpp_project_files:
                    # Use project files
                    executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
                        cpp_code_to_compile, 
                        st.session_state.cpp_settings,
                        project_files=st.session_state.cpp_project_files,
                        enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
                        breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
                        watch_vars=watch_variables if "watch_variables" in locals() else None
                    )
                else:
                    # Use single file
                    executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
                        cpp_code_to_compile, 
                        st.session_state.cpp_settings,
                        enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
                        breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
                        watch_vars=watch_variables if "watch_variables" in locals() else None
                    )
                
                if compile_error:
                    st.error("Compilation Error:")
                    st.code(compile_error, language="bash")
                else:
                    st.success("Compilation successful!")
                    
                    with st.spinner("Running program..."):
                        result = run_cpp_executable_enhanced(
                            executable_path,
                            temp_dir,
                            inputs=cpp_inputs if "cpp_inputs" in locals() else None,
                            timeout=cpp_timeout,
                            enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
                            breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
                            watch_vars=watch_variables if "watch_variables" in locals() else None
                        )
                        
                        st.session_state.cpp_result = result
        
        # Display results
        if "cpp_result" in st.session_state and st.session_state.cpp_result:
            result = st.session_state.cpp_result
            
            st.markdown("### Results")
            
            # Execution information
            info_cols = st.columns(3)
            with info_cols[0]:
                st.info(f"Execution Time: {result['execution_time']:.3f} seconds")
            
            with info_cols[1]:
                if result.get("memory_usage"):
                    st.info(f"Memory Usage: {result['memory_usage']:.2f} MB")
            
            with info_cols[2]:
                if result["exception"]:
                    st.error(f"Exception: {result['exception']}")
            
            # Show debug output if available
            if result.get("debug_output"):
                with st.expander("Debug Output", expanded=True):
                    st.code(result["debug_output"], language="bash")
            
            # Result tabs
            result_tabs = st.tabs(["Output", "Images", "Manim Integration"])
            
            with result_tabs[0]:  # Output tab
                # Show stdout if any
                if result["stdout"]:
                    st.markdown("#### Standard Output")
                    st.code(result["stdout"], language="bash")
                
                # Show stderr if any
                if result["stderr"]:
                    st.markdown("#### Standard Error")
                    st.code(result["stderr"], language="bash")
            
            with result_tabs[1]:  # Images tab
                # Show images if any
                if result["images"]:
                    st.markdown("#### Generated Images")
                    img_cols = st.columns(min(3, len(result["images"])))
                    
                    for i, img in enumerate(result["images"]):
                        with img_cols[i % len(img_cols)]:
                            st.image(img["data"], caption=img["name"])
                else:
                    st.info("No images were generated by the program.")
            
            with result_tabs[2]:  # Manim Integration tab
                st.markdown("#### Integrate C++ Results with Manim")
                
                # Create options for integration
                integration_type = st.radio(
                    "Integration Type",
                    options=["Data Visualization", "Image Import", "Animation Sequence"],
                    key="cpp_integration_type"
                )
                
                if integration_type == "Data Visualization":
                    # Extract numerical data from stdout if possible
                    lines = result["stdout"].strip().split("\n")
                    data_options = []
                    
                    for i, line in enumerate(lines):
                        # Check if line contains numbers
                        numbers = []
                        try:
                            # Try to extract numbers from the line
                            numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
                            if numbers:
                                data_options.append(f"Line {i+1}: {line[:30]}{'...' if len(line) > 30 else ''}")
                        except:
                            pass
                    
                    if data_options:
                        selected_data_line = st.selectbox(
                            "Select Data to Visualize",
                            options=["Select a line..."] + data_options,
                            key="cpp_data_line"
                        )
                        
                        if selected_data_line != "Select a line...":
                            line_idx = int(selected_data_line.split(":")[0].replace("Line ", "")) - 1
                            line = lines[line_idx]
                            
                            # Extract numbers
                            try:
                                numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
                                
                                # Preview the data
                                st.markdown(f"**Extracted Data:** {numbers}")
                                
                                # Create visualization code
                                if st.button("Create Manim Visualization", key="cpp_create_viz"):
                                    viz_code = f"""
# Visualize data from C++ output
values = {numbers}
axes = Axes(
    x_range=[0, {len(numbers)}, 1],
    y_range=[{min(numbers) if numbers else 0}, {max(numbers) if numbers else 10}, {(max(numbers)-min(numbers))/10 if numbers and max(numbers) > min(numbers) else 1}],
    axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(values)]
dots = VGroup(*[Dot(point, color=RED) for point in points])
graph = VMobject(color=YELLOW)
graph.set_points_as_corners(points)

self.play(Create(axes))
self.play(Create(dots), run_time=2)
self.play(Create(graph), run_time=2)
self.wait(1)
"""
                                    if st.session_state.code:
                                        st.session_state.code += "\n" + viz_code
                                    else:
                                        st.session_state.code = f"""from manim import *
class CppDataVisualizationScene(Scene):
    def construct(self):
        {viz_code}
"""
                                    st.session_state.temp_code = st.session_state.code
                                    st.success("Added C++ data visualization to your Manim code!")
                                    # Set pending tab switch to editor tab
                                    st.session_state.pending_tab_switch = 0
                                    st.rerun()
                            except Exception as e:
                                st.error(f"Error extracting numbers: {str(e)}")
                    else:
                        st.warning("No numeric data detected in the output.")
                
                elif integration_type == "Image Import":
                    # Handle image import
                    if result["images"]:
                        st.markdown("#### Select Images to Import")
                        
                        for i, img in enumerate(result["images"]):
                            st.markdown(f"**{img['name']}**")
                            st.image(img["data"], width=300)
                            
                            if st.button(f"Use in Manim", key=f"use_cpp_img_{i}"):
                                # Save image to a temporary file
                                with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{img['name']}") as tmp:
                                    tmp.write(img["data"])
                                    img_path = tmp.name
                                
                                # Generate Manim code
                                image_code = f"""
# Load and display image generated from C++
cpp_image = ImageMobject(r"{img_path}")
cpp_image.scale(2)  # Adjust size as needed
self.play(FadeIn(cpp_image))
self.wait(1)
"""
                                if st.session_state.code:
                                    st.session_state.code += "\n" + image_code
                                else:
                                    st.session_state.code = f"""from manim import *
class CppImageScene(Scene):
    def construct(self):
        {image_code}
"""
                                st.session_state.temp_code = st.session_state.code
                                st.success(f"Added C++ generated image to your Manim code!")
                                st.session_state.pending_tab_switch = 0  # Switch to editor tab
                                st.rerun()
                    else:
                        st.warning("No images were generated by the C++ program.")
                
                elif integration_type == "Animation Sequence":
                    st.markdown("#### Create Animation Sequence")
                    st.info("This will create a Manim animation that visualizes the execution of your C++ program.")
                    
                    # Animation type options
                    animation_style = st.selectbox(
                        "Animation Style",
                        options=["Algorithm Visualization", "Data Flow", "Memory Model"],
                        key="cpp_anim_style"
                    )
                    
                    if st.button("Generate Animation Sequence", key="cpp_gen_anim_seq"):
                        # Create different animations based on selected style
                        if animation_style == "Algorithm Visualization":
                            # Example code for algorithm visualization
                            algo_code = f"""
# C++ Algorithm Visualization
title = Text("C++ Algorithm Visualization")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)

# Create an array representation
values = [5, 2, 8, 1, 9, 3, 7, 4, 6]  # Example values
squares = VGroup(*[Square(side_length=0.7, fill_opacity=0.8, fill_color=BLUE) for _ in values])
squares.arrange(RIGHT, buff=0.1)
labels = VGroup(*[Text(str(v), font_size=24) for v in values])
for label, square in zip(labels, squares):
    label.move_to(square.get_center())

array = VGroup(squares, labels)
array_label = Text("Array", font_size=20).next_to(array, UP)
self.play(FadeIn(array), Write(array_label))
self.wait(1)

# Simulate sorting algorithm
for i in range(len(values)-1):
    # Highlight current element
    self.play(squares[i].animate.set_fill(RED))
    
    for j in range(i+1, len(values)):
        # Highlight comparison element
        self.play(squares[j].animate.set_fill(YELLOW))
        
        # Simulate comparison
        if values[i] > values[j]:
            # Swap animation
            self.play(
                labels[i].animate.move_to(squares[j].get_center()),
                labels[j].animate.move_to(squares[i].get_center())
            )
            
            # Update values and labels
            labels[i], labels[j] = labels[j], labels[i]
            values[i], values[j] = values[j], values[i]
        
        # Reset comparison element
        self.play(squares[j].animate.set_fill(BLUE))
    
    # Mark current element as processed
    self.play(squares[i].animate.set_fill(GREEN))

# Mark the last element as processed
self.play(squares[-1].animate.set_fill(GREEN))

# Show sorted array
sorted_label = Text("Sorted Array", font_size=20).next_to(array, DOWN)
self.play(Write(sorted_label))
self.wait(2)
"""
                            if st.session_state.code:
                                st.session_state.code += "\n" + algo_code
                            else:
                                st.session_state.code = f"""from manim import *
class CppAlgorithmScene(Scene):
    def construct(self):
        {algo_code}
"""
                            st.session_state.temp_code = st.session_state.code
                            st.success("Added C++ algorithm visualization to your Manim code!")
                            st.session_state.pending_tab_switch = 0  # Switch to editor tab
                            st.rerun()
                        
                        elif animation_style == "Data Flow":
                            # Example code for data flow visualization
                            data_flow_code = f"""
# C++ Data Flow Visualization
title = Text("C++ Data Flow")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)

# Create nodes for data flow
input_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=BLUE)
process_node = Square(side_length=1, fill_opacity=0.8, fill_color=GREEN)
output_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=RED)

# Position nodes
input_node.move_to(LEFT*4)
process_node.move_to(ORIGIN)
output_node.move_to(RIGHT*4)

# Add labels
input_label = Text("Input", font_size=20).next_to(input_node, DOWN)
process_label = Text("Process", font_size=20).next_to(process_node, DOWN)
output_label = Text("Output", font_size=20).next_to(output_node, DOWN)

# Create arrows
arrow1 = Arrow(input_node.get_right(), process_node.get_left(), buff=0.2)
arrow2 = Arrow(process_node.get_right(), output_node.get_left(), buff=0.2)

# Display nodes and arrows
self.play(FadeIn(input_node), Write(input_label))
self.wait(0.5)
self.play(FadeIn(process_node), Write(process_label))
self.wait(0.5)
self.play(FadeIn(output_node), Write(output_label))
self.wait(0.5)
self.play(Create(arrow1), Create(arrow2))
self.wait(1)

# Simulate data flow
data = Text("Data", font_size=16).move_to(input_node.get_center())
self.play(FadeIn(data))
self.wait(0.5)

# Move data along the flow
self.play(data.animate.move_to(arrow1.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(process_node.get_center()))
self.wait(0.5)
transformed_data = Text("Processed", font_size=16, color=YELLOW)
transformed_data.move_to(process_node.get_center())
self.play(Transform(data, transformed_data))
self.wait(0.5)
self.play(data.animate.move_to(arrow2.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(output_node.get_center()))
self.wait(1)

result_text = Text("Final Result", font_size=24).to_edge(DOWN)
self.play(Write(result_text))
self.wait(2)
"""
                            if st.session_state.code:
                                st.session_state.code += "\n" + data_flow_code
                            else:
                                st.session_state.code = f"""from manim import *
class CppDataFlowScene(Scene):
    def construct(self):
        {data_flow_code}
"""
                            st.session_state.temp_code = st.session_state.code
                            st.success("Added C++ data flow visualization to your Manim code!")
                            st.session_state.pending_tab_switch = 0  # Switch to editor tab
                            st.rerun()
                        
                        elif animation_style == "Memory Model":
                            # Example code for memory model visualization
                            memory_code = f"""
# C++ Memory Model Visualization
title = Text("C++ Memory Model")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)

# Create memory blocks
stack_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=BLUE)
stack_rect.move_to(LEFT*3.5)
stack_label = Text("Stack", font_size=20).next_to(stack_rect, UP)

heap_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=RED)
heap_rect.move_to(RIGHT*3.5)
heap_label = Text("Heap", font_size=20).next_to(heap_rect, UP)

# Display memory areas
self.play(
    Create(stack_rect), Write(stack_label),
    Create(heap_rect), Write(heap_label)
)
self.wait(1)

# Create variables on the stack
int_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_C)
int_var.move_to(stack_rect.get_center() + UP*1)
int_label = Text("int x = 5", font_size=16).next_to(int_var, RIGHT)

pointer_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_D)
pointer_var.move_to(stack_rect.get_center())
pointer_label = Text("int* ptr", font_size=16).next_to(pointer_var, RIGHT)

# Display stack variables
self.play(FadeIn(int_var), Write(int_label))
self.wait(0.5)
self.play(FadeIn(pointer_var), Write(pointer_label))
self.wait(1)

# Create heap allocation
heap_alloc = Rectangle(height=0.8, width=2, fill_opacity=0.8, fill_color=RED_C)
heap_alloc.move_to(heap_rect.get_center() + UP*0.5)
heap_label = Text("new int[4]", font_size=16).next_to(heap_alloc, LEFT)

# Display heap allocation
self.play(FadeIn(heap_alloc), Write(heap_label))
self.wait(1)

# Create arrow from pointer to heap
arrow = Arrow(pointer_var.get_right(), heap_alloc.get_left(), buff=0.2, color=YELLOW)
self.play(Create(arrow))
self.wait(0.5)

# Simulate pointer assignment
assign_text = Text("ptr = new int[4]", font_size=24).to_edge(DOWN)
self.play(Write(assign_text))
self.wait(1)

# Simulate memory deallocation
delete_text = Text("delete[] ptr", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, delete_text))
self.play(FadeOut(arrow), FadeOut(heap_alloc), FadeOut(heap_label))
self.wait(1)

# Simulate end of scope
end_scope = Text("End of scope", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, end_scope))
self.play(FadeOut(int_var), FadeOut(int_label), FadeOut(pointer_var), FadeOut(pointer_label))
self.wait(2)
"""
                            if st.session_state.code:
                                st.session_state.code += "\n" + memory_code
                            else:
                                st.session_state.code = f"""from manim import *
class CppMemoryModelScene(Scene):
    def construct(self):
        {memory_code}
"""
                            st.session_state.temp_code = st.session_state.code
                            st.success("Added C++ memory model visualization to your Manim code!")
                            st.session_state.pending_tab_switch = 0  # Switch to editor tab
                            st.rerun()
                                
        # C++ Information and tips
        with st.expander("C/C++ Runner Information"):
            st.markdown("""
            ### C/C++ Runner Tips
            
            **Compilation Options:**
            - Choose the appropriate compiler based on your platform
            - Select the C++ standard version for your code
            - Optimization levels affect performance and debugging
            
            **Library Support:**
            - Common libraries like Eigen, OpenCV, and Boost are supported
            - Add custom include paths and library paths as needed
            - Use the library detection feature to find installed libraries
            
            **Input/Output:**
            - Standard input/output (cin/cout) is fully supported
            - File I/O works within the execution directory
            - For interactive programs, provide input values in advance
            
            **Debugging:**
            - Set breakpoints at specific line numbers
            - Watch variables to track their values
            - Debug with GDB for detailed analysis
            
            **Project Management:**
            - Create multi-file projects with headers and source files
            - Generate CMakeLists.txt for complex projects
            - Download project files as a ZIP archive
            
            **Images and Visualization:**
            - Generate images in PPM, PNG, JPG formats
            - Use OpenCV for more advanced image processing
            - All generated images can be used in Manim animations
            
            **Manim Integration:**
            - Create algorithm visualizations from C++ code
            - Import C++ generated images into Manim scenes
            - Visualize data structures and memory models
            
            **Performance:**
            - Use release mode for best performance
            - Profile your code to identify bottlenecks
            - C++ is ideal for computationally intensive tasks
            """)

    # Help section
    with st.sidebar.expander("ℹ️ Help & Info"):
        st.markdown("""
        ### About Manim Animation Studio
        
        This app allows you to create mathematical animations using Manim, 
        an animation engine for explanatory math videos.
        
        ### Example Code
        
        ```python
        from manim import *
        
        class SimpleExample(Scene):
            def construct(self):
                circle = Circle(color=BLUE)
                self.play(Create(circle))
                
                square = Square(color=RED).next_to(circle, RIGHT)
                self.play(Create(square))
                
                text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
                self.play(Write(text))
                
                self.wait(2)
        ```
        """)
    
    # Handle tab switching with session state to prevent refresh loop
    if st.session_state.pending_tab_switch is not None:
        st.session_state.active_tab = st.session_state.pending_tab_switch
        st.session_state.pending_tab_switch = None
        
        # Set tabs active state
        for i, tab in enumerate(tabs):
            if i == st.session_state.active_tab:
                tab.active = True
    
    # Mark first load as complete to prevent unnecessary refreshes
    if not st.session_state.first_load_complete:
        st.session_state.first_load_complete = True

if __name__ == "__main__":
    main()