Spaces:
Running
Running
File size: 126,741 Bytes
2bdb7ce 189b68e 2bdb7ce b041735 52edb5d b041735 52edb5d b041735 52edb5d b041735 2bdb7ce b041735 2bdb7ce b041735 2bdb7ce 8355fb9 2f21149 8355fb9 2f21149 8355fb9 b041735 8355fb9 2f21149 8355fb9 2f21149 8355fb9 2f21149 8355fb9 2f21149 8355fb9 2f21149 8355fb9 2f21149 8355fb9 2bdb7ce 8355fb9 2bdb7ce 8355fb9 94228fc 8355fb9 94228fc 8355fb9 94228fc 2f21149 94228fc 2f21149 94228fc 8355fb9 94228fc 8355fb9 94228fc 2f21149 8355fb9 94228fc 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce b041735 94228fc 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 94228fc 2bdb7ce 189b68e 2bdb7ce 94228fc 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce b041735 8355fb9 adcecf4 8355fb9 b041735 94228fc b041735 84e00e8 adcecf4 84e00e8 adcecf4 2bdb7ce 8355fb9 2bdb7ce 8355fb9 b041735 2bdb7ce 8355fb9 2bdb7ce b041735 2bdb7ce b041735 8355fb9 b041735 2bdb7ce b041735 8355fb9 b041735 94228fc b041735 8355fb9 2bdb7ce b041735 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 94228fc 189b68e 2bdb7ce 189b68e 94228fc 189b68e 2bdb7ce 189b68e 94228fc 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 94228fc 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 2bdb7ce 94228fc 2bdb7ce 189b68e 2bdb7ce 94228fc 2bdb7ce 189b68e 2bdb7ce c483c20 2bdb7ce 189b68e 94228fc 189b68e 2bdb7ce 189b68e 2bdb7ce 189b68e 94228fc 189b68e 2bdb7ce 189b68e 94228fc 189b68e 94228fc 2bdb7ce 94228fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 |
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import torch
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
# New functions for accessing secrets and password verification
def get_secret(github_token_api):
"""Retrieve a secret from HuggingFace Spaces environment variables"""
secret_value = os.environ.get(github_token_api)
if not secret_value:
logger.warning(f"Secret '{github_token_api}' not found")
return None
return secret_value
def check_password():
"""Returns True if the user entered the correct password"""
# Get the password from secrets
correct_password = get_secret("password")
if not correct_password:
st.error("Admin password not configured in HuggingFace Spaces secrets")
return False
# Password input
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
password = st.text_input("Enter password to access AI features", type="password")
if password:
if password == correct_password:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required_packages = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1', # For audio processing
'plotly': '5.14.0', # For timeline editor
'pandas': '2.0.0', # For data manipulation
'python-pptx': '0.6.21', # For PowerPoint export
'markdown': '3.4.3', # For markdown processing
'fpdf': '1.7.2', # For PDF generation
'matplotlib': '3.5.0', # For Python script runner
'seaborn': '0.11.2', # For enhanced visualizations
'scipy': '1.7.3', # For scientific computations
'huggingface_hub': '0.16.0', # For Hugging Face API
}
with st.spinner("Checking required packages..."):
# First, quickly check if packages are already installed
missing_packages = {}
for package, version in required_packages.items():
try:
# Try to import the package to check if it's available
if package == 'manim':
import manim
elif package == 'Pillow':
import PIL
elif package == 'numpy':
import numpy
elif package == 'transformers':
import transformers
elif package == 'torch':
import torch
elif package == 'pygments':
import pygments
elif package == 'streamlit-ace':
# This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
pass
elif package == 'pydub':
import pydub
elif package == 'plotly':
import plotly
elif package == 'pandas':
import pandas
elif package == 'python-pptx':
import pptx
elif package == 'markdown':
import markdown
elif package == 'fpdf':
import fpdf
elif package == 'matplotlib':
import matplotlib
elif package == 'seaborn':
import seaborn
elif package == 'scipy':
import scipy
elif package == 'huggingface_hub':
import huggingface_hub
except ImportError:
missing_packages[package] = version
# If no packages are missing, return success immediately
if not missing_packages:
logger.info("All required packages already installed.")
return True
# If there are missing packages, install them with progress reporting
progress_bar = st.progress(0)
status_text = st.empty()
for i, (package, version) in enumerate(missing_packages.items()):
try:
progress = (i / len(missing_packages))
progress_bar.progress(progress)
status_text.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", f"{package}>={version}"],
capture_output=True,
text=True
)
if result.returncode != 0:
st.error(f"Failed to install {package}: {result.stderr}")
logger.error(f"Package installation failed: {package}")
return False
except Exception as e:
st.error(f"Error installing {package}: {str(e)}")
logger.error(f"Package installation error: {str(e)}")
return False
progress_bar.progress(1.0)
status_text.text("All packages installed successfully!")
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
return True
def install_custom_packages(package_list):
"""Install custom packages specified by the user without page refresh"""
if not package_list.strip():
return True, "No packages specified"
# Split and clean package list
packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
if not packages:
return True, "No valid packages specified"
status_placeholder = st.sidebar.empty()
progress_bar = st.sidebar.progress(0)
results = []
success = True
for i, package in enumerate(packages):
try:
progress = (i / len(packages))
progress_bar.progress(progress)
status_placeholder.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", package],
capture_output=True,
text=True
)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
logger.error(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
logger.info(f"Successfully installed custom package: {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
logger.error(error_msg)
success = False
progress_bar.progress(1.0)
status_placeholder.text("Installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_placeholder.empty()
return success, "\n".join(results)
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
"""Direct implementation using the exact pattern from the example code"""
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
return None
# Log what we're doing - for debugging
logger.info(f"Initializing AI model with token: {token[:5]}...")
# Use exact imports as in your example
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Use exact endpoint as in your example
endpoint = "https://models.inference.ai.azure.com"
# Use default model
model_name = "gpt-4o"
# Create client exactly as in your example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Return the necessary information
return {
"client": client,
"model_name": model_name,
"endpoint": endpoint
}
except ImportError as ie:
st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
logger.error(f"Import error: {str(ie)}")
return None
except Exception as e:
st.error(f"Error initializing AI model: {str(e)}")
logger.error(f"Initialization error: {str(e)}")
return None
def suggest_code_completion(code_snippet, models):
"""Generate code completion using the AI model"""
if not models or "client" not in models:
st.error("AI models not properly initialized. Please use the Debug Connection section to test API connectivity.")
return None
try:
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
with st.spinner("AI is generating your animation code..."):
from azure.ai.inference.models import UserMessage
# Make an API call exactly like in your example
response = models["client"].complete(
messages=[
UserMessage(prompt),
],
max_tokens=1000,
model=models["model_name"]
)
# Process the response exactly like in your example
completed_code = response.choices[0].message.content
# Process the code
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error generating code: {str(e)}")
st.code(traceback.format_exc())
return None
def check_model_freshness():
"""Check if models need to be reloaded based on TTL"""
if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
return False
if 'last_loaded' not in st.session_state.ai_models:
return False
last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
ttl_hours = 1 # 1 hour TTL
return datetime.now() - last_loaded < timedelta(hours=ttl_hours)
def extract_scene_class_name(python_code):
"""Extract the scene class name from Python code."""
import re
scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
if scene_classes:
# Return the first scene class found
return scene_classes[0]
else:
# If no scene class is found, use a default name
return "MyScene"
def suggest_code_completion(code_snippet, models):
if not models or "code_model" not in models:
st.error("AI models not properly initialized")
return None
try:
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
```python
"""
with st.spinner("AI is generating your animation code..."):
response = models["code_model"](
prompt,
max_length=1024,
do_sample=True,
temperature=0.2,
top_p=0.95,
top_k=50,
num_return_sequences=1,
truncation=True,
pad_token_id=50256
)
if not response or not response[0].get('generated_text'):
st.error("No valid completion generated")
return None
completed_code = response[0]['generated_text']
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error suggesting code: {str(e)}")
logger.error(f"Code suggestion error: {str(e)}")
return None
# Quality presets
QUALITY_PRESETS = {
"480p": {"resolution": "480p", "fps": "30"},
"720p": {"resolution": "720p", "fps": "30"},
"1080p": {"resolution": "1080p", "fps": "60"},
"4K": {"resolution": "2160p", "fps": "60"},
"8K": {"resolution": "4320p", "fps": "60"} # Added 8K option
}
# Animation speeds
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
# Export formats
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Image Sequence": "png_sequence",
"SVG Image": "svg"
}
def highlight_code(code):
formatter = HtmlFormatter(style='monokai')
highlighted = highlight(code, PythonLexer(), formatter)
return highlighted, formatter.get_style_defs()
def generate_manim_preview(python_code):
"""Generate a lightweight preview of the Manim animation"""
try:
# Extract scene components for preview
scene_objects = []
if "Circle" in python_code:
scene_objects.append("circle")
if "Square" in python_code:
scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code:
scene_objects.append("equation")
if "Text" in python_code:
scene_objects.append("text")
if "Axes" in python_code:
scene_objects.append("graph")
if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
scene_objects.append("3D scene")
if "Sphere" in python_code:
scene_objects.append("sphere")
if "Cube" in python_code:
scene_objects.append("cube")
# Generate a more detailed visual preview based on extracted objects
object_icons = {
"circle": "⭕",
"square": "🔲",
"equation": "📊",
"text": "📝",
"graph": "📈",
"3D scene": "🧊",
"sphere": "🌐",
"cube": "🧊"
}
icon_html = ""
for obj in scene_objects:
if obj in object_icons:
icon_html += f'<span style="font-size:2rem; margin:0.3rem;">{object_icons[obj]}</span>'
preview_html = f"""
<div style="background-color:#000000; width:100%; height:220px; border-radius:10px; display:flex; flex-direction:column; align-items:center; justify-content:center; color:white; text-align:center;">
<h3 style="margin-bottom:10px;">Animation Preview</h3>
<div style="margin-bottom:15px;">
{icon_html if icon_html else '<span style="font-size:2rem;">🎬</span>'}
</div>
<p>Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}</p>
<div style="margin-top:10px; font-size:0.8rem; opacity:0.8;">Full rendering required for accurate preview</div>
</div>
"""
return preview_html
except Exception as e:
logger.error(f"Preview generation error: {str(e)}")
return f"""
<div style="background-color:#FF0000; width:100%; height:200px; border-radius:10px; display:flex; align-items:center; justify-content:center; color:white; text-align:center;">
<div>
<h3>Preview Error</h3>
<p>{str(e)}</p>
</div>
</div>
"""
def render_latex_preview(latex_formula):
"""Generate HTML for LaTeX preview using MathJax"""
if not latex_formula:
return """
<div style="background-color:#f8f9fa; width:100%; height:100px; border-radius:5px;
display:flex; align-items:center; justify-content:center; color:#6c757d; text-align:center;">
<div>Enter LaTeX formula to see preview</div>
</div>
"""
# Create a dark-themed preview with MathJax
html = f"""
<div style="background-color:#202124; width:100%; padding:20px; border-radius:5px;
display:flex; align-items:center; justify-content:center; color:white; text-align:center;">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<div>
<div style="font-size:1.2rem; margin-bottom:10px;">LaTeX Preview</div>
<div id="math-preview">
$$
{latex_formula}
$$
</div>
<div style="font-size:0.8rem; margin-top:10px; opacity:0.7;">Use MathTex(r"{latex_formula}") in your Manim code</div>
</div>
</div>
"""
return html
def prepare_audio_for_manim(audio_file, target_dir):
"""Process audio file and return path for use in Manim"""
try:
# Create audio directory if it doesn't exist
audio_dir = os.path.join(target_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename
filename = f"audio_{int(time.time())}.mp3"
output_path = os.path.join(audio_dir, filename)
# Save audio file
with open(output_path, "wb") as f:
f.write(audio_file.getvalue())
return output_path
except Exception as e:
logger.error(f"Audio processing error: {str(e)}")
return None
def mp4_to_gif(mp4_path, output_path, fps=15):
"""Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
try:
# Use ffmpeg for conversion with optimized settings
command = [
"ffmpeg",
"-i", mp4_path,
"-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop", "0",
output_path
]
# Run the conversion
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"FFmpeg conversion error: {result.stderr}")
return None
return output_path
except Exception as e:
logger.error(f"GIF conversion error: {str(e)}")
return None
def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None):
temp_dir = None
progress_placeholder = st.empty()
status_placeholder = st.empty()
log_placeholder = st.empty()
video_data = None # Initialize video data variable
try:
if not python_code or not format_type:
raise ValueError("Missing required parameters")
# Create temporary directory
temp_dir = tempfile.mkdtemp(prefix="manim_render_")
# Extract the scene class name from the code
scene_class = extract_scene_class_name(python_code)
logger.info(f"Detected scene class: {scene_class}")
# If audio is provided, we need to modify the code to include it
if audio_path:
# Check if the code already has a with_sound decorator
if "with_sound" not in python_code:
# Add the necessary import
if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
# Add sound to the scene
scene_def_pattern = f"class {scene_class}\\(.*?\\):"
scene_def_match = re.search(scene_def_pattern, python_code)
if scene_def_match:
scene_def = scene_def_match.group(0)
scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
python_code = python_code.replace(scene_def, scene_def_with_sound)
else:
logger.warning("Could not find scene definition to add audio")
# Write the code to a file
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w", encoding="utf-8") as f:
f.write(python_code)
# Map quality preset to Manim quality flag
quality_map = {
"480p": "-ql", # Low quality
"720p": "-qm", # Medium quality
"1080p": "-qh", # High quality
"4K": "-qk", # 4K quality
"8K": "-qp" # 8K quality (production quality)
}
quality_flag = quality_map.get(quality_preset, "-qm")
# Handle special formats
if format_type == "png_sequence":
# For PNG sequence, we need additional flags
format_arg = "--format=png"
extra_args = ["--save_pngs"]
elif format_type == "svg":
# For SVG, we need a different format
format_arg = "--format=svg"
extra_args = []
else:
# Standard video formats
format_arg = f"--format={format_type}"
extra_args = []
# Show status and create progress bar
status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
progress_bar = progress_placeholder.progress(0)
# Build command
command = [
"manim",
scene_file,
scene_class,
quality_flag,
format_arg
]
command.extend(extra_args)
logger.info(f"Running command: {' '.join(command)}")
# Execute the command
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True
)
# Track output
full_output = []
output_file_path = None
mp4_output_path = None # Track MP4 output for GIF fallback
while True:
line = process.stdout.readline()
if not line and process.poll() is not None:
break
full_output.append(line)
log_placeholder.code("".join(full_output[-10:]))
# Update progress bar based on output
if "%" in line:
try:
percent = float(line.split("%")[0].strip().split()[-1])
progress_bar.progress(min(0.99, percent / 100))
except:
pass
# Try to capture the output file path from Manim's output
if "File ready at" in line:
try:
# Combine next few lines to get the full path
path_parts = []
path_parts.append(line.split("File ready at")[-1].strip())
# Read up to 5 more lines to get the complete path
for _ in range(5):
additional_line = process.stdout.readline()
if additional_line:
full_output.append(additional_line)
path_parts.append(additional_line.strip())
if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
break
# Join all parts and clean up
potential_path = ''.join(path_parts).replace("'", "").strip()
# Look for path pattern surrounded by quotes
path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
if path_match:
output_file_path = path_match.group(2)
logger.info(f"Found output path in logs: {output_file_path}")
# Track MP4 file for potential GIF fallback
if output_file_path.endswith('.mp4'):
mp4_output_path = output_file_path
except Exception as e:
logger.error(f"Error parsing output path: {str(e)}")
# Wait for the process to complete
process.wait()
progress_bar.progress(1.0)
# IMPORTANT: Wait a moment for file system to catch up
time.sleep(3)
# Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
# Generate a GIF using FFmpeg
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(mp4_output_path, gif_output_path)
if gif_path and os.path.exists(gif_path):
output_file_path = gif_path
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# For PNG sequence, we need to collect the PNGs
if format_type == "png_sequence":
# Find the PNG directory
png_dirs = []
search_dirs = [
os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
"/tmp/media/images",
]
for search_dir in search_dirs:
if os.path.exists(search_dir):
for root, dirs, _ in os.walk(search_dir):
for d in dirs:
if os.path.exists(os.path.join(root, d)):
png_dirs.append(os.path.join(root, d))
if png_dirs:
# Get the newest directory
newest_dir = max(png_dirs, key=os.path.getctime)
# Create a zip file with all PNGs
png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
if png_files:
zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for png in png_files:
png_path = os.path.join(newest_dir, png)
zipf.write(png_path, os.path.basename(png_path))
with open(zip_path, 'rb') as f:
video_data = f.read()
logger.info(f"Created PNG sequence zip: {zip_path}")
else:
logger.error("No PNG files found in directory")
else:
logger.error("No PNG directories found")
elif output_file_path and os.path.exists(output_file_path):
# For other formats, read the output file directly
with open(output_file_path, 'rb') as f:
video_data = f.read()
logger.info(f"Read output file from path: {output_file_path}")
else:
# If we didn't find the output path, search for files
search_paths = [
os.path.join(os.getcwd(), "media", "videos"),
os.path.join(os.getcwd(), "media", "videos", "scene"),
os.path.join(os.getcwd(), "media", "videos", scene_class),
"/tmp/media/videos",
temp_dir,
os.path.join(temp_dir, "media", "videos"),
]
# Add quality-specific paths
for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
# For SVG format
if format_type == "svg":
search_paths.extend([
os.path.join(os.getcwd(), "media", "designs"),
os.path.join(os.getcwd(), "media", "designs", scene_class),
])
# Find all output files in the search paths
output_files = []
for search_path in search_paths:
if os.path.exists(search_path):
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith(f".{format_type}") and "partial" not in file:
file_path = os.path.join(root, file)
if os.path.exists(file_path):
output_files.append(file_path)
logger.info(f"Found output file: {file_path}")
if output_files:
# Get the newest file
latest_file = max(output_files, key=os.path.getctime)
with open(latest_file, 'rb') as f:
video_data = f.read()
logger.info(f"Read output from file search: {latest_file}")
# If the format is GIF but we got an MP4, try to convert it
if format_type == "gif" and latest_file.endswith('.mp4'):
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(latest_file, gif_output_path)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# If we got output data, return it
if video_data:
file_size_mb = len(video_data) / (1024 * 1024)
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)"
else:
output_str = ''.join(full_output)
logger.error(f"No output files found. Full output: {output_str}")
# Check if we have an MP4 but need a GIF (special handling for GIF issues)
if format_type == "gif":
# Try one more aggressive search for any MP4 file
mp4_files = []
for search_path in [os.getcwd(), temp_dir, "/tmp"]:
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith('.mp4') and scene_class.lower() in file.lower():
mp4_path = os.path.join(root, file)
if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
mp4_files.append(mp4_path)
if mp4_files:
newest_mp4 = max(mp4_files, key=os.path.getctime)
logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
# Convert to GIF
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(newest_mp4, gif_output_path)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
file_size_mb = len(video_data) / (1024 * 1024)
return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
except Exception as e:
logger.error(f"Error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
if progress_placeholder:
progress_placeholder.empty()
if status_placeholder:
status_placeholder.error(f"Rendering Error: {str(e)}")
if log_placeholder:
log_placeholder.empty()
return None, f"❌ Error: {str(e)}"
finally:
# CRITICAL: Only cleanup after we've captured the output data
if temp_dir and os.path.exists(temp_dir) and video_data is not None:
try:
shutil.rmtree(temp_dir)
logger.info(f"Cleaned up temp dir: {temp_dir}")
except Exception as e:
logger.error(f"Failed to clean temp dir: {str(e)}")
def detect_input_calls(code):
"""Detect input() calls in Python code to prepare for handling"""
input_calls = []
lines = code.split('\n')
for i, line in enumerate(lines):
if 'input(' in line and not line.strip().startswith('#'):
# Try to extract the prompt if available
prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
input_calls.append({"line": i+1, "prompt": prompt})
return input_calls
def run_python_script(code, inputs=None, timeout=60):
"""Execute a Python script and capture output, handling input calls"""
result = {
"stdout": "",
"stderr": "",
"exception": None,
"plots": [],
"dataframes": [],
"execution_time": 0
}
# Replace input() calls with predefined values if provided
if inputs and len(inputs) > 0:
# Modify the code to use predefined inputs instead of waiting for user input
modified_code = """
# Input values provided by the user
__INPUT_VALUES = {}
__INPUT_INDEX = 0
# Override the built-in input function
def input(prompt=''):
global __INPUT_INDEX
print(prompt, end='')
if __INPUT_INDEX < len(__INPUT_VALUES):
value = __INPUT_VALUES[__INPUT_INDEX]
__INPUT_INDEX += 1
print(value) # Echo the input
return value
else:
print("\\n[WARNING] No more predefined inputs available, using empty string")
return ""
""".format(inputs)
code = modified_code + code
# Create a tempdir for script execution
with tempfile.TemporaryDirectory() as temp_dir:
# Path for saving plots
plot_dir = os.path.join(temp_dir, 'plots')
os.makedirs(plot_dir, exist_ok=True)
# Files for capturing stdout and stderr
stdout_file = os.path.join(temp_dir, 'stdout.txt')
stderr_file = os.path.join(temp_dir, 'stderr.txt')
# Add plot saving code
if 'matplotlib' in code or 'plt' in code:
if 'import matplotlib.pyplot as plt' not in code and 'from matplotlib import pyplot as plt' not in code:
code = "import matplotlib.pyplot as plt\n" + code
# Add code to save plots
save_plots_code = """
# Save all figures
import matplotlib.pyplot as plt
import os
__figures = plt.get_fignums()
for __i, __num in enumerate(__figures):
__fig = plt.figure(__num)
__fig.savefig(os.path.join('{}', f'plot_{{__i}}.png'))
""".format(plot_dir.replace('\\', '\\\\'))
code += "\n" + save_plots_code
# Add dataframe display code if pandas is used
if 'pandas' in code or 'pd.' in code or 'DataFrame' in code:
if 'import pandas as pd' not in code and 'from pandas import' not in code:
code = "import pandas as pd\n" + code
# Add code to save dataframe info
dataframes_code = """
# Capture DataFrames
import pandas as pd
import json
import io
import os
__globals_dict = globals()
__dataframes = []
for __var_name, __var_val in __globals_dict.items():
if isinstance(__var_val, pd.DataFrame) and not __var_name.startswith('__'):
try:
# Save basic info
__df_info = {
"name": __var_name,
"shape": __var_val.shape,
"columns": list(__var_val.columns),
"preview_html": __var_val.head().to_html()
}
with open(os.path.join('{}', f'df_{{__var_name}}.json'), 'w') as __f:
json.dump(__df_info, __f)
except:
pass
""".format(temp_dir.replace('\\', '\\\\'))
code += "\n" + dataframes_code
# Create the script file
script_path = os.path.join(temp_dir, 'script.py')
with open(script_path, 'w') as f:
f.write(code)
# Execute with timeout
start_time = time.time()
try:
# Run the script with stdout and stderr redirection
with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
process = subprocess.Popen(
[sys.executable, script_path],
stdout=stdout_f,
stderr=stderr_f,
cwd=temp_dir
)
try:
process.wait(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
return result
# Read the output
with open(stdout_file, 'r') as f:
result["stdout"] = f.read()
with open(stderr_file, 'r') as f:
result["stderr"] = f.read()
# Collect plots
if os.path.exists(plot_dir):
plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
for plot_file in plot_files:
with open(os.path.join(plot_dir, plot_file), 'rb') as f:
result["plots"].append(f.read())
# Collect dataframes
df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
for df_file in df_files:
with open(os.path.join(temp_dir, df_file), 'r') as f:
result["dataframes"].append(json.load(f))
# Calculate execution time
result["execution_time"] = time.time() - start_time
except Exception as e:
result["exception"] = str(e)
result["stderr"] += f"\nError executing script: {str(e)}"
return result
def display_python_script_results(result):
"""Display the results from the Python script execution"""
if not result:
st.error("No results to display.")
return
# Display execution time
st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
# Display any errors
if result["exception"]:
st.error(f"Exception occurred: {result['exception']}")
if result["stderr"]:
st.error("Errors:")
st.code(result["stderr"], language="bash")
# Display plots if any
if result["plots"]:
st.markdown("### Plots")
cols = st.columns(min(3, len(result["plots"])))
for i, plot_data in enumerate(result["plots"]):
cols[i % len(cols)].image(plot_data, use_column_width=True)
# Display dataframes if any
if result["dataframes"]:
st.markdown("### DataFrames")
for df_info in result["dataframes"]:
with st.expander(f"{df_info['name']} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"):
st.markdown(df_info["preview_html"], unsafe_allow_html=True)
# Display standard output
if result["stdout"]:
st.markdown("### Standard Output")
st.code(result["stdout"], language="bash")
def parse_animation_steps(python_code):
"""Parse Manim code to extract animation steps for timeline editor"""
animation_steps = []
# Look for self.play calls in the code
play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
# Extract animation objects from play calls
for i, play_call in enumerate(play_calls):
# Parse the arguments to self.play()
animations = [arg.strip() for arg in play_call.split(',')]
# Get wait time after this animation if available
wait_time = 1.0 # Default wait time
if i < len(wait_calls):
wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
if wait_match:
wait_time = float(wait_match.group(1))
# Add to animation steps
animation_steps.append({
"id": i+1,
"type": "play",
"animations": animations,
"duration": wait_time,
"start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
"code": f"self.play({play_call})"
})
return animation_steps
def generate_code_from_timeline(animation_steps, original_code):
"""Generate Manim code from the timeline data"""
# Extract the class definition and setup
class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
if not class_match:
return original_code # Can't find proper structure to modify
setup_code = class_match.group(1)
# Build the new construct method
new_code = [setup_code]
indent = " " # Standard Manim indentation
# Add each animation step in order
for step in sorted(animation_steps, key=lambda x: x["id"]):
new_code.append(f"{indent}{step['code']}")
if "duration" in step and step["duration"] > 0:
new_code.append(f"{indent}self.wait({step['duration']})")
# Add any code that might come after animations
end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
if end_match:
new_code.append(end_match.group(1))
# Combine the code parts with proper indentation
return "\n".join(new_code)
def create_timeline_editor(code):
"""Create an interactive timeline editor for animation sequences"""
st.markdown("### 🎞️ Animation Timeline Editor")
if not code:
st.warning("Add animation code first to use the timeline editor.")
return code
# Parse animation steps from the code
animation_steps = parse_animation_steps(code)
if not animation_steps:
st.warning("No animation steps detected in your code.")
return code
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(animation_steps)
# Create an interactive Gantt chart with plotly
st.markdown("#### Animation Timeline")
st.markdown("Drag timeline elements to reorder or resize to change duration")
# Create the Gantt chart
fig = px.timeline(
df,
x_start="start_time",
x_end=df["start_time"] + df["duration"],
y="id",
color="type",
hover_name="animations",
labels={"id": "Step", "start_time": "Time (seconds)"}
)
# Make it interactive
fig.update_layout(
height=400,
xaxis=dict(
title="Time (seconds)",
rangeslider_visible=True
)
)
# Add buttons and interactivity
timeline_chart = st.plotly_chart(fig, use_container_width=True)
# Control panel
st.markdown("#### Timeline Controls")
controls_col1, controls_col2, controls_col3 = st.columns(3)
with controls_col1:
selected_step = st.selectbox(
"Select Step to Edit:",
options=list(range(1, len(animation_steps) + 1)),
format_func=lambda x: f"Step {x}"
)
with controls_col2:
new_duration = st.number_input(
"Duration (seconds):",
min_value=0.1,
max_value=10.0,
value=float(df[df["id"] == selected_step]["duration"].values[0]),
step=0.1
)
with controls_col3:
step_action = st.selectbox(
"Action:",
options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
)
apply_btn = st.button("Apply Change", key="apply_timeline_change")
# Handle timeline modifications
if apply_btn:
modified = False
if step_action == "Update Duration":
# Update the duration of the selected step
idx = df[df["id"] == selected_step].index[0]
df.at[idx, "duration"] = new_duration
modified = True
elif step_action == "Move Up" and selected_step > 1:
# Swap with the step above
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step - 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
modified = True
elif step_action == "Move Down" and selected_step < len(animation_steps):
# Swap with the step below
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step + 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
modified = True
elif step_action == "Delete Step":
# Remove the selected step
df = df[df["id"] != selected_step]
# Reindex remaining steps
new_ids = list(range(1, len(df) + 1))
df["id"] = new_ids
modified = True
if modified:
# Recalculate start times
df = df.sort_values("id")
cumulative_time = 0
for idx, row in df.iterrows():
df.at[idx, "start_time"] = cumulative_time
cumulative_time += row["duration"]
# Regenerate animation code
animation_steps = df.to_dict('records')
new_code = generate_code_from_timeline(animation_steps, code)
st.success("Timeline updated! Code has been regenerated.")
return new_code
# Visual keyframe editor
st.markdown("#### Visual Keyframe Editor")
st.markdown("Add keyframes for smooth property transitions")
keyframe_obj = st.selectbox(
"Select object to animate:",
options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects
)
keyframe_prop = st.selectbox(
"Select property:",
options=["position", "scale", "rotation", "opacity", "color"]
)
# Keyframe timeline visualization
keyframe_times = [0, 1, 2, 3, 4] # Placeholder
keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder
keyframe_df = pd.DataFrame({
"time": keyframe_times,
"value": keyframe_values
})
keyframe_fig = px.line(
keyframe_df,
x="time",
y="value",
markers=True,
title=f"{keyframe_prop.capitalize()} Keyframes"
)
keyframe_fig.update_layout(
xaxis_title="Time (seconds)",
yaxis_title="Value",
height=250
)
st.plotly_chart(keyframe_fig, use_container_width=True)
keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
with keyframe_col1:
keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
with keyframe_col2:
keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with keyframe_col3:
add_keyframe = st.button("Add Keyframe")
# Return the original code or modified code
return code
def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
"""Export animation to various educational formats"""
try:
if format_type == "powerpoint":
# Make sure python-pptx is installed
try:
import pptx
from pptx.util import Inches
except ImportError:
logger.error("python-pptx not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
import pptx
from pptx.util import Inches
# Create PowerPoint presentation
prs = pptx.Presentation()
# Title slide
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
title_slide.shapes.title.text = animation_title
title_slide.placeholders[1].text = "Created with Manim Animation Studio"
# Video slide
video_slide = prs.slides.add_slide(prs.slide_layouts[5])
video_slide.shapes.title.text = "Animation"
# Save video to temp file
video_path = os.path.join(temp_dir, "animation.mp4")
with open(video_path, "wb") as f:
f.write(video_data)
# Add video to slide
try:
left = Inches(1)
top = Inches(1.5)
width = Inches(8)
height = Inches(4.5)
video_slide.shapes.add_movie(video_path, left, top, width, height)
except Exception as e:
logger.error(f"Error adding video to PowerPoint: {str(e)}")
# Fallback to adding a picture with link
img_path = os.path.join(temp_dir, "thumbnail.png")
# Generate thumbnail with ffmpeg
subprocess.run([
"ffmpeg", "-i", video_path, "-ss", "00:00:01.000",
"-vframes", "1", img_path
], check=True)
if os.path.exists(img_path):
pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
# Explanation slide
if explanation_text:
text_slide = prs.slides.add_slide(prs.slide_layouts[1])
text_slide.shapes.title.text = "Explanation"
text_slide.placeholders[1].text = explanation_text
# Save presentation
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
prs.save(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "powerpoint"
elif format_type == "html":
# Create interactive HTML animation
html_template = """
<!DOCTYPE html>
<html>
<head>
<title>{title}</title>
<style>
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }}
.animation-container {{ margin: 20px 0; }}
.controls {{ display: flex; margin: 10px 0; }}
.controls button {{ margin-right: 10px; padding: 5px 10px; }}
.explanation {{ margin-top: 20px; padding: 15px; background: #f5f5f5; border-radius: 5px; }}
</style>
<script>
document.addEventListener('DOMContentLoaded', function() {{
const video = document.getElementById('animation');
const playBtn = document.getElementById('play');
const pauseBtn = document.getElementById('pause');
const restartBtn = document.getElementById('restart');
const slowBtn = document.getElementById('slow');
const normalBtn = document.getElementById('normal');
const fastBtn = document.getElementById('fast');
playBtn.addEventListener('click', function() {{ video.play(); }});
pauseBtn.addEventListener('click', function() {{ video.pause(); }});
restartBtn.addEventListener('click', function() {{ video.currentTime = 0; video.play(); }});
slowBtn.addEventListener('click', function() {{ video.playbackRate = 0.5; }});
normalBtn.addEventListener('click', function() {{ video.playbackRate = 1.0; }});
fastBtn.addEventListener('click', function() {{ video.playbackRate = 2.0; }});
}});
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<h1>{title}</h1>
<div class="animation-container">
<video id="animation" width="100%" controls>
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
Your browser does not support the video tag.
</video>
<div class="controls">
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="restart">Restart</button>
<button id="slow">0.5x Speed</button>
<button id="normal">1x Speed</button>
<button id="fast">2x Speed</button>
</div>
</div>
<div class="explanation">
<h2>Explanation</h2>
{explanation_html}
</div>
<footer>
<p>Created with Manim Animation Studio</p>
</footer>
</body>
</html>
"""
# Convert video data to base64
video_base64 = base64.b64encode(video_data).decode('utf-8')
# Convert markdown explanation to HTML
explanation_html = markdown.markdown(explanation_text) if explanation_text else "<p>No explanation provided.</p>"
# Format the HTML template
html_content = html_template.format(
title=animation_title,
video_base64=video_base64,
explanation_html=explanation_html
)
# Save to file
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
with open(output_path, "w", encoding="utf-8") as f:
f.write(html_content)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "html"
elif format_type == "sequence":
# Generate animation sequence with explanatory text
# Make sure FPDF is installed
try:
from fpdf import FPDF
except ImportError:
logger.error("fpdf not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
from fpdf import FPDF
# Save video temporarily
temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
with open(temp_video_path, "wb") as f:
f.write(video_data)
# Create frames directory
frames_dir = os.path.join(temp_dir, "frames")
os.makedirs(frames_dir, exist_ok=True)
# Extract frames using ffmpeg (assuming it's installed)
frame_count = 5 # Number of key frames to extract
try:
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
"-vsync", "0",
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
except Exception as e:
logger.error(f"Error extracting frames: {str(e)}")
# Try a simpler approach
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-r", "1", # 1 frame per second
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
# Parse explanation text into segments (assuming sections divided by ##)
explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
# Create a PDF with frames and explanations
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
# Title page
pdf.add_page()
pdf.set_font("Arial", "B", 20)
pdf.cell(190, 10, animation_title, ln=True, align="C")
pdf.ln(10)
pdf.set_font("Arial", "", 12)
pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
# Add each frame with explanation
frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
for i, frame_file in enumerate(frame_files):
pdf.add_page()
# Add frame image
frame_path = os.path.join(frames_dir, frame_file)
pdf.image(frame_path, x=10, y=10, w=190)
# Add explanation text
pdf.ln(140) # Move below the image
pdf.set_font("Arial", "B", 12)
pdf.cell(190, 10, f"Step {i+1}", ln=True)
pdf.set_font("Arial", "", 10)
# Use the corresponding explanation segment if available
explanation = explanation_segments[min(i, len(explanation_segments)-1)]
pdf.multi_cell(190, 5, explanation.strip())
# Save PDF
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
pdf.output(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "pdf"
return None, None
except Exception as e:
logger.error(f"Educational export error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None, None
def main():
# Initialize session state variables if they don't exist
if 'init' not in st.session_state:
st.session_state.init = True
st.session_state.video_data = None
st.session_state.status = None
st.session_state.ai_models = None
st.session_state.generated_code = ""
st.session_state.code = ""
st.session_state.temp_code = ""
st.session_state.editor_key = str(uuid.uuid4())
st.session_state.packages_checked = False # Track if packages were already checked
st.session_state.latex_formula = ""
st.session_state.audio_path = None
st.session_state.image_paths = []
st.session_state.custom_library_result = ""
st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
st.session_state.python_result = None
st.session_state.active_tab = 0 # Track currently active tab
st.session_state.settings = {
"quality": "720p",
"format_type": "mp4",
"animation_speed": "Normal"
}
st.session_state.password_entered = False # Track password authentication
st.session_state.custom_model = "gpt-4o" # Default model
st.session_state.first_load_complete = False # Prevent refreshes on first load
st.session_state.pending_tab_switch = None # Track pending tab switches
# Page configuration with improved layout
st.set_page_config(
page_title="Manim Animation Studio",
page_icon="🎬",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(90deg, #4F46E5, #818CF8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1rem;
text-align: center;
}
.card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 1.5rem;
}
.stButton > button {
width: 100%;
border-radius: 5px;
height: 2.5rem;
}
.preview-container {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
min-height: 200px;
}
.latex-preview {
background-color: #f8f9fa;
border-radius: 5px;
padding: 1rem;
margin-top: 0.5rem;
min-height: 100px;
}
.small-text {
font-size: 0.8rem;
color: #6c757d;
}
.asset-card {
background-color: #f0f2f5;
border-radius: 8px;
padding: 1rem;
margin-bottom: 1rem;
border-left: 4px solid #4F46E5;
}
.timeline-container {
background-color: #f8f9fa;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
}
.keyframe {
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #4F46E5;
position: absolute;
transform: translate(-50%, -50%);
cursor: pointer;
}
.educational-export-container {
background-color: #f0f7ff;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border: 1px solid #c2e0ff;
}
.code-output {
background-color: #f8f9fa;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #10b981;
max-height: 400px;
overflow-y: auto;
}
.error-output {
background-color: #fef2f2;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #ef4444;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown("""
<div class="main-header">
🎬 Manim Animation Studio
</div>
<p style="text-align: center; margin-bottom: 2rem;">Create mathematical animations with Manim</p>
""", unsafe_allow_html=True)
# Check for packages ONLY ONCE per session
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked = True
else:
st.error("Failed to install required packages. Please try again.")
st.stop()
# Create main tabs
tab_names = ["✨ Editor", "🤖 AI Assistant", "📚 LaTeX Formulas", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner"]
tabs = st.tabs(tab_names)
# Sidebar for rendering settings and custom libraries
with st.sidebar:
# Rendering settings section
st.markdown("## ⚙️ Rendering Settings")
col1, col2 = st.columns(2)
with col1:
quality = st.selectbox(
"🎯 Quality",
options=list(QUALITY_PRESETS.keys()),
index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
key="quality_select"
)
with col2:
format_type_display = st.selectbox(
"📦 Format",
options=list(EXPORT_FORMATS.keys()),
index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"])
if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
key="format_select_display"
)
# Convert display name to actual format value
format_type = EXPORT_FORMATS[format_type_display]
animation_speed = st.selectbox(
"⚡ Speed",
options=list(ANIMATION_SPEEDS.keys()),
index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
key="speed_select"
)
# Apply the settings without requiring a button
st.session_state.settings = {
"quality": quality,
"format_type": format_type,
"animation_speed": animation_speed
}
# Custom libraries section
st.markdown("## 📚 Custom Libraries")
st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
custom_libraries = st.text_area(
"Libraries to install",
placeholder="e.g., scipy, networkx, matplotlib",
key="custom_libraries"
)
if st.button("Install Libraries", key="install_libraries_btn"):
success, result = install_custom_packages(custom_libraries)
st.session_state.custom_library_result = result
if success:
st.success("Installation complete!")
else:
st.error("Installation failed for some packages.")
if st.session_state.custom_library_result:
with st.expander("Installation Results"):
st.code(st.session_state.custom_library_result)
# EDITOR TAB
with tabs[0]:
col1, col2 = st.columns([3, 2])
with col1:
st.markdown("### 📝 Animation Editor")
# Toggle between upload and type
editor_mode = st.radio(
"Choose how to input your code:",
["Type Code", "Upload File"],
key="editor_mode"
)
if editor_mode == "Upload File":
uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
if uploaded_file:
code_content = uploaded_file.getvalue().decode("utf-8")
if code_content.strip(): # Only update if file has content
st.session_state.code = code_content
st.session_state.temp_code = code_content
# Code editor
if ACE_EDITOR_AVAILABLE:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st_ace(
value=current_code,
language="python",
theme="monokai",
min_lines=20,
key=f"ace_editor_{st.session_state.editor_key}"
)
else:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st.text_area(
"Manim Python Code",
value=current_code,
height=400,
key=f"code_textarea_{st.session_state.editor_key}"
)
# Update code in session state if it changed
if st.session_state.temp_code != st.session_state.code:
st.session_state.code = st.session_state.temp_code
# Generate button (use a form to prevent page reloads)
generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn")
if generate_btn:
if not st.session_state.code:
st.error("Please enter some code before generating animation")
else:
# Extract scene class name
scene_class = extract_scene_class_name(st.session_state.code)
# If no valid scene class found, add a basic one
if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
default_scene = """
class MyScene(Scene):
def construct(self):
text = Text("Default Scene")
self.play(Write(text))
self.wait(2)
"""
st.session_state.code += default_scene
st.session_state.temp_code = st.session_state.code
st.warning("No scene class found. Added a default scene.")
with st.spinner("Generating animation..."):
video_data, status = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
st.session_state.audio_path
)
st.session_state.video_data = video_data
st.session_state.status = status
with col2:
st.markdown("### 🖥️ Preview & Output")
# Preview container
if st.session_state.code:
with st.container():
st.markdown("<div class='preview-container'>", unsafe_allow_html=True)
preview_html = generate_manim_preview(st.session_state.code)
components.html(preview_html, height=250)
st.markdown("</div>", unsafe_allow_html=True)
# Generated output display
if st.session_state.video_data:
# Different handling based on format type
format_type = st.session_state.settings["format_type"]
if format_type == "png_sequence":
st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
# Add download button for ZIP
st.download_button(
label="⬇️ Download PNG Sequence (ZIP)",
data=st.session_state.video_data,
file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip",
use_container_width=True
)
elif format_type == "svg":
# Display SVG preview
try:
svg_data = st.session_state.video_data.decode('utf-8')
components.html(svg_data, height=400)
except Exception as e:
st.error(f"Error displaying SVG: {str(e)}")
# Download button for SVG
st.download_button(
label="⬇️ Download SVG",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
mime="image/svg+xml",
use_container_width=True
)
else:
# Standard video display for MP4, GIF, WebM
try:
st.video(st.session_state.video_data, format=format_type)
except Exception as e:
st.error(f"Error displaying video: {str(e)}")
# Fallback for GIF if st.video fails
if format_type == "gif":
st.markdown("GIF preview:")
gif_b64 = base64.b64encode(st.session_state.video_data).decode()
st.markdown(f'<img src="data:image/gif;base64,{gif_b64}" alt="animation" style="width:100%">', unsafe_allow_html=True)
# Add download button
st.download_button(
label=f"⬇️ Download {format_type.upper()}",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
use_container_width=True
)
if st.session_state.status:
if "Error" in st.session_state.status:
st.error(st.session_state.status)
# Show troubleshooting tips
with st.expander("🔍 Troubleshooting Tips"):
st.markdown("""
### Common Issues:
1. **Syntax Errors**: Check your Python code for any syntax issues
2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
3. **High Resolution Issues**: Try a lower quality preset for complex animations
4. **Memory Issues**: For 4K animations, reduce complexity or try again
5. **Format Issues**: Some formats require specific Manim configurations
6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
### Example Code:
```python
from manim import *
class MyScene(Scene):
def construct(self):
circle = Circle(color=RED)
self.play(Create(circle))
self.wait(1)
```
""")
else:
st.success(st.session_state.status)
# AI ASSISTANT TAB
with tabs[1]:
st.markdown("### 🤖 AI Animation Assistant")
# Check password before allowing access
if check_password():
# Debug section
with st.expander("🔧 Debug Connection"):
st.markdown("Test the AI model connection directly")
if st.button("Test API Connection", key="test_api_btn"):
with st.spinner("Testing API connection..."):
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets")
st.stop()
# Import required modules
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Define endpoint
endpoint = "https://models.inference.ai.azure.com"
model_name = "gpt-4o"
# Create client directly following example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Test with a simple prompt
response = client.complete(
messages=[
UserMessage("Hello, this is a connection test."),
],
max_tokens=1000000,
model=model_name
)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"client": client,
"model_name": model_name,
"endpoint": endpoint,
"last_loaded": datetime.now().isoformat()
}
else:
st.error("❌ API returned an empty response")
except ImportError as ie:
st.error(f"Module import error: {str(ie)}")
st.info("Try installing required packages: azure-ai-inference and azure-core")
except Exception as e:
st.error(f"❌ API test failed: {str(e)}")
import traceback
st.code(traceback.format_exc())
# Model selection
st.markdown("#### Model Selection")
# Predefined Azure models
popular_models = [
"DeepSeek-V3-0324",
"DeepSeek-R1",
"Meta-Llama-3.1-405B-Instruct",
"Llama-3.2-90B-Vision-Instruct",
"Llama-3.3-70B-Instruct"
"Llama-4-Scout-17B-16E-Instruct",
"Llama-4-Maverick-17B-128E-Instruct-FP8",
"gpt-4o",
"o3-mini",
"o1",
"o1-mini",
"o1-preview",
"Phi-4-multimodal-instruct",
"Mistral-large-2407",
"Codestral-2501",
]
selected_model = st.selectbox(
"Select a model:",
options=popular_models,
index=0
)
st.session_state.custom_model = selected_model
st.info(f"Currently selected model: {st.session_state.custom_model}")
# Update model if it changed
if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
if st.session_state.ai_models['model_name'] != st.session_state.custom_model:
st.session_state.ai_models['model_name'] = st.session_state.custom_model
st.success(f"Model updated to {st.session_state.custom_model}")
# AI code generation
if st.session_state.ai_models and "client" in st.session_state.ai_models:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generate Animation from Description")
st.write("Describe the animation you want to create, or provide partial code to complete.")
# Predefined animation ideas dropdown
animation_ideas = [
"Select an idea...",
"Create a 3D animation showing a sphere morphing into a torus",
"Show a visual proof of the Pythagorean theorem",
"Visualize a Fourier transform converting a signal from time domain to frequency domain",
"Create an animation explaining neural network forward propagation",
"Illustrate the concept of integration with area under a curve"
]
selected_idea = st.selectbox(
"Try one of these ideas",
options=animation_ideas
)
prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
code_input = st.text_area(
"Your Prompt or Code",
value=prompt_value,
placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
height=150
)
if st.button("Generate Animation Code", key="gen_ai_code"):
if code_input:
with st.spinner("AI is generating your animation code..."):
try:
# Direct implementation of code generation
client = st.session_state.ai_models["client"]
model_name = st.session_state.ai_models["model_name"]
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_input}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
# Make API call directly
from azure.ai.inference.models import UserMessage
response = client.complete(
messages=[
UserMessage(prompt),
],
max_tokens=1000,
model=model_name
)
# Process the response
if response and response.choices and len(response.choices) > 0:
completed_code = response.choices[0].message.content
# Extract code from markdown if present
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
# Store the generated code
st.session_state.generated_code = completed_code
else:
st.error("Failed to generate code. API returned an empty response.")
except Exception as e:
st.error(f"Error generating code: {str(e)}")
import traceback
st.code(traceback.format_exc())
else:
st.warning("Please enter a description or prompt first")
st.markdown("</div>", unsafe_allow_html=True)
# AI generated code display and actions
if "generated_code" in st.session_state and st.session_state.generated_code:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generated Animation Code")
st.code(st.session_state.generated_code, language="python")
col_ai1, col_ai2 = st.columns(2)
with col_ai1:
if st.button("Use This Code", key="use_gen_code"):
st.session_state.code = st.session_state.generated_code
st.session_state.temp_code = st.session_state.generated_code
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_ai2:
if st.button("Render Preview", key="render_preview"):
with st.spinner("Rendering preview..."):
video_data, status = generate_manim_video(
st.session_state.generated_code,
"mp4",
"480p", # Use lowest quality for preview
ANIMATION_SPEEDS["Normal"]
)
if video_data:
st.video(video_data)
st.download_button(
label="Download Preview",
data=video_data,
file_name=f"manim_preview_{int(time.time())}.mp4",
mime="video/mp4"
)
else:
st.error(f"Failed to generate preview: {status}")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
else:
st.info("Please enter the correct password to access AI features")
# LATEX FORMULAS TAB
with tabs[2]:
st.markdown("### 📚 LaTeX Formula Builder")
col_latex1, col_latex2 = st.columns([3, 2])
with col_latex1:
# LaTeX formula input
st.markdown("#### Enter LaTeX Formula")
latex_input = st.text_area(
"LaTeX Formula",
value=st.session_state.latex_formula,
height=100,
placeholder=r"e^{i\pi} + 1 = 0",
key="latex_input"
)
# Update session state
st.session_state.latex_formula = latex_input
# Common LaTeX formulas library
st.markdown("#### Formula Library")
# Categorized formulas
latex_categories = {
"Basic Math": [
{"name": "Fractions", "latex": r"\frac{a}{b}"},
{"name": "Square Root", "latex": r"\sqrt{x}"},
{"name": "Nth Root", "latex": r"\sqrt[n]{x}"},
{"name": "Powers", "latex": r"x^{n}"},
{"name": "Subscript", "latex": r"x_{i}"},
],
"Algebra": [
{"name": "Quadratic Formula", "latex": r"x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}"},
{"name": "Binomial Coefficient", "latex": r"\binom{n}{k}"},
{"name": "Sum", "latex": r"\sum_{i=1}^{n} i = \frac{n(n+1)}{2}"},
{"name": "Product", "latex": r"\prod_{i=1}^{n} i = n!"},
],
"Calculus": [
{"name": "Derivative", "latex": r"\frac{d}{dx}f(x)"},
{"name": "Partial Derivative", "latex": r"\frac{\partial f}{\partial x}"},
{"name": "Integral", "latex": r"\int_{a}^{b} f(x) \, dx"},
{"name": "Double Integral", "latex": r"\iint_{D} f(x,y) \, dx \, dy"},
{"name": "Limit", "latex": r"\lim_{x \to \infty} f(x)"},
],
"Linear Algebra": [
{"name": "Matrix", "latex": r"\begin{pmatrix} a & b \\ c & d \end{pmatrix}"},
{"name": "Determinant", "latex": r"\begin{vmatrix} a & b \\ c & d \end{vmatrix}"},
{"name": "Vector", "latex": r"\vec{v} = (v_1, v_2, v_3)"},
{"name": "Dot Product", "latex": r"\vec{a} \cdot \vec{b} = |a||b|\cos\theta"},
],
"Famous Equations": [
{"name": "Euler's Identity", "latex": r"e^{i\pi} + 1 = 0"},
{"name": "Einstein's Mass-Energy", "latex": r"E = mc^2"},
{"name": "Schrödinger Equation", "latex": r"i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi"},
{"name": "Maxwell's Equations", "latex": r"\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}"},
]
}
# Create tabs for formula categories
formula_tabs = st.tabs(list(latex_categories.keys()))
for i, (category, formulas) in enumerate(latex_categories.items()):
with formula_tabs[i]:
for formula in formulas:
if st.button(formula["name"], key=f"latex_{formula['name']}"):
# Insert formula into the text area
st.session_state.latex_formula = formula["latex"]
# Refresh without full page rerun
st.rerun()
# LaTeX code snippet
st.markdown("#### Manim Code Snippet")
if latex_input:
manim_latex_code = f"""
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.code(manim_latex_code, language="python")
if st.button("Insert into Editor", key="insert_latex_btn"):
if st.session_state.code:
# Find the construct method and insert after it
if "def construct(self):" in st.session_state.code:
lines = st.session_state.code.split("\n")
construct_index = -1
for i, line in enumerate(lines):
if "def construct(self):" in line:
construct_index = i
break
if construct_index >= 0:
# Find the first line with non-whitespace content after construct
for i in range(construct_index + 1, len(lines)):
if lines[i].strip() and not lines[i].strip().startswith("#"):
# Insert before this line
indent = re.match(r"(\s*)", lines[i]).group(1)
indented_code = "\n".join([indent + line for line in manim_latex_code.strip().split("\n")])
lines.insert(i, indented_code)
break
else:
# If we didn't find content, append to the end with default indentation
lines.append(" " + "\n ".join(manim_latex_code.strip().split("\n")))
st.session_state.code = "\n".join(lines)
st.session_state.temp_code = st.session_state.code
st.success("LaTeX formula inserted into the editor!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
else:
st.warning("Could not find 'construct' method in your code. Please add a scene class first.")
else:
# Create a new basic scene with the LaTeX formula
basic_scene = f"""from manim import *
class LatexScene(Scene):
def construct(self):
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.session_state.code = basic_scene
st.session_state.temp_code = basic_scene
st.success("Created new scene with your LaTeX formula!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_latex2:
# LaTeX preview
st.markdown("#### Formula Preview")
latex_preview_html = render_latex_preview(latex_input)
components.html(latex_preview_html, height=300)
# LaTeX tips
with st.expander("LaTeX Tips & Tricks"):
st.markdown("""
### LaTeX Tips
- Use `\\frac{a}{b}` for fractions
- Use `\\sum_{i=1}^{n}` for summation
- Use `\\int_{a}^{b}` for integration
- Use `\\{` and `\\}` for curly braces
- Enclose equations in `$...$` or `\\[...\\]`
### Manim LaTeX
In Manim, use `MathTex` for inline math and `Tex` for text with LaTeX:
```python
formula = MathTex(r"\\sum_{i=1}^{n} i = \\frac{n(n+1)}{2}")
text = Tex(r"This is a binomial coefficient: $\\binom{n}{k}$")
```
The `r` before the string creates a raw string, which is recommended to avoid escaping backslashes.
""")
# ASSETS TAB
with tabs[3]:
st.markdown("### 🎨 Asset Management")
asset_col1, asset_col2 = st.columns([1, 1])
with asset_col1:
# Image uploader section
st.markdown("#### 📸 Image Assets")
st.markdown("Upload images to use in your animations:")
# Allow multiple image uploads
uploaded_images = st.file_uploader(
"Upload Images",
type=["jpg", "png", "jpeg", "svg"],
accept_multiple_files=True,
key="image_uploader_tab"
)
if uploaded_images:
# Create a unique image directory if it doesn't exist
image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
os.makedirs(image_dir, exist_ok=True)
# Process each uploaded image
for uploaded_image in uploaded_images:
# Generate a unique filename and save the image
file_extension = uploaded_image.name.split(".")[-1]
unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
image_path = os.path.join(image_dir, unique_filename)
with open(image_path, "wb") as f:
f.write(uploaded_image.getvalue())
# Store the path in session state
if "image_paths" not in st.session_state:
st.session_state.image_paths = []
# Check if this image was already added
image_already_added = False
for img in st.session_state.image_paths:
if img["name"] == uploaded_image.name:
image_already_added = True
break
if not image_already_added:
st.session_state.image_paths.append({
"name": uploaded_image.name,
"path": image_path
})
# Display uploaded images in a grid
st.markdown("##### Uploaded Images:")
image_cols = st.columns(3)
for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
with image_cols[i % 3]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=150)
# Show code snippet for this specific image
if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
image_code = f"""
# Load and display image
image = ImageMobject(r"{img_info['path']}")
image.scale(2) # Adjust size as needed
self.play(FadeIn(image))
self.wait(1)
"""
if not st.session_state.code:
base_code = """from manim import *
class ImageScene(Scene):
def construct(self):
"""
st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ")
else:
st.session_state.code += "\n" + image_code
st.session_state.temp_code = st.session_state.code
st.success(f"Added {img_info['name']} to your code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error loading image {img_info['name']}: {e}")
# Display previously uploaded images
if st.session_state.image_paths:
with st.expander("Previously Uploaded Images"):
# Group images by 3 in each row
for i in range(0, len(st.session_state.image_paths), 3):
prev_cols = st.columns(3)
for j in range(3):
if i+j < len(st.session_state.image_paths):
img_info = st.session_state.image_paths[i+j]
with prev_cols[j]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=100)
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
except:
st.markdown(f"**{img_info['name']}**")
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
with asset_col2:
# Audio uploader section
st.markdown("#### 🎵 Audio Assets")
st.markdown("Upload audio files for background or narration:")
uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
if uploaded_audio:
# Create a unique audio directory if it doesn't exist
audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename and save the audio
file_extension = uploaded_audio.name.split(".")[-1]
unique_filename = f"audio_{int(time.time())}.{file_extension}"
audio_path = os.path.join(audio_dir, unique_filename)
with open(audio_path, "wb") as f:
f.write(uploaded_audio.getvalue())
# Store the path in session state
st.session_state.audio_path = audio_path
# Display audio player
st.audio(uploaded_audio)
st.markdown(f"""
<div class="asset-card">
<p><strong>Audio: {uploaded_audio.name}</strong></p>
<p class="small-text">Path: {audio_path}</p>
</div>
""", unsafe_allow_html=True)
# Two options for audio usage
st.markdown("#### Add Audio to Your Animation")
option = st.radio(
"Choose how to use audio:",
["Background Audio", "Generate Audio from Text"]
)
if option == "Background Audio":
st.markdown("##### Code to add background audio:")
# For with_sound decorator
audio_code1 = f"""
# Add this import at the top of your file
from manim.scene.scene_file_writer import SceneFileWriter
# Add this decorator before your scene class
@with_sound("{audio_path}")
class YourScene(Scene):
def construct(self):
# Your animation code here
"""
st.code(audio_code1, language="python")
if st.button("Use This Audio in Animation", key="use_audio_btn"):
st.success("Audio set for next render!")
elif option == "Generate Audio from Text":
# Text-to-speech input
tts_text = st.text_area(
"Enter text for narration",
placeholder="Type the narration text here...",
height=100
)
if st.button("Create Narration", key="create_narration_btn"):
try:
# Use basic TTS (placeholder for actual implementation)
st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
st.session_state.audio_path = audio_path
st.success("Audio set for next render!")
except Exception as e:
st.error(f"Error creating narration: {str(e)}")
# TIMELINE EDITOR TAB
with tabs[4]:
# New code for reordering animation steps
updated_code = create_timeline_editor(st.session_state.code)
# If code was modified by the timeline editor, update the session state
if updated_code != st.session_state.code:
st.session_state.code = updated_code
st.session_state.temp_code = updated_code
# EDUCATIONAL EXPORT TAB
with tabs[5]:
st.markdown("### 🎓 Educational Export Options")
# Check if we have an animation to export
if not st.session_state.video_data:
st.warning("Generate an animation first before using educational export features.")
else:
st.markdown("Create various educational assets from your animation:")
# Animation title and explanation
animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
st.markdown("#### Explanation Text")
st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
explanation_text = st.text_area(
"Explanation (markdown supported)",
height=150,
placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
)
# Export format selection
edu_format = st.selectbox(
"Export Format",
options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
)
# Format-specific options
if edu_format == "PowerPoint Presentation":
st.info("Creates a PowerPoint file with your animation and explanation text.")
elif edu_format == "Interactive HTML":
st.info("Creates an interactive HTML webpage with playback controls and explanation.")
include_controls = st.checkbox("Include interactive controls", value=True)
elif edu_format == "Explanation Sequence PDF":
st.info("Creates a PDF with key frames and step-by-step explanations.")
frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
# Export button
if st.button("Export Educational Material", key="export_edu_btn"):
with st.spinner(f"Creating {edu_format}..."):
# Map selected format to internal format type
format_map = {
"PowerPoint Presentation": "powerpoint",
"Interactive HTML": "html",
"Explanation Sequence PDF": "sequence"
}
# Create a temporary directory for export
temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
# Process the export
exported_data, file_type = export_to_educational_format(
st.session_state.video_data,
format_map[edu_format],
animation_title,
explanation_text,
temp_export_dir
)
if exported_data:
# File extension mapping
ext_map = {
"powerpoint": "pptx",
"html": "html",
"pdf": "pdf"
}
# Download button
ext = ext_map.get(file_type, "zip")
filename = f"{animation_title.replace(' ', '_')}.{ext}"
st.success(f"{edu_format} created successfully!")
st.download_button(
label=f"⬇️ Download {edu_format}",
data=exported_data,
file_name=filename,
mime=f"application/{ext}",
use_container_width=True
)
# For HTML, also offer to open in browser
if file_type == "html":
html_path = os.path.join(temp_export_dir, filename)
st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True)
else:
st.error(f"Failed to create {edu_format}. Check logs for details.")
# Show usage examples and tips
with st.expander("Usage Tips"):
st.markdown("""
### Educational Export Tips
**PowerPoint Presentations**
- Great for lectures and classroom presentations
- Animation will autoplay when clicked
- Add detailed explanations in notes section
**Interactive HTML**
- Perfect for websites and online learning platforms
- Students can control playback speed and navigation
- Mobile-friendly for learning on any device
**Explanation Sequence**
- Ideal for printed materials and study guides
- Use ## headers to mark different explanation sections
- Each section will be paired with a key frame
""")
# PYTHON RUNNER TAB
with tabs[6]:
st.markdown("### 🐍 Python Script Runner")
st.markdown("Execute Python scripts and visualize the results directly.")
# Predefined example scripts
example_scripts = {
"Select an example...": "",
"Basic Matplotlib Plot": """import matplotlib.pyplot as plt
import numpy as np
# Create data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
""",
"User Input Example": """# This example demonstrates how to handle user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
# Let's get some numbers and calculate the average
num_count = int(input("How many numbers would you like to average? "))
total = 0
for i in range(num_count):
num = float(input(f"Enter number {i+1}: "))
total += num
average = total / num_count
print(f"The average of your {num_count} numbers is: {average}")
""",
"Pandas DataFrame": """import pandas as pd
import numpy as np
# Create a sample dataframe
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
'Age': [25, 30, 35, 40, 45],
'Salary': [50000, 60000, 70000, 80000, 90000],
'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
}
df = pd.DataFrame(data)
# Display the dataframe
print("Sample DataFrame:")
print(df)
# Basic statistics
print("\\nSummary Statistics:")
print(df.describe())
# Filtering
print("\\nEmployees older than 30:")
print(df[df['Age'] > 30])
""",
"Seaborn Visualization": """import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# Set the style
sns.set_style("whitegrid")
# Create sample data
np.random.seed(42)
data = np.random.randn(100, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
# Create a paired plot
sns.pairplot(df, hue='category', palette='viridis')
# Create another plot
plt.figure(figsize=(10, 6))
sns.violinplot(x='category', y='A', data=df, palette='magma')
plt.title('Distribution of A by Category')
""",
"NumPy Computation": """import numpy as np
# Create arrays
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([5, 4, 3, 2, 1])
print("Array 1:", arr1)
print("Array 2:", arr2)
# Basic operations
print("\\nBasic Operations:")
print("Addition:", arr1 + arr2)
print("Multiplication:", arr1 * arr2)
print("Division:", arr1 / arr2)
# Statistics
print("\\nStatistics:")
print("Mean of arr1:", np.mean(arr1))
print("Standard deviation of arr2:", np.std(arr2))
print("Correlation coefficient:", np.corrcoef(arr1, arr2)[0, 1])
# Create a 2D array
matrix = np.random.rand(3, 3)
print("\\nRandom 3x3 Matrix:")
print(matrix)
print("Determinant:", np.linalg.det(matrix))
print("Inverse:")
print(np.linalg.inv(matrix))
""",
"SciPy Example": """import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
# Define a function to find the root of
def f(x):
return x**3 - 2*x**2 - 5*x + 6
# Find the roots
roots = optimize.root_scalar(f, bracket=[-5, 5], method='brentq')
print(f"Root found: {roots.root}")
# Plot the function
x = np.linspace(-5, 5, 1000)
y = f(x)
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-')
plt.axhline(y=0, color='k', linestyle='-', alpha=0.3)
plt.axvline(x=roots.root, color='r', linestyle='--', label=f'Root: {roots.root:.2f}')
plt.grid(True)
plt.title('Finding roots of a cubic function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
# Optimization example
def g(x):
return (x - 2) ** 2 + 1
result = optimize.minimize(g, x0=0)
print(f"Minimum found at x = {result.x[0]}, with value {result.fun}")
# Plot the optimization
x = np.linspace(-1, 5, 1000)
y = g(x)
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'g-')
plt.plot(result.x, result.fun, 'ro', label=f'Minimum: ({result.x[0]:.2f}, {result.fun:.2f})')
plt.grid(True)
plt.title('Function Optimization')
plt.xlabel('x')
plt.ylabel('g(x)')
plt.legend()
"""
}
# Select example script
selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
# Python code editor
if selected_example != "Select an example..." and selected_example in example_scripts:
python_code = example_scripts[selected_example]
else:
python_code = st.session_state.python_script
if ACE_EDITOR_AVAILABLE:
python_code = st_ace(
value=python_code,
language="python",
theme="monokai",
min_lines=15,
key=f"python_editor_{st.session_state.editor_key}"
)
else:
python_code = st.text_area(
"Python Code",
value=python_code,
height=400,
key=f"python_textarea_{st.session_state.editor_key}"
)
# Store script in session state (without clearing existing code)
st.session_state.python_script = python_code
# Check for input() calls
input_calls = detect_input_calls(python_code)
user_inputs = []
if input_calls:
st.markdown("### Input Values")
st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
for i, input_call in enumerate(input_calls):
user_input = st.text_input(
f"{input_call['prompt']} (Line {input_call['line']})",
key=f"input_{i}"
)
user_inputs.append(user_input)
# Options and execution
col1, col2 = st.columns([2, 1])
with col1:
timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
with col2:
run_btn = st.button("▶️ Run Script", use_container_width=True)
if run_btn:
with st.spinner("Executing Python script..."):
result = run_python_script(python_code, inputs=user_inputs, timeout=timeout_seconds)
st.session_state.python_result = result
# Display results
if st.session_state.python_result:
display_python_script_results(st.session_state.python_result)
# Option to insert plots into Manim animation
if st.session_state.python_result["plots"]:
with st.expander("Add Plots to Manim Animation"):
st.markdown("Select a plot to include in your Manim animation:")
plot_cols = st.columns(min(3, len(st.session_state.python_result["plots"])))
for i, plot_data in enumerate(st.session_state.python_result["plots"]):
# Create a unique temporary file for each plot
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
tmp.write(plot_data)
plot_path = tmp.name
# Display the plot with selection button
with plot_cols[i % len(plot_cols)]:
st.image(plot_data, use_column_width=True)
if st.button(f"Use Plot {i+1}", key=f"use_plot_{i}"):
# Create code to include this plot in Manim
plot_code = f"""
# Import the plot image
plot_image = ImageMobject(r"{plot_path}")
plot_image.scale(2) # Adjust size as needed
self.play(FadeIn(plot_image))
self.wait(1)
"""
# Insert into editor code
if st.session_state.code:
st.session_state.code += "\n" + plot_code
st.session_state.temp_code = st.session_state.code
st.success(f"Plot {i+1} added to your animation code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
else:
basic_scene = f"""from manim import *
class PlotScene(Scene):
def construct(self):
{plot_code}
"""
st.session_state.code = basic_scene
st.session_state.temp_code = basic_scene
st.success(f"Created new scene with Plot {i+1}!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Provide option to save the script
if st.button("📄 Save This Script", key="save_script_btn"):
# Generate a unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
script_filename = f"script_{timestamp}.py"
# Offer download button for the script
st.download_button(
label="⬇️ Download Script",
data=python_code,
file_name=script_filename,
mime="text/plain"
)
# Show advanced examples and tips
with st.expander("Python Script Runner Tips"):
st.markdown("""
### Python Script Runner Tips
**What can I run?**
- Any Python code that doesn't require direct UI interaction
- Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
- Data processing and visualization code
- Scripts that ask for user input (now supported!)
**What can't I run?**
- Streamlit, Gradio, Dash, or other web UIs
- Long-running operations (timeout will occur)
- Code that requires file access outside the temporary environment
**Working with visualizations:**
- All Matplotlib/Seaborn plots will be automatically captured
- Pandas DataFrames are detected and displayed as tables
- Use `print()` to show text output
**Handling user input:**
- The app detects input() calls and automatically creates text fields
- Input values you provide will be passed to the script when it runs
- Type conversion (like int(), float()) is preserved
**Adding to animations:**
- Charts and plots can be directly added to your Manim animations
- Generated images will be properly scaled for your animation
- Perfect for educational content combining data and animations
""")
# Help section
with st.sidebar.expander("ℹ️ Help & Info"):
st.markdown("""
### About Manim Animation Studio
This app allows you to create mathematical animations using Manim,
an animation engine for explanatory math videos.
### Example Code
```python
from manim import *
class SimpleExample(Scene):
def construct(self):
circle = Circle(color=BLUE)
self.play(Create(circle))
square = Square(color=RED).next_to(circle, RIGHT)
self.play(Create(square))
text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
self.play(Write(text))
self.wait(2)
```
""")
# Handle tab switching with session state to prevent refresh loop
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch = None
# Set tabs active state
for i, tab in enumerate(tabs):
if i == st.session_state.active_tab:
tab.active = True
# Mark first load as complete to prevent unnecessary refreshes
if not st.session_state.first_load_complete:
st.session_state.first_load_complete = True
if __name__ == "__main__":
main()
|