diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,649 +1,3057 @@
import streamlit as st
-import sympy as sp
+import tempfile
+import os
+import logging
+from pathlib import Path
+from PIL import Image
+import io
import numpy as np
-import plotly.graph_objects as go
-from scipy.optimize import fsolve
-from scipy.stats import gaussian_kde
-
-# Configure Streamlit for Hugging Face Spaces
-st.set_page_config(
- page_title="Cubic Root Analysis",
- layout="wide",
- initial_sidebar_state="collapsed"
+import sys
+import subprocess
+import json
+from pygments import highlight
+from pygments.lexers import PythonLexer
+from pygments.formatters import HtmlFormatter
+import base64
+from transformers import pipeline
+import re
+import shutil
+import time
+from datetime import datetime, timedelta
+import streamlit.components.v1 as components
+import uuid
+import platform
+import pandas as pd
+import plotly.express as px
+import markdown
+import zipfile
+import contextlib
+import threading
+import traceback
+from io import StringIO, BytesIO
+
+# Set up enhanced logging
+logging.basicConfig(
+ level=logging.INFO,
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
+ handlers=[
+ logging.StreamHandler()
+ ]
)
+logger = logging.getLogger(__name__)
-def add_sqrt_support(expr_str):
- """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
- return expr_str.replace('sqrt(', 'sp.sqrt(')
+# Model configuration mapping for different API requirements and limits
+MODEL_CONFIGS = {
+ "DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
+ "DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
+ "gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ "gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ "gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ "gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ "o3": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ "o4-mini": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
+ # Default configuration for other models
+ "default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
+}
-#############################
-# 1) Define the discriminant
-#############################
+# Try to import Streamlit Ace
+try:
+ from streamlit_ace import st_ace
+ ACE_EDITOR_AVAILABLE = True
+except ImportError:
+ ACE_EDITOR_AVAILABLE = False
+ logger.warning("streamlit-ace not available, falling back to standard text editor")
-# Symbolic variables for the cubic discriminant
-z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
+def prepare_api_params(messages, model_name):
+ """Create appropriate API parameters based on model configuration"""
+ # Get model configuration
+ config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
+
+ # Base parameters common to all models
+ api_params = {
+ "messages": messages,
+ "model": model_name
+ }
+
+ # Add the appropriate token parameter based on model's parameter name
+ token_param = config["param_name"]
+ token_value = config[token_param] # Get the actual value from the config
+
+ # Add the parameter to the API params
+ api_params[token_param] = token_value
+
+ return api_params, config
-# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
-a_sym = z_sym * z_a_sym
-b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
-c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
-d_sym = 1
+# New functions for accessing secrets and password verification
+def get_secret(github_token_api):
+ """Retrieve a secret from HuggingFace Spaces environment variables"""
+ secret_value = os.environ.get(github_token_api)
+ if not secret_value:
+ logger.warning(f"Secret '{github_token_api}' not found")
+ return None
+ return secret_value
-# Symbolic expression for the cubic discriminant
-Delta_expr = (
- ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
- + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
-)
+def check_password():
+ """Returns True if the user entered the correct password"""
+ # Get the password from secrets
+ correct_password = get_secret("password")
+ if not correct_password:
+ st.error("Admin password not configured in HuggingFace Spaces secrets")
+ return False
+
+ # Password input
+ if "password_entered" not in st.session_state:
+ st.session_state.password_entered = False
+
+ if not st.session_state.password_entered:
+ password = st.text_input("Enter password to access AI features", type="password")
+ if password:
+ if password == correct_password:
+ st.session_state.password_entered = True
+ return True
+ else:
+ st.error("Incorrect password")
+ return False
+ return False
+ return True
+
+def ensure_packages():
+ required_packages = {
+ 'manim': '0.17.3',
+ 'Pillow': '9.0.0',
+ 'numpy': '1.22.0',
+ 'transformers': '4.30.0',
+ 'torch': '2.0.0',
+ 'pygments': '2.15.1',
+ 'streamlit-ace': '0.1.1',
+ 'pydub': '0.25.1', # For audio processing
+ 'plotly': '5.14.0', # For timeline editor
+ 'pandas': '2.0.0', # For data manipulation
+ 'python-pptx': '0.6.21', # For PowerPoint export
+ 'markdown': '3.4.3', # For markdown processing
+ 'fpdf': '1.7.2', # For PDF generation
+ 'matplotlib': '3.5.0', # For Python script runner
+ 'seaborn': '0.11.2', # For enhanced visualizations
+ 'scipy': '1.7.3', # For scientific computations
+ 'huggingface_hub': '0.16.0', # For Hugging Face API
+ }
+
+ with st.spinner("Checking required packages..."):
+ # First, quickly check if packages are already installed
+ missing_packages = {}
+ for package, version in required_packages.items():
+ try:
+ # Try to import the package to check if it's available
+ if package == 'manim':
+ import manim
+ elif package == 'Pillow':
+ import PIL
+ elif package == 'numpy':
+ import numpy
+ elif package == 'transformers':
+ import transformers
+ elif package == 'torch':
+ import torch
+ elif package == 'pygments':
+ import pygments
+ elif package == 'streamlit-ace':
+ # This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
+ pass
+ elif package == 'pydub':
+ import pydub
+ elif package == 'plotly':
+ import plotly
+ elif package == 'pandas':
+ import pandas
+ elif package == 'python-pptx':
+ import pptx
+ elif package == 'markdown':
+ import markdown
+ elif package == 'fpdf':
+ import fpdf
+ elif package == 'matplotlib':
+ import matplotlib
+ elif package == 'seaborn':
+ import seaborn
+ elif package == 'scipy':
+ import scipy
+ elif package == 'huggingface_hub':
+ import huggingface_hub
+ except ImportError:
+ missing_packages[package] = version
+
+ # If no packages are missing, return success immediately
+ if not missing_packages:
+ logger.info("All required packages already installed.")
+ return True
+
+ # If there are missing packages, install them with progress reporting
+ progress_bar = st.progress(0)
+ status_text = st.empty()
+
+ for i, (package, version) in enumerate(missing_packages.items()):
+ try:
+ progress = (i / len(missing_packages))
+ progress_bar.progress(progress)
+ status_text.text(f"Installing {package}...")
+
+ result = subprocess.run(
+ [sys.executable, "-m", "pip", "install", f"{package}>={version}"],
+ capture_output=True,
+ text=True
+ )
+
+ if result.returncode != 0:
+ st.error(f"Failed to install {package}: {result.stderr}")
+ logger.error(f"Package installation failed: {package}")
+ return False
+
+ except Exception as e:
+ st.error(f"Error installing {package}: {str(e)}")
+ logger.error(f"Package installation error: {str(e)}")
+ return False
+
+ progress_bar.progress(1.0)
+ status_text.text("All packages installed successfully!")
+ time.sleep(0.5)
+ progress_bar.empty()
+ status_text.empty()
+ return True
+
+def install_custom_packages(package_list):
+ """Install custom packages specified by the user without page refresh"""
+ if not package_list.strip():
+ return True, "No packages specified"
+
+ # Split and clean package list
+ packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
+
+ if not packages:
+ return True, "No valid packages specified"
+
+ status_placeholder = st.sidebar.empty()
+ progress_bar = st.sidebar.progress(0)
+
+ results = []
+ success = True
+
+ for i, package in enumerate(packages):
+ try:
+ progress = (i / len(packages))
+ progress_bar.progress(progress)
+ status_placeholder.text(f"Installing {package}...")
+
+ result = subprocess.run(
+ [sys.executable, "-m", "pip", "install", package],
+ capture_output=True,
+ text=True
+ )
+
+ if result.returncode != 0:
+ error_msg = f"Failed to install {package}: {result.stderr}"
+ results.append(error_msg)
+ logger.error(error_msg)
+ success = False
+ else:
+ results.append(f"Successfully installed {package}")
+ logger.info(f"Successfully installed custom package: {package}")
+
+ except Exception as e:
+ error_msg = f"Error installing {package}: {str(e)}"
+ results.append(error_msg)
+ logger.error(error_msg)
+ success = False
+
+ progress_bar.progress(1.0)
+ status_placeholder.text("Installation complete!")
+ time.sleep(0.5)
+ progress_bar.empty()
+ status_placeholder.empty()
+
+ return success, "\n".join(results)
-# Fast numeric function for the discriminant
-discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
-
-@st.cache_data
-def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
- """
- Scan z in [z_min, z_max] for sign changes in the discriminant,
- and return approximated roots (where the discriminant is zero).
- """
- z_grid = np.linspace(z_min, z_max, steps)
- disc_vals = discriminant_func(z_grid, beta, z_a, y)
- roots_found = []
- for i in range(len(z_grid) - 1):
- f1, f2 = disc_vals[i], disc_vals[i+1]
- if np.isnan(f1) or np.isnan(f2):
- continue
- if f1 == 0.0:
- roots_found.append(z_grid[i])
- elif f2 == 0.0:
- roots_found.append(z_grid[i+1])
- elif f1 * f2 < 0:
- zl, zr = z_grid[i], z_grid[i+1]
- for _ in range(50):
- mid = 0.5 * (zl + zr)
- fm = discriminant_func(mid, beta, z_a, y)
- if fm == 0:
- zl = zr = mid
- break
- if np.sign(fm) == np.sign(f1):
- zl, f1 = mid, fm
+@st.cache_resource(ttl=3600)
+def init_ai_models_direct():
+ """Direct implementation using the exact pattern from the example code"""
+ try:
+ # Get token from secrets
+ token = get_secret("github_token_api")
+ if not token:
+ st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
+ return None
+
+ # Log what we're doing - for debugging
+ logger.info(f"Initializing AI model with token: {token[:5]}...")
+
+ # Use exact imports as in your example
+ import os
+ from azure.ai.inference import ChatCompletionsClient
+ from azure.ai.inference.models import SystemMessage, UserMessage
+ from azure.core.credentials import AzureKeyCredential
+
+ # Use exact endpoint as in your example
+ endpoint = "https://models.inference.ai.azure.com"
+
+ # Use default model
+ model_name = "gpt-4o"
+
+ # Create client exactly as in your example
+ client = ChatCompletionsClient(
+ endpoint=endpoint,
+ credential=AzureKeyCredential(token),
+ )
+
+ # Return the necessary information
+ return {
+ "client": client,
+ "model_name": model_name,
+ "endpoint": endpoint
+ }
+ except ImportError as ie:
+ st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
+ logger.error(f"Import error: {str(ie)}")
+ return None
+ except Exception as e:
+ st.error(f"Error initializing AI model: {str(e)}")
+ logger.error(f"Initialization error: {str(e)}")
+ return None
+
+def suggest_code_completion(code_snippet, models):
+ """Generate code completion using the AI model"""
+ if not models:
+ st.error("AI models not properly initialized.")
+ return None
+
+ try:
+ # Create the prompt
+ prompt = f"""Write a complete Manim animation scene based on this code or idea:
+{code_snippet}
+The code should be a complete, working Manim animation that includes:
+- Proper Scene class definition
+- Constructor with animations
+- Proper use of self.play() for animations
+- Proper wait times between animations
+Here's the complete Manim code:
+"""
+
+ with st.spinner("AI is generating your animation code..."):
+ # Get the current model name and base URL
+ model_name = models["model_name"]
+
+ # Convert message to the appropriate format based on model category
+ config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
+ category = config.get("category", "Other")
+
+ if category == "OpenAI":
+ # Import OpenAI client
+ from openai import OpenAI
+
+ # Get token
+ token = get_secret("github_token_api")
+
+ # Create or get client
+ if "openai_client" not in models:
+ client = OpenAI(
+ base_url="https://models.github.ai/inference",
+ api_key=token
+ )
+ models["openai_client"] = client
else:
- zr, f2 = mid, fm
- roots_found.append(0.5 * (zl + zr))
- return np.array(roots_found)
-
-@st.cache_data
-def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
- """
- For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
- for which the discriminant is zero.
- Returns: betas, lower z*(β) values, and upper z*(β) values.
- """
- betas = np.linspace(0, 1, beta_steps)
- z_min_values = []
- z_max_values = []
- for b in betas:
- roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
- if len(roots) == 0:
- z_min_values.append(np.nan)
- z_max_values.append(np.nan)
- else:
- z_min_values.append(np.min(roots))
- z_max_values.append(np.max(roots))
- return betas, np.array(z_min_values), np.array(z_max_values)
-
-@st.cache_data
-def compute_high_y_curve(betas, z_a, y):
- """
- Compute the "High y Expression" curve.
- """
- a = z_a
- betas = np.array(betas)
- denominator = 1 - 2*a
- if denominator == 0:
- return np.full_like(betas, np.nan)
- numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
- return numerator/denominator
-
-def compute_alternate_low_expr(betas, z_a, y):
- """
- Compute the alternate low expression:
- (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
- """
- betas = np.array(betas)
- return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a)
-
-@st.cache_data
-def compute_max_k_expression(betas, z_a, y, k_samples=1000):
- """
- Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
- """
- a = z_a
- # Sample k values on a logarithmic scale
- k_values = np.logspace(-3, 3, k_samples)
-
- max_vals = np.zeros_like(betas)
- for i, beta in enumerate(betas):
- values = np.zeros_like(k_values)
- for j, k in enumerate(k_values):
- numerator = y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)
- denominator = (a*k+1)*(k**2+k)
- if abs(denominator) < 1e-10:
- values[j] = np.nan
+ client = models["openai_client"]
+
+ # For OpenAI models, we need role-based messages
+ messages = [
+ {"role": "system", "content": "You are an expert in Manim animations."},
+ {"role": "user", "content": prompt}
+ ]
+
+ # Create params
+ params = {
+ "messages": messages,
+ "model": model_name
+ }
+
+ # Add token parameter
+ token_param = config["param_name"]
+ params[token_param] = config[token_param]
+
+ # Make API call
+ response = client.chat.completions.create(**params)
+ completed_code = response.choices[0].message.content
+
else:
- values[j] = numerator/denominator
+ # Use Azure client
+ from azure.ai.inference.models import UserMessage
+
+ # Convert message format for Azure
+ messages = [UserMessage(prompt)]
+ api_params, _ = prepare_api_params(messages, model_name)
+
+ # Make API call with Azure client
+ response = models["client"].complete(**api_params)
+ completed_code = response.choices[0].message.content
+
+ # Process the code
+ if "```python" in completed_code:
+ completed_code = completed_code.split("```python")[1].split("```")[0]
+ elif "```" in completed_code:
+ completed_code = completed_code.split("```")[1].split("```")[0]
+
+ # Add Scene class if missing
+ if "Scene" not in completed_code:
+ completed_code = f"""from manim import *
+class MyScene(Scene):
+ def construct(self):
+ {completed_code}"""
+
+ return completed_code
+
+ except Exception as e:
+ st.error(f"Error generating code: {str(e)}")
+ st.code(traceback.format_exc())
+ return None
+
+def check_model_freshness():
+ """Check if models need to be reloaded based on TTL"""
+ if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
+ return False
+
+ if 'last_loaded' not in st.session_state.ai_models:
+ return False
+
+ last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
+ ttl_hours = 1 # 1 hour TTL
+
+ return datetime.now() - last_loaded < timedelta(hours=ttl_hours)
+
+def extract_scene_class_name(python_code):
+ """Extract the scene class name from Python code."""
+ import re
+ scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
+
+ if scene_classes:
+ # Return the first scene class found
+ return scene_classes[0]
+ else:
+ # If no scene class is found, use a default name
+ return "MyScene"
+
+def suggest_code_completion(code_snippet, models):
+ if not models or "code_model" not in models:
+ st.error("AI models not properly initialized")
+ return None
+
+ try:
+ prompt = f"""Write a complete Manim animation scene based on this code or idea:
+{code_snippet}
+The code should be a complete, working Manim animation that includes:
+- Proper Scene class definition
+- Constructor with animations
+- Proper use of self.play() for animations
+- Proper wait times between animations
+Here's the complete Manim code:
+```python
+"""
+ with st.spinner("AI is generating your animation code..."):
+ response = models["code_model"](
+ prompt,
+ max_length=1024,
+ do_sample=True,
+ temperature=0.2,
+ top_p=0.95,
+ top_k=50,
+ num_return_sequences=1,
+ truncation=True,
+ pad_token_id=50256
+ )
+
+ if not response or not response[0].get('generated_text'):
+ st.error("No valid completion generated")
+ return None
+
+ completed_code = response[0]['generated_text']
+ if "```python" in completed_code:
+ completed_code = completed_code.split("```python")[1].split("```")[0]
+
+ if "Scene" not in completed_code:
+ completed_code = f"""from manim import *
+class MyScene(Scene):
+ def construct(self):
+ {completed_code}"""
+
+ return completed_code
+ except Exception as e:
+ st.error(f"Error suggesting code: {str(e)}")
+ logger.error(f"Code suggestion error: {str(e)}")
+ return None
+
+# Quality presets
+QUALITY_PRESETS = {
+ "480p": {"resolution": "480p", "fps": "30"},
+ "720p": {"resolution": "720p", "fps": "30"},
+ "1080p": {"resolution": "1080p", "fps": "60"},
+ "4K": {"resolution": "2160p", "fps": "60"},
+ "8K": {"resolution": "4320p", "fps": "60"} # Added 8K option
+}
+
+# Animation speeds
+ANIMATION_SPEEDS = {
+ "Slow": 0.5,
+ "Normal": 1.0,
+ "Fast": 2.0,
+ "Very Fast": 3.0
+}
+
+# Export formats
+EXPORT_FORMATS = {
+ "MP4 Video": "mp4",
+ "GIF Animation": "gif",
+ "WebM Video": "webm",
+ "PNG Image Sequence": "png_sequence",
+ "SVG Image": "svg"
+}
+
+# FPS options
+FPS_OPTIONS = [15, 24, 30, 60, 120]
+
+def highlight_code(code):
+ formatter = HtmlFormatter(style='monokai')
+ highlighted = highlight(code, PythonLexer(), formatter)
+ return highlighted, formatter.get_style_defs()
+
+def generate_manim_preview(python_code):
+ """Generate a lightweight preview of the Manim animation"""
+ try:
+ # Extract scene components for preview
+ scene_objects = []
+ if "Circle" in python_code:
+ scene_objects.append("circle")
+ if "Square" in python_code:
+ scene_objects.append("square")
+ if "MathTex" in python_code or "Tex" in python_code:
+ scene_objects.append("equation")
+ if "Text" in python_code:
+ scene_objects.append("text")
+ if "Axes" in python_code:
+ scene_objects.append("graph")
+ if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
+ scene_objects.append("3D scene")
+ if "Sphere" in python_code:
+ scene_objects.append("sphere")
+ if "Cube" in python_code:
+ scene_objects.append("cube")
+
+ # Generate a more detailed visual preview based on extracted objects
+ object_icons = {
+ "circle": "⭕",
+ "square": "🔲",
+ "equation": "📊",
+ "text": "📝",
+ "graph": "📈",
+ "3D scene": "🧊",
+ "sphere": "🌐",
+ "cube": "🧊"
+ }
+
+ icon_html = ""
+ for obj in scene_objects:
+ if obj in object_icons:
+ icon_html += f'{object_icons[obj]} '
+
+ preview_html = f"""
+
+
Animation Preview
+
+ {icon_html if icon_html else '🎬 '}
+
+
Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}
+
Full rendering required for accurate preview
+
+ """
+ return preview_html
+ except Exception as e:
+ logger.error(f"Preview generation error: {str(e)}")
+ return f"""
+
+
+
Preview Error
+
{str(e)}
+
+
+ """
+
+def prepare_audio_for_manim(audio_file, target_dir):
+ """Process audio file and return path for use in Manim"""
+ try:
+ # Create audio directory if it doesn't exist
+ audio_dir = os.path.join(target_dir, "audio")
+ os.makedirs(audio_dir, exist_ok=True)
+
+ # Generate a unique filename
+ filename = f"audio_{int(time.time())}.mp3"
+ output_path = os.path.join(audio_dir, filename)
+
+ # Save audio file
+ with open(output_path, "wb") as f:
+ f.write(audio_file.getvalue())
+
+ return output_path
+ except Exception as e:
+ logger.error(f"Audio processing error: {str(e)}")
+ return None
+
+def mp4_to_gif(mp4_path, output_path, fps=15):
+ """Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
+ try:
+ # Use ffmpeg for conversion with optimized settings
+ command = [
+ "ffmpeg",
+ "-i", mp4_path,
+ "-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
+ "-loop", "0",
+ output_path
+ ]
+
+ # Run the conversion
+ result = subprocess.run(command, capture_output=True, text=True)
+
+ if result.returncode != 0:
+ logger.error(f"FFmpeg conversion error: {result.stderr}")
+ return None
+
+ return output_path
+
+ except Exception as e:
+ logger.error(f"GIF conversion error: {str(e)}")
+ return None
+
+def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None, fps=None):
+ temp_dir = None
+ progress_placeholder = st.empty()
+ status_placeholder = st.empty()
+ log_placeholder = st.empty()
+ video_data = None # Initialize video data variable
+
+ try:
+ if not python_code or not format_type:
+ raise ValueError("Missing required parameters")
+
+ # Create temporary directory
+ temp_dir = tempfile.mkdtemp(prefix="manim_render_")
- valid_indices = ~np.isnan(values)
- if np.any(valid_indices):
- max_vals[i] = np.max(values[valid_indices])
+ # Extract the scene class name from the code
+ scene_class = extract_scene_class_name(python_code)
+ logger.info(f"Detected scene class: {scene_class}")
+
+ # If audio is provided, we need to modify the code to include it
+ if audio_path:
+ # Check if the code already has a with_sound decorator
+ if "with_sound" not in python_code:
+ # Add the necessary import
+ if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
+ python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
+
+ # Add sound to the scene
+ scene_def_pattern = f"class {scene_class}\\(.*?\\):"
+ scene_def_match = re.search(scene_def_pattern, python_code)
+
+ if scene_def_match:
+ scene_def = scene_def_match.group(0)
+ scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
+ python_code = python_code.replace(scene_def, scene_def_with_sound)
+ else:
+ logger.warning("Could not find scene definition to add audio")
+
+ # Write the code to a file
+ scene_file = os.path.join(temp_dir, "scene.py")
+ with open(scene_file, "w", encoding="utf-8") as f:
+ f.write(python_code)
+
+ # Map quality preset to Manim quality flag
+ quality_map = {
+ "480p": "-ql", # Low quality
+ "720p": "-qm", # Medium quality
+ "1080p": "-qh", # High quality
+ "4K": "-qk", # 4K quality
+ "8K": "-qp" # 8K quality (production quality)
+ }
+ quality_flag = quality_map.get(quality_preset, "-qm")
+
+ # Handle special formats
+ if format_type == "png_sequence":
+ # For PNG sequence, we need additional flags
+ format_arg = "--format=png"
+ extra_args = ["--save_pngs"]
+ elif format_type == "svg":
+ # For SVG, we need a different format
+ format_arg = "--format=svg"
+ extra_args = []
else:
- max_vals[i] = np.nan
-
- return max_vals
-
-@st.cache_data
-def compute_min_t_expression(betas, z_a, y, t_samples=1000):
- """
- Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
- """
- a = z_a
- if a <= 0:
- return np.full_like(betas, np.nan)
-
- lower_bound = -1/a + 1e-10 # Avoid division by zero
- t_values = np.linspace(lower_bound, -1e-10, t_samples)
-
- min_vals = np.zeros_like(betas)
- for i, beta in enumerate(betas):
- values = np.zeros_like(t_values)
- for j, t in enumerate(t_values):
- numerator = y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)
- denominator = (a*t+1)*(t**2+t)
- if abs(denominator) < 1e-10:
- values[j] = np.nan
+ # Standard video formats
+ format_arg = f"--format={format_type}"
+ extra_args = []
+
+ # Add custom FPS if specified
+ if fps is not None:
+ extra_args.append(f"--fps={fps}")
+
+ # Show status and create progress bar
+ status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
+ progress_bar = progress_placeholder.progress(0)
+
+ # Build command
+ command = [
+ "manim",
+ scene_file,
+ scene_class,
+ quality_flag,
+ format_arg
+ ]
+ command.extend(extra_args)
+
+ logger.info(f"Running command: {' '.join(command)}")
+
+ # Execute the command
+ process = subprocess.Popen(
+ command,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.STDOUT,
+ text=True
+ )
+
+ # Track output
+ full_output = []
+ output_file_path = None
+ mp4_output_path = None # Track MP4 output for GIF fallback
+
+ # Animation tracking variables
+ total_animations = None
+ current_animation = 0
+ total_frames = None
+ current_frame = 0
+
+ while True:
+ line = process.stdout.readline()
+ if not line and process.poll() is not None:
+ break
+
+ full_output.append(line)
+ log_placeholder.code("".join(full_output[-10:]))
+
+ # Try to detect total animations
+ if "Rendering animation number" in line or "Processing animation" in line:
+ try:
+ # Extract current animation number
+ anim_match = re.search(r"(?:Rendering animation number|Processing animation) (\d+) (?:out of|/) (\d+)", line)
+ if anim_match:
+ current_animation = int(anim_match.group(1))
+ total_animations = int(anim_match.group(2))
+ logger.info(f"Animation progress: {current_animation}/{total_animations}")
+
+ # Calculate progress based on animations
+ animation_progress = current_animation / total_animations
+ progress_bar.progress(animation_progress)
+ status_placeholder.info(f"Rendering {scene_class}: Animation {current_animation}/{total_animations} ({int(animation_progress*100)}%)")
+ except Exception as e:
+ logger.error(f"Error parsing animation progress: {str(e)}")
+
+ # Try to extract total frames information as fallback
+ elif "Render animations with total frames:" in line and not total_animations:
+ try:
+ total_frames = int(line.split("Render animations with total frames:")[1].strip().split()[0])
+ logger.info(f"Total frames to render: {total_frames}")
+ except Exception as e:
+ logger.error(f"Error parsing total frames: {str(e)}")
+
+ # Update progress bar based on frame information if animation count not available
+ elif "Rendering frame" in line and total_frames and not total_animations:
+ try:
+ # Extract current frame number
+ frame_match = re.search(r"Rendering frame (\d+)", line)
+ if frame_match:
+ current_frame = int(frame_match.group(1))
+ # Calculate progress as current frame / total frames
+ frame_progress = min(0.99, current_frame / total_frames)
+ progress_bar.progress(frame_progress)
+ # Update status with frame information
+ status_placeholder.info(f"Rendering {scene_class}: Frame {current_frame}/{total_frames} ({int(frame_progress*100)}%)")
+ except Exception as e:
+ logger.error(f"Error parsing frame progress: {str(e)}")
+ elif "%" in line and not total_animations and not total_frames:
+ try:
+ # Fallback to percentage if available
+ percent = float(line.split("%")[0].strip().split()[-1])
+ progress_bar.progress(min(0.99, percent / 100))
+ except:
+ pass
+
+ # Try to capture the output file path from Manim's output
+ if "File ready at" in line:
+ try:
+ # Combine next few lines to get the full path
+ path_parts = []
+ path_parts.append(line.split("File ready at")[-1].strip())
+
+ # Read up to 5 more lines to get the complete path
+ for _ in range(5):
+ additional_line = process.stdout.readline()
+ if additional_line:
+ full_output.append(additional_line)
+ path_parts.append(additional_line.strip())
+ if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
+ break
+
+ # Join all parts and clean up
+ potential_path = ''.join(path_parts).replace("'", "").strip()
+ # Look for path pattern surrounded by quotes
+ path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
+ if path_match:
+ output_file_path = path_match.group(2)
+ logger.info(f"Found output path in logs: {output_file_path}")
+
+ # Track MP4 file for potential GIF fallback
+ if output_file_path.endswith('.mp4'):
+ mp4_output_path = output_file_path
+ except Exception as e:
+ logger.error(f"Error parsing output path: {str(e)}")
+
+ # Wait for the process to complete
+ process.wait()
+ progress_bar.progress(1.0)
+
+ # IMPORTANT: Wait a moment for file system to catch up
+ time.sleep(3)
+
+ # Rest of the function remains the same
+
+ # Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
+ if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
+ status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
+
+ # Generate a GIF using FFmpeg
+ gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
+ gif_path = mp4_to_gif(mp4_output_path, gif_output_path, fps=fps if fps else 15)
+
+ if gif_path and os.path.exists(gif_path):
+ output_file_path = gif_path
+ logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
+
+ # For PNG sequence, we need to collect the PNGs
+ if format_type == "png_sequence":
+ # Find the PNG directory
+ png_dirs = []
+ search_dirs = [
+ os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
+ os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
+ "/tmp/media/images",
+ ]
+
+ for search_dir in search_dirs:
+ if os.path.exists(search_dir):
+ for root, dirs, _ in os.walk(search_dir):
+ for d in dirs:
+ if os.path.exists(os.path.join(root, d)):
+ png_dirs.append(os.path.join(root, d))
+
+ if png_dirs:
+ # Get the newest directory
+ newest_dir = max(png_dirs, key=os.path.getctime)
+
+ # Create a zip file with all PNGs
+ png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
+ if png_files:
+ zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
+
+ with zipfile.ZipFile(zip_path, 'w') as zipf:
+ for png in png_files:
+ png_path = os.path.join(newest_dir, png)
+ zipf.write(png_path, os.path.basename(png_path))
+
+ with open(zip_path, 'rb') as f:
+ video_data = f.read()
+
+ logger.info(f"Created PNG sequence zip: {zip_path}")
+ else:
+ logger.error("No PNG files found in directory")
else:
- values[j] = numerator/denominator
+ logger.error("No PNG directories found")
+ elif output_file_path and os.path.exists(output_file_path):
+ # For other formats, read the output file directly
+ with open(output_file_path, 'rb') as f:
+ video_data = f.read()
+ logger.info(f"Read output file from path: {output_file_path}")
+ else:
+ # If we didn't find the output path, search for files
+ search_paths = [
+ os.path.join(os.getcwd(), "media", "videos"),
+ os.path.join(os.getcwd(), "media", "videos", "scene"),
+ os.path.join(os.getcwd(), "media", "videos", scene_class),
+ "/tmp/media/videos",
+ temp_dir,
+ os.path.join(temp_dir, "media", "videos"),
+ ]
+
+ # Add quality-specific paths
+ for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
+ search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
+ search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
+
+ # For SVG format
+ if format_type == "svg":
+ search_paths.extend([
+ os.path.join(os.getcwd(), "media", "designs"),
+ os.path.join(os.getcwd(), "media", "designs", scene_class),
+ ])
+
+ # Find all output files in the search paths
+ output_files = []
+ for search_path in search_paths:
+ if os.path.exists(search_path):
+ for root, _, files in os.walk(search_path):
+ for file in files:
+ if file.endswith(f".{format_type}") and "partial" not in file:
+ file_path = os.path.join(root, file)
+ if os.path.exists(file_path):
+ output_files.append(file_path)
+ logger.info(f"Found output file: {file_path}")
+
+ if output_files:
+ # Get the newest file
+ latest_file = max(output_files, key=os.path.getctime)
+ with open(latest_file, 'rb') as f:
+ video_data = f.read()
+ logger.info(f"Read output from file search: {latest_file}")
+
+ # If the format is GIF but we got an MP4, try to convert it
+ if format_type == "gif" and latest_file.endswith('.mp4'):
+ gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
+ gif_path = mp4_to_gif(latest_file, gif_output_path, fps=fps if fps else 15)
+
+ if gif_path and os.path.exists(gif_path):
+ with open(gif_path, 'rb') as f:
+ video_data = f.read()
+ logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
- valid_indices = ~np.isnan(values)
- if np.any(valid_indices):
- min_vals[i] = np.min(values[valid_indices])
+ # If we got output data, return it
+ if video_data:
+ file_size_mb = len(video_data) / (1024 * 1024)
+
+ # Clear placeholders
+ progress_placeholder.empty()
+ status_placeholder.empty()
+ log_placeholder.empty()
+
+ return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)"
else:
- min_vals[i] = np.nan
+ output_str = ''.join(full_output)
+ logger.error(f"No output files found. Full output: {output_str}")
- return min_vals
+ # Check if we have an MP4 but need a GIF (special handling for GIF issues)
+ if format_type == "gif":
+ # Try one more aggressive search for any MP4 file
+ mp4_files = []
+ for search_path in [os.getcwd(), temp_dir, "/tmp"]:
+ for root, _, files in os.walk(search_path):
+ for file in files:
+ if file.endswith('.mp4') and scene_class.lower() in file.lower():
+ mp4_path = os.path.join(root, file)
+ if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
+ mp4_files.append(mp4_path)
+
+ if mp4_files:
+ newest_mp4 = max(mp4_files, key=os.path.getctime)
+ logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
+
+ # Convert to GIF
+ gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
+ gif_path = mp4_to_gif(newest_mp4, gif_output_path, fps=fps if fps else 15)
+
+ if gif_path and os.path.exists(gif_path):
+ with open(gif_path, 'rb') as f:
+ video_data = f.read()
+
+ # Clear placeholders
+ progress_placeholder.empty()
+ status_placeholder.empty()
+ log_placeholder.empty()
+
+ file_size_mb = len(video_data) / (1024 * 1024)
+ return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
+
+ return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
+
+ except Exception as e:
+ logger.error(f"Error: {str(e)}")
+ import traceback
+ logger.error(traceback.format_exc())
+
+ if progress_placeholder:
+ progress_placeholder.empty()
+ if status_placeholder:
+ status_placeholder.error(f"Rendering Error: {str(e)}")
+ if log_placeholder:
+ log_placeholder.empty()
+
+ return None, f"❌ Error: {str(e)}"
+
+ finally:
+ # CRITICAL: Only cleanup after we've captured the output data
+ if temp_dir and os.path.exists(temp_dir) and video_data is not None:
+ try:
+ shutil.rmtree(temp_dir)
+ logger.info(f"Cleaned up temp dir: {temp_dir}")
+ except Exception as e:
+ logger.error(f"Failed to clean temp dir: {str(e)}")
-@st.cache_data
-def compute_derivatives(curve, betas):
- """Compute first and second derivatives of a curve"""
- d1 = np.gradient(curve, betas)
- d2 = np.gradient(d1, betas)
- return d1, d2
+def detect_input_calls(code):
+ """Detect input() calls in Python code to prepare for handling"""
+ input_calls = []
+ lines = code.split('\n')
+ for i, line in enumerate(lines):
+ if 'input(' in line and not line.strip().startswith('#'):
+ # Try to extract the prompt if available
+ prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
+ prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
+ input_calls.append({"line": i+1, "prompt": prompt})
+ return input_calls
-def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
- """Compute derivatives for all curves"""
- derivatives = {}
+def run_python_script(code, inputs=None, timeout=60):
+ """Execute a Python script and capture output, handling input calls"""
+ result = {
+ "stdout": "",
+ "stderr": "",
+ "exception": None,
+ "plots": [],
+ "dataframes": [],
+ "execution_time": 0
+ }
- # Upper z*(β)
- derivatives['upper'] = compute_derivatives(z_maxs, betas)
+ # Replace input() calls with predefined values if provided
+ if inputs and len(inputs) > 0:
+ # Modify the code to use predefined inputs instead of waiting for user input
+ modified_code = """
+# Input values provided by the user
+__INPUT_VALUES = {}
+__INPUT_INDEX = 0
+# Override the built-in input function
+def input(prompt=''):
+ global __INPUT_INDEX
+ print(prompt, end='')
+ if __INPUT_INDEX < len(__INPUT_VALUES):
+ value = __INPUT_VALUES[__INPUT_INDEX]
+ __INPUT_INDEX += 1
+ print(value) # Echo the input
+ return value
+ else:
+ print("\\n[WARNING] No more predefined inputs available, using empty string")
+ return ""
+""".format(inputs)
+
+ code = modified_code + code
- # Lower z*(β)
- derivatives['lower'] = compute_derivatives(z_mins, betas)
+ # Create a tempdir for script execution
+ with tempfile.TemporaryDirectory() as temp_dir:
+ # Path for saving plots
+ plot_dir = os.path.join(temp_dir, 'plots')
+ os.makedirs(plot_dir, exist_ok=True)
+
+ # Files for capturing stdout and stderr
+ stdout_file = os.path.join(temp_dir, 'stdout.txt')
+ stderr_file = os.path.join(temp_dir, 'stderr.txt')
+
+ # Add plot saving code
+ if 'matplotlib' in code or 'plt' in code:
+ if 'import matplotlib.pyplot as plt' not in code and 'from matplotlib import pyplot as plt' not in code:
+ code = "import matplotlib.pyplot as plt\n" + code
+
+ # Add code to save plots
+ save_plots_code = """
+# Save all figures
+import matplotlib.pyplot as plt
+import os
+__figures = plt.get_fignums()
+for __i, __num in enumerate(__figures):
+ __fig = plt.figure(__num)
+ __fig.savefig(os.path.join('{}', f'plot_{{__i}}.png'))
+""".format(plot_dir.replace('\\', '\\\\'))
+
+ code += "\n" + save_plots_code
+
+ # Add dataframe display code if pandas is used
+ if 'pandas' in code or 'pd.' in code or 'DataFrame' in code:
+ if 'import pandas as pd' not in code and 'from pandas import' not in code:
+ code = "import pandas as pd\n" + code
+
+ # Add code to save dataframe info
+ dataframes_code = """
+# Capture DataFrames
+import pandas as pd
+import json
+import io
+import os
+__globals_dict = globals()
+__dataframes = []
+for __var_name, __var_val in __globals_dict.items():
+ if isinstance(__var_val, pd.DataFrame) and not __var_name.startswith('__'):
+ try:
+ # Save basic info
+ __df_info = {
+ "name": __var_name,
+ "shape": __var_val.shape,
+ "columns": list(__var_val.columns),
+ "preview_html": __var_val.head().to_html()
+ }
+ with open(os.path.join('{}', f'df_{{__var_name}}.json'), 'w') as __f:
+ json.dump(__df_info, __f)
+ except:
+ pass
+""".format(temp_dir.replace('\\', '\\\\'))
+
+ code += "\n" + dataframes_code
+
+ # Create the script file
+ script_path = os.path.join(temp_dir, 'script.py')
+ with open(script_path, 'w') as f:
+ f.write(code)
+
+ # Execute with timeout
+ start_time = time.time()
+ try:
+ # Run the script with stdout and stderr redirection
+ with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
+ process = subprocess.Popen(
+ [sys.executable, script_path],
+ stdout=stdout_f,
+ stderr=stderr_f,
+ cwd=temp_dir
+ )
+
+ try:
+ process.wait(timeout=timeout)
+ except subprocess.TimeoutExpired:
+ process.kill()
+ result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
+ result["exception"] = "TimeoutError"
+ return result
+
+ # Read the output
+ with open(stdout_file, 'r') as f:
+ result["stdout"] = f.read()
+
+ with open(stderr_file, 'r') as f:
+ result["stderr"] = f.read()
+
+ # Collect plots
+ if os.path.exists(plot_dir):
+ plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
+ for plot_file in plot_files:
+ with open(os.path.join(plot_dir, plot_file), 'rb') as f:
+ result["plots"].append(f.read())
+
+ # Collect dataframes
+ df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
+ for df_file in df_files:
+ with open(os.path.join(temp_dir, df_file), 'r') as f:
+ result["dataframes"].append(json.load(f))
+
+ # Calculate execution time
+ result["execution_time"] = time.time() - start_time
+
+ except Exception as e:
+ result["exception"] = str(e)
+ result["stderr"] += f"\nError executing script: {str(e)}"
+
+ return result
+
+def display_python_script_results(result):
+ """Display the results from the Python script execution"""
+ if not result:
+ st.error("No results to display.")
+ return
+
+ # Display execution time
+ st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
- # Low y Expression (only if provided)
- if low_y_curve is not None:
- derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
+ # Display any errors
+ if result["exception"]:
+ st.error(f"Exception occurred: {result['exception']}")
- # High y Expression
- derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
+ if result["stderr"]:
+ st.error("Errors:")
+ st.code(result["stderr"], language="bash")
- # Alternate Low Expression
- derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
+ # Display plots if any
+ if result["plots"]:
+ st.markdown("### Plots")
+ cols = st.columns(min(3, len(result["plots"])))
+ for i, plot_data in enumerate(result["plots"]):
+ cols[i % len(cols)].image(plot_data, use_column_width=True)
- # Custom Expression 1 (if provided)
- if custom_curve1 is not None:
- derivatives['custom1'] = compute_derivatives(custom_curve1, betas)
+ # Display dataframes if any
+ if result["dataframes"]:
+ st.markdown("### DataFrames")
+ for df_info in result["dataframes"]:
+ with st.expander(f"{df_info['name']} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"):
+ st.markdown(df_info["preview_html"], unsafe_allow_html=True)
+
+ # Display standard output
+ if result["stdout"]:
+ st.markdown("### Standard Output")
+ st.code(result["stdout"], language="bash")
- # Custom Expression 2 (if provided)
- if custom_curve2 is not None:
- derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
+def parse_animation_steps(python_code):
+ """Parse Manim code to extract animation steps for timeline editor"""
+ animation_steps = []
+
+ # Look for self.play calls in the code
+ play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
+ wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
+
+ # Extract animation objects from play calls
+ for i, play_call in enumerate(play_calls):
+ # Parse the arguments to self.play()
+ animations = [arg.strip() for arg in play_call.split(',')]
- return derivatives
-
-def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
- """
- Compute custom curve. If is_s_based=True, compute using s substitution.
- Otherwise, compute direct z(β) expression.
- """
- beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
- local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
+ # Get wait time after this animation if available
+ wait_time = 1.0 # Default wait time
+ if i < len(wait_calls):
+ wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
+ if wait_match:
+ wait_time = float(wait_match.group(1))
+
+ # Add to animation steps
+ animation_steps.append({
+ "id": i+1,
+ "type": "play",
+ "animations": animations,
+ "duration": wait_time,
+ "start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
+ "code": f"self.play({play_call})"
+ })
- try:
- # Add sqrt support
- s_num_expr = add_sqrt_support(s_num_expr)
- s_denom_expr = add_sqrt_support(s_denom_expr)
-
- num_expr = sp.sympify(s_num_expr, locals=local_dict)
- denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
-
- if is_s_based:
- # Compute s and substitute into main expression
- s_expr = num_expr / denom_expr
- a = z_a_sym
- numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
- denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
- final_expr = numerator/denominator
- else:
- # Direct z(β) expression
- final_expr = num_expr / denom_expr
-
- except sp.SympifyError as e:
- st.error(f"Error parsing expressions: {e}")
- return np.full_like(betas, np.nan)
-
- final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
- with np.errstate(divide='ignore', invalid='ignore'):
- result = final_func(betas, z_a, y)
- if np.isscalar(result):
- result = np.full_like(betas, result)
- return result
-
-def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
- s_num_expr=None, s_denom_expr=None,
- z_num_expr=None, z_denom_expr=None,
- show_derivatives=False):
- if z_a <= 0 or y <= 0 or z_min >= z_max:
- st.error("Invalid input parameters.")
- return None
+ return animation_steps
- betas = np.linspace(0, 1, beta_steps)
- betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
- # Removed low_y_curve computation
- high_y_curve = compute_high_y_curve(betas, z_a, y)
- alt_low_expr = compute_alternate_low_expr(betas, z_a, y)
-
- # Compute the max/min expressions
- max_k_curve = compute_max_k_expression(betas, z_a, y)
- min_t_curve = compute_min_t_expression(betas, z_a, y)
-
- # Compute both custom curves
- custom_curve1 = None
- custom_curve2 = None
- if s_num_expr and s_denom_expr:
- custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
- if z_num_expr and z_denom_expr:
- custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)
-
- # Compute derivatives if needed
- if show_derivatives:
- derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve,
- alt_low_expr, custom_curve1, custom_curve2)
- # Calculate derivatives for max_k and min_t curves
- max_k_derivatives = compute_derivatives(max_k_curve, betas)
- min_t_derivatives = compute_derivatives(min_t_curve, betas)
-
- fig = go.Figure()
-
- # Original curves
- fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
- name="Upper z*(β)", line=dict(color='blue')))
- fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
- name="Lower z*(β)", line=dict(color='blue')))
- # Removed the Low y Expression trace
- fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
- name="High y Expression", line=dict(color='green')))
- fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
- name="Low Expression", line=dict(color='green')))
-
- # Add the new max/min curves
- fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines",
- name="Max k Expression", line=dict(color='red', width=2)))
- fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines",
- name="Min t Expression", line=dict(color='orange', width=2)))
-
- if custom_curve1 is not None:
- fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
- name="Custom 1 (s-based)", line=dict(color='purple')))
- if custom_curve2 is not None:
- fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
- name="Custom 2 (direct)", line=dict(color='magenta')))
-
- if show_derivatives:
- # First derivatives
- curve_info = [
- ('upper', 'Upper z*(β)', 'blue'),
- ('lower', 'Lower z*(β)', 'lightblue'),
- # Removed low_y curve
- ('high_y', 'High y', 'green'),
- ('alt_low', 'Alt Low', 'orange')
- ]
+def generate_code_from_timeline(animation_steps, original_code):
+ """Generate Manim code from the timeline data"""
+ # Extract the class definition and setup
+ class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
+
+ if not class_match:
+ return original_code # Can't find proper structure to modify
- if custom_curve1 is not None:
- curve_info.append(('custom1', 'Custom 1', 'purple'))
- if custom_curve2 is not None:
- curve_info.append(('custom2', 'Custom 2', 'magenta'))
-
- for key, name, color in curve_info:
- fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines",
- name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
- fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines",
- name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
-
- # Add derivatives for max_k and min_t curves
- fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines",
- name="Max k d/dβ", line=dict(color='red', dash='dash')))
- fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines",
- name="Max k d²/dβ²", line=dict(color='red', dash='dot')))
- fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines",
- name="Min t d/dβ", line=dict(color='orange', dash='dash')))
- fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines",
- name="Min t d²/dβ²", line=dict(color='orange', dash='dot')))
+ setup_code = class_match.group(1)
+
+ # Build the new construct method
+ new_code = [setup_code]
+ indent = " " # Standard Manim indentation
+
+ # Add each animation step in order
+ for step in sorted(animation_steps, key=lambda x: x["id"]):
+ new_code.append(f"{indent}{step['code']}")
+ if "duration" in step and step["duration"] > 0:
+ new_code.append(f"{indent}self.wait({step['duration']})")
+
+ # Add any code that might come after animations
+ end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
+ if end_match:
+ new_code.append(end_match.group(1))
+
+ # Combine the code parts with proper indentation
+ return "\n".join(new_code)
+def create_timeline_editor(code):
+ """Create an interactive timeline editor for animation sequences"""
+ st.markdown("### 🎞️ Animation Timeline Editor")
+
+ if not code:
+ st.warning("Add animation code first to use the timeline editor.")
+ return code
+
+ # Parse animation steps from the code
+ animation_steps = parse_animation_steps(code)
+
+ if not animation_steps:
+ st.warning("No animation steps detected in your code.")
+ return code
+
+ # Convert to DataFrame for easier manipulation
+ df = pd.DataFrame(animation_steps)
+
+ # Create an interactive Gantt chart with plotly
+ st.markdown("#### Animation Timeline")
+ st.markdown("Drag timeline elements to reorder or resize to change duration")
+
+ # Create the Gantt chart
+ fig = px.timeline(
+ df,
+ x_start="start_time",
+ x_end=df["start_time"] + df["duration"],
+ y="id",
+ color="type",
+ hover_name="animations",
+ labels={"id": "Step", "start_time": "Time (seconds)"}
+ )
+
+ # Make it interactive
fig.update_layout(
- title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
- xaxis_title="β",
- yaxis_title="Value",
- hovermode="x unified",
- showlegend=True,
- legend=dict(
- yanchor="top",
- y=0.99,
- xanchor="left",
- x=0.01
+ height=400,
+ xaxis=dict(
+ title="Time (seconds)",
+ rangeslider_visible=True
)
)
- return fig
-
-def compute_cubic_roots(z, beta, z_a, y):
- """
- Compute the roots of the cubic equation for given parameters.
- """
- a = z * z_a
- b = z * z_a + z + z_a - z_a*y
- c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
- d = 1
- coeffs = [a, b, c, d]
- roots = np.roots(coeffs)
- return roots
-
-def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
- """
- Generate Im(s) and Re(s) vs. z plots.
- """
- if z_a <= 0 or y <= 0 or z_min >= z_max:
- st.error("Invalid input parameters.")
- return None, None
-
- z_points = np.linspace(z_min, z_max, n_points)
- ims, res = [], []
- for z in z_points:
- roots = compute_cubic_roots(z, beta, z_a, y)
- roots = sorted(roots, key=lambda x: abs(x.imag))
- ims.append([root.imag for root in roots])
- res.append([root.real for root in roots])
- ims = np.array(ims)
- res = np.array(res)
-
- fig_im = go.Figure()
- for i in range(3):
- fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
- line=dict(width=2)))
- fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
- xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
-
- fig_re = go.Figure()
- for i in range(3):
- fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
- line=dict(width=2)))
- fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
- xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
- return fig_im, fig_re
-
-@st.cache_data
-def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
- """
- Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
-
- Parameters:
- -----------
- beta : float
- Fraction of components equal to z_a
- y : float
- Aspect ratio p/n
- z_a : float
- Value for the delta mass at z_a
- n : int
- Number of samples
- seed : int
- Random seed for reproducibility
- """
- # Set random seed
- np.random.seed(seed)
-
- # Compute dimension p based on aspect ratio y
- p = int(y * n)
-
- # Constructing T_n (Population / Shape Matrix)
- T_diag = np.where(np.random.rand(p) < beta, z_a, 1.0)
- T_n = np.diag(T_diag)
-
- # Generate the data matrix X with i.i.d. standard normal entries
- X = np.random.randn(p, n)
-
- # Compute the sample covariance matrix S_n = (1/n) * XX^T
- S_n = (1 / n) * (X @ X.T)
-
- # Compute B_n = S_n T_n
- B_n = S_n @ T_n
-
- # Compute eigenvalues of B_n
- eigenvalues = np.linalg.eigvalsh(B_n)
-
- # Use KDE to compute a smooth density estimate
- kde = gaussian_kde(eigenvalues)
- x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
- kde_vals = kde(x_vals)
-
- # Create figure
- fig = go.Figure()
-
- # Add histogram trace
- fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
- name="Histogram", marker=dict(color='blue', opacity=0.6)))
-
- # Add KDE trace
- fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
- name="KDE", line=dict(color='red', width=2)))
- fig.update_layout(
- title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
- xaxis_title="Eigenvalue",
- yaxis_title="Density",
- hovermode="closest",
- showlegend=True
+ # Add buttons and interactivity
+ timeline_chart = st.plotly_chart(fig, use_container_width=True)
+
+ # Control panel
+ st.markdown("#### Timeline Controls")
+ controls_col1, controls_col2, controls_col3 = st.columns(3)
+
+ with controls_col1:
+ selected_step = st.selectbox(
+ "Select Step to Edit:",
+ options=list(range(1, len(animation_steps) + 1)),
+ format_func=lambda x: f"Step {x}"
+ )
+
+ with controls_col2:
+ new_duration = st.number_input(
+ "Duration (seconds):",
+ min_value=0.1,
+ max_value=10.0,
+ value=float(df[df["id"] == selected_step]["duration"].values[0]),
+ step=0.1
+ )
+
+ with controls_col3:
+ step_action = st.selectbox(
+ "Action:",
+ options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
+ )
+
+ apply_btn = st.button("Apply Change", key="apply_timeline_change")
+
+ # Handle timeline modifications
+ if apply_btn:
+ modified = False
+
+ if step_action == "Update Duration":
+ # Update the duration of the selected step
+ idx = df[df["id"] == selected_step].index[0]
+ df.at[idx, "duration"] = new_duration
+ modified = True
+
+ elif step_action == "Move Up" and selected_step > 1:
+ # Swap with the step above
+ idx1 = df[df["id"] == selected_step].index[0]
+ idx2 = df[df["id"] == selected_step - 1].index[0]
+
+ # Swap IDs to maintain order
+ df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
+ modified = True
+
+ elif step_action == "Move Down" and selected_step < len(animation_steps):
+ # Swap with the step below
+ idx1 = df[df["id"] == selected_step].index[0]
+ idx2 = df[df["id"] == selected_step + 1].index[0]
+
+ # Swap IDs to maintain order
+ df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
+ modified = True
+
+ elif step_action == "Delete Step":
+ # Remove the selected step
+ df = df[df["id"] != selected_step]
+ # Reindex remaining steps
+ new_ids = list(range(1, len(df) + 1))
+ df["id"] = new_ids
+ modified = True
+
+ if modified:
+ # Recalculate start times
+ df = df.sort_values("id")
+ cumulative_time = 0
+ for idx, row in df.iterrows():
+ df.at[idx, "start_time"] = cumulative_time
+ cumulative_time += row["duration"]
+
+ # Regenerate animation code
+ animation_steps = df.to_dict('records')
+ new_code = generate_code_from_timeline(animation_steps, code)
+
+ st.success("Timeline updated! Code has been regenerated.")
+ return new_code
+
+ # Visual keyframe editor
+ st.markdown("#### Visual Keyframe Editor")
+ st.markdown("Add keyframes for smooth property transitions")
+
+ keyframe_obj = st.selectbox(
+ "Select object to animate:",
+ options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects
)
- return fig
-
-# ----------------- Streamlit UI -----------------
-st.title("Cubic Root Analysis")
-
-# Define three tabs (removed "Curve Intersections")
-tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"])
-
-# ----- Tab 1: z*(β) Curves -----
-with tab1:
- st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
- col1, col2 = st.columns([1, 2])
- with col1:
- z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
- y_1 = st.number_input("y", value=1.0, key="y_1")
- z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
- z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
- with st.expander("Resolution Settings"):
- beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps")
- z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps")
-
- st.subheader("Custom Expression 1 (s-based)")
- st.markdown("""Enter expressions for s = numerator/denominator
- (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
- st.latex(r"\text{This s will be inserted into:}")
- st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
- s_num = st.text_input("s numerator", value="", key="s_num")
- s_denom = st.text_input("s denominator", value="", key="s_denom")
-
- st.subheader("Custom Expression 2 (direct z(β))")
- st.markdown("""Enter direct expression for z(β) = numerator/denominator
- (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
- z_num = st.text_input("z(β) numerator", value="", key="z_num")
- z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
-
- show_derivatives = st.checkbox("Show derivatives", value=False)
-
- if st.button("Compute z vs. β Curves", key="tab1_button"):
- with col2:
- fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
- s_num, s_denom, z_num, z_denom, show_derivatives)
- if fig is not None:
- st.plotly_chart(fig, use_container_width=True)
- st.markdown("### Curve Explanations")
- st.markdown("""
- - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- - **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
- - **High y Expression** (Green): Asymptotic approximation for high y values
- - **Low Expression** (Orange): Alternative asymptotic expression
- - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
- - **Min t Expression** (Orange): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
- - **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
- - **Custom Expression 2** (Magenta): Direct z(β) expression
- """)
- if show_derivatives:
- st.markdown("""
- Derivatives are shown as:
- - Dashed lines: First derivatives (d/dβ)
- - Dotted lines: Second derivatives (d²/dβ²)
- """)
-
-# ----- Tab 2: Im{s} vs. z -----
-with tab2:
- st.header("Plot Complex Roots vs. z")
- col1, col2 = st.columns([1, 2])
- with col1:
- beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
- y_2 = st.number_input("y", value=1.0, key="y_tab2")
- z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
- z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
- z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
- with st.expander("Resolution Settings"):
- z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
- if st.button("Compute Complex Roots vs. z", key="tab2_button"):
- with col2:
- fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
- if fig_im is not None and fig_re is not None:
- st.plotly_chart(fig_im, use_container_width=True)
- st.plotly_chart(fig_re, use_container_width=True)
+ keyframe_prop = st.selectbox(
+ "Select property:",
+ options=["position", "scale", "rotation", "opacity", "color"]
+ )
- # Add a separator
- st.markdown("---")
+ # Keyframe timeline visualization
+ keyframe_times = [0, 1, 2, 3, 4] # Placeholder
+ keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder
- # Add eigenvalue distribution section
- st.header("Eigenvalue Distribution for B_n = S_n T_n")
+ keyframe_df = pd.DataFrame({
+ "time": keyframe_times,
+ "value": keyframe_values
+ })
+
+ keyframe_fig = px.line(
+ keyframe_df,
+ x="time",
+ y="value",
+ markers=True,
+ title=f"{keyframe_prop.capitalize()} Keyframes"
+ )
+
+ keyframe_fig.update_layout(
+ xaxis_title="Time (seconds)",
+ yaxis_title="Value",
+ height=250
+ )
+
+ st.plotly_chart(keyframe_fig, use_container_width=True)
+
+ keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
+ with keyframe_col1:
+ keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
+ with keyframe_col2:
+ keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
+ with keyframe_col3:
+ add_keyframe = st.button("Add Keyframe")
+
+ # Return the original code or modified code
+ return code
+
+def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
+ """Export animation to various educational formats"""
+ try:
+ if format_type == "powerpoint":
+ # Make sure python-pptx is installed
+ try:
+ import pptx
+ from pptx.util import Inches
+ except ImportError:
+ logger.error("python-pptx not installed")
+ subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
+ import pptx
+ from pptx.util import Inches
+
+ # Create PowerPoint presentation
+ prs = pptx.Presentation()
+
+ # Title slide
+ title_slide = prs.slides.add_slide(prs.slide_layouts[0])
+ title_slide.shapes.title.text = animation_title
+ title_slide.placeholders[1].text = "Created with Manim Animation Studio"
+
+ # Video slide
+ video_slide = prs.slides.add_slide(prs.slide_layouts[5])
+ video_slide.shapes.title.text = "Animation"
+
+ # Save video to temp file
+ video_path = os.path.join(temp_dir, "animation.mp4")
+ with open(video_path, "wb") as f:
+ f.write(video_data)
+
+ # Add video to slide
+ try:
+ left = Inches(1)
+ top = Inches(1.5)
+ width = Inches(8)
+ height = Inches(4.5)
+ video_slide.shapes.add_movie(video_path, left, top, width, height)
+ except Exception as e:
+ logger.error(f"Error adding video to PowerPoint: {str(e)}")
+ # Fallback to adding a picture with link
+ img_path = os.path.join(temp_dir, "thumbnail.png")
+ # Generate thumbnail with ffmpeg
+ subprocess.run([
+ "ffmpeg", "-i", video_path, "-ss", "00:00:01.000",
+ "-vframes", "1", img_path
+ ], check=True)
+
+ if os.path.exists(img_path):
+ pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
+ video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
+
+ # Explanation slide
+ if explanation_text:
+ text_slide = prs.slides.add_slide(prs.slide_layouts[1])
+ text_slide.shapes.title.text = "Explanation"
+ text_slide.placeholders[1].text = explanation_text
+
+ # Save presentation
+ output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
+ prs.save(output_path)
+
+ # Read the file to return it
+ with open(output_path, "rb") as f:
+ return f.read(), "powerpoint"
+
+ elif format_type == "html":
+ # Create interactive HTML animation
+ html_template = """
+
+
+
+ {title}
+
+
+
+
+ {title}
+
+
+
+
+ Your browser does not support the video tag.
+
+
+
+ Play
+ Pause
+ Restart
+ 0.5x Speed
+ 1x Speed
+ 2x Speed
+
+
+
+
+
Explanation
+ {explanation_html}
+
+
+
+
+
+ """
+
+ # Convert video data to base64
+ video_base64 = base64.b64encode(video_data).decode('utf-8')
+
+ # Convert markdown explanation to HTML
+ explanation_html = markdown.markdown(explanation_text) if explanation_text else "No explanation provided.
"
+
+ # Format the HTML template
+ html_content = html_template.format(
+ title=animation_title,
+ video_base64=video_base64,
+ explanation_html=explanation_html
+ )
+
+ # Save to file
+ output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
+ with open(output_path, "w", encoding="utf-8") as f:
+ f.write(html_content)
+
+ # Read the file to return it
+ with open(output_path, "rb") as f:
+ return f.read(), "html"
+
+ elif format_type == "sequence":
+ # Generate animation sequence with explanatory text
+ # Make sure FPDF is installed
+ try:
+ from fpdf import FPDF
+ except ImportError:
+ logger.error("fpdf not installed")
+ subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
+ from fpdf import FPDF
+
+ # Save video temporarily
+ temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
+ with open(temp_video_path, "wb") as f:
+ f.write(video_data)
+
+ # Create frames directory
+ frames_dir = os.path.join(temp_dir, "frames")
+ os.makedirs(frames_dir, exist_ok=True)
+
+ # Extract frames using ffmpeg (assuming it's installed)
+ frame_count = 5 # Number of key frames to extract
+ try:
+ subprocess.run([
+ "ffmpeg",
+ "-i", temp_video_path,
+ "-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
+ "-vsync", "0",
+ os.path.join(frames_dir, "frame_%03d.png")
+ ], check=True)
+ except Exception as e:
+ logger.error(f"Error extracting frames: {str(e)}")
+ # Try a simpler approach
+ subprocess.run([
+ "ffmpeg",
+ "-i", temp_video_path,
+ "-r", "1", # 1 frame per second
+ os.path.join(frames_dir, "frame_%03d.png")
+ ], check=True)
+
+ # Parse explanation text into segments (assuming sections divided by ##)
+ explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
+
+ # Create a PDF with frames and explanations
+ pdf = FPDF()
+ pdf.set_auto_page_break(auto=True, margin=15)
+
+ # Title page
+ pdf.add_page()
+ pdf.set_font("Arial", "B", 20)
+ pdf.cell(190, 10, animation_title, ln=True, align="C")
+ pdf.ln(10)
+ pdf.set_font("Arial", "", 12)
+ pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
+
+ # Add each frame with explanation
+ frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
+
+ for i, frame_file in enumerate(frame_files):
+ pdf.add_page()
+
+ # Add frame image
+ frame_path = os.path.join(frames_dir, frame_file)
+ pdf.image(frame_path, x=10, y=10, w=190)
+
+ # Add explanation text
+ pdf.ln(140) # Move below the image
+ pdf.set_font("Arial", "B", 12)
+ pdf.cell(190, 10, f"Step {i+1}", ln=True)
+ pdf.set_font("Arial", "", 10)
+
+ # Use the corresponding explanation segment if available
+ explanation = explanation_segments[min(i, len(explanation_segments)-1)]
+ pdf.multi_cell(190, 5, explanation.strip())
+
+ # Save PDF
+ output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
+ pdf.output(output_path)
+
+ # Read the file to return it
+ with open(output_path, "rb") as f:
+ return f.read(), "pdf"
+
+ return None, None
+
+ except Exception as e:
+ logger.error(f"Educational export error: {str(e)}")
+ import traceback
+ logger.error(traceback.format_exc())
+ return None, None
+
+def main():
+ # Initialize session state variables if they don't exist
+ if 'init' not in st.session_state:
+ st.session_state.init = True
+ st.session_state.video_data = None
+ st.session_state.status = None
+ st.session_state.ai_models = None
+ st.session_state.generated_code = ""
+ st.session_state.code = ""
+ st.session_state.temp_code = ""
+ st.session_state.editor_key = str(uuid.uuid4())
+ st.session_state.packages_checked = False # Track if packages were already checked
+ st.session_state.audio_path = None
+ st.session_state.image_paths = []
+ st.session_state.custom_library_result = ""
+ st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
+ st.session_state.python_result = None
+ st.session_state.active_tab = 0 # Track currently active tab
+ st.session_state.settings = {
+ "quality": "720p",
+ "format_type": "mp4",
+ "animation_speed": "Normal",
+ "fps": 30 # Default FPS
+ }
+ st.session_state.password_entered = False # Track password authentication
+ st.session_state.custom_model = "gpt-4o" # Default model
+ st.session_state.first_load_complete = False # Prevent refreshes on first load
+ st.session_state.pending_tab_switch = None # Track pending tab switches
+
+ # Page configuration with improved layout
+ st.set_page_config(
+ page_title="Manim Animation Studio",
+ page_icon="🎬",
+ layout="wide",
+ initial_sidebar_state="expanded"
+ )
+
+ # Custom CSS for improved UI
st.markdown("""
- This simulation generates the eigenvalue distribution of B_n as n→∞, where:
- - B_n = (1/n)XX* with X being a p×n matrix
- - p/n → y as n→∞
- - All elements of X are i.i.d with distribution β·δ(z_a) + (1-β)·δ(1)
- """)
-
- col_eigen1, col_eigen2 = st.columns([1, 2])
- with col_eigen1:
- n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
- sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
-
- if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
- with col_eigen2:
- fig_eigen = generate_eigenvalue_distribution(beta, y_2, z_a_2, n=n_samples, seed=sim_seed)
- if fig_eigen is not None:
- st.plotly_chart(fig_eigen, use_container_width=True)
-
-# ----- Tab 3: Differential Analysis -----
-with tab3:
- st.header("Differential Analysis vs. β")
- st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
- col1, col2 = st.columns([1, 2])
- with col1:
- z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
- y_diff = st.number_input("y", value=1.0, key="y_diff")
- z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
- z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
- with st.expander("Resolution Settings"):
- beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff")
- z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff")
-
- # Add options for curve selection
- st.subheader("Curves to Analyze")
- analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
- analyze_high_y = st.checkbox("High y Expression", value=False)
- analyze_alt_low = st.checkbox("Alternate Low Expression", value=False)
-
- if st.button("Compute Differentials", key="tab3_button"):
+
+ """, unsafe_allow_html=True)
+
+ # Header
+ st.markdown("""
+
+ 🎬 Manim Animation Studio
+
+ Create mathematical animations with Manim
+ """, unsafe_allow_html=True)
+
+ # Check for packages ONLY ONCE per session
+ if not st.session_state.packages_checked:
+ if ensure_packages():
+ st.session_state.packages_checked = True
+ else:
+ st.error("Failed to install required packages. Please try again.")
+ st.stop()
+
+ # Create main tabs - LaTeX tab removed
+ tab_names = ["✨ Editor", "🤖 AI Assistant", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner"]
+ tabs = st.tabs(tab_names)
+
+ # Sidebar for rendering settings and custom libraries
+ with st.sidebar:
+ # Rendering settings section
+ st.markdown("## ⚙️ Rendering Settings")
+
+ col1, col2 = st.columns(2)
+ with col1:
+ quality = st.selectbox(
+ "🎯 Quality",
+ options=list(QUALITY_PRESETS.keys()),
+ index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
+ key="quality_select"
+ )
+
with col2:
- betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
-
- # Create figure
- fig_diff = go.Figure()
-
- if analyze_upper_lower:
- diff_curve = upper_vals - lower_vals
- d1 = np.gradient(diff_curve, betas_diff)
- d2 = np.gradient(d1, betas_diff)
-
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
- name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
- name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
- name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
-
- if analyze_high_y:
- high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
- d1 = np.gradient(high_y_curve, betas_diff)
- d2 = np.gradient(d1, betas_diff)
-
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
- name="High y", line=dict(color="green", width=2)))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
- name="High y d/dβ", line=dict(color="green", dash='dash')))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
- name="High y d²/dβ²", line=dict(color="green", dash='dot')))
-
- if analyze_alt_low:
- alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
- d1 = np.gradient(alt_low_curve, betas_diff)
- d2 = np.gradient(d1, betas_diff)
-
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
- name="Alt Low", line=dict(color="orange", width=2)))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
- name="Alt Low d/dβ", line=dict(color="orange", dash='dash')))
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
- name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot')))
-
- fig_diff.update_layout(
- title="Differential Analysis vs. β",
- xaxis_title="β",
- yaxis_title="Value",
- hovermode="x unified",
- showlegend=True,
- legend=dict(
- yanchor="top",
- y=0.99,
- xanchor="left",
- x=0.01
+ format_type_display = st.selectbox(
+ "📦 Format",
+ options=list(EXPORT_FORMATS.keys()),
+ index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"])
+ if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
+ key="format_select_display"
+ )
+ # Convert display name to actual format value
+ format_type = EXPORT_FORMATS[format_type_display]
+
+ # Add FPS control
+ fps = st.selectbox(
+ "🎞️ FPS",
+ options=FPS_OPTIONS,
+ index=FPS_OPTIONS.index(st.session_state.settings["fps"]) if st.session_state.settings["fps"] in FPS_OPTIONS else 2, # Default to 30 FPS (index 2)
+ key="fps_select"
+ )
+
+ animation_speed = st.selectbox(
+ "⚡ Speed",
+ options=list(ANIMATION_SPEEDS.keys()),
+ index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
+ key="speed_select"
+ )
+
+ # Apply the settings without requiring a button
+ st.session_state.settings = {
+ "quality": quality,
+ "format_type": format_type,
+ "animation_speed": animation_speed,
+ "fps": fps
+ }
+
+ # Custom libraries section
+ st.markdown("## 📚 Custom Libraries")
+ st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
+
+ custom_libraries = st.text_area(
+ "Libraries to install",
+ placeholder="e.g., scipy, networkx, matplotlib",
+ key="custom_libraries"
+ )
+
+ if st.button("Install Libraries", key="install_libraries_btn"):
+ success, result = install_custom_packages(custom_libraries)
+ st.session_state.custom_library_result = result
+
+ if success:
+ st.success("Installation complete!")
+ else:
+ st.error("Installation failed for some packages.")
+
+ if st.session_state.custom_library_result:
+ with st.expander("Installation Results"):
+ st.code(st.session_state.custom_library_result)
+
+ # EDITOR TAB
+ with tabs[0]:
+ col1, col2 = st.columns([3, 2])
+
+ with col1:
+ st.markdown("### 📝 Animation Editor")
+
+ # Toggle between upload and type
+ editor_mode = st.radio(
+ "Choose how to input your code:",
+ ["Type Code", "Upload File"],
+ key="editor_mode"
+ )
+
+ if editor_mode == "Upload File":
+ uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
+ if uploaded_file:
+ code_content = uploaded_file.getvalue().decode("utf-8")
+ if code_content.strip(): # Only update if file has content
+ st.session_state.code = code_content
+ st.session_state.temp_code = code_content
+
+ # Code editor
+ if ACE_EDITOR_AVAILABLE:
+ current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
+ st.session_state.temp_code = st_ace(
+ value=current_code,
+ language="python",
+ theme="monokai",
+ min_lines=20,
+ key=f"ace_editor_{st.session_state.editor_key}"
+ )
+ else:
+ current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
+ st.session_state.temp_code = st.text_area(
+ "Manim Python Code",
+ value=current_code,
+ height=400,
+ key=f"code_textarea_{st.session_state.editor_key}"
+ )
+
+ # Update code in session state if it changed
+ if st.session_state.temp_code != st.session_state.code:
+ st.session_state.code = st.session_state.temp_code
+
+ # Generate button (use a form to prevent page reloads)
+ generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn")
+ if generate_btn:
+ if not st.session_state.code:
+ st.error("Please enter some code before generating animation")
+ else:
+ # Extract scene class name
+ scene_class = extract_scene_class_name(st.session_state.code)
+
+ # If no valid scene class found, add a basic one
+ if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
+ default_scene = """
+class MyScene(Scene):
+ def construct(self):
+ text = Text("Default Scene")
+ self.play(Write(text))
+ self.wait(2)
+"""
+ st.session_state.code += default_scene
+ st.session_state.temp_code = st.session_state.code
+ st.warning("No scene class found. Added a default scene.")
+
+ with st.spinner("Generating animation..."):
+ video_data, status = generate_manim_video(
+ st.session_state.code,
+ st.session_state.settings["format_type"],
+ st.session_state.settings["quality"],
+ ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
+ st.session_state.audio_path,
+ st.session_state.settings["fps"]
+ )
+ st.session_state.video_data = video_data
+ st.session_state.status = status
+
+ with col2:
+ st.markdown("### 🖥️ Preview & Output")
+
+ # Preview container
+ if st.session_state.code:
+ with st.container():
+ st.markdown("", unsafe_allow_html=True)
+ preview_html = generate_manim_preview(st.session_state.code)
+ components.html(preview_html, height=250)
+ st.markdown("
", unsafe_allow_html=True)
+
+ # Generated output display
+ if st.session_state.video_data:
+ # Different handling based on format type
+ format_type = st.session_state.settings["format_type"]
+
+ if format_type == "png_sequence":
+ st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
+
+ # Add download button for ZIP
+ st.download_button(
+ label="⬇️ Download PNG Sequence (ZIP)",
+ data=st.session_state.video_data,
+ file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
+ mime="application/zip",
+ use_container_width=True
+ )
+ elif format_type == "svg":
+ # Display SVG preview
+ try:
+ svg_data = st.session_state.video_data.decode('utf-8')
+ components.html(svg_data, height=400)
+ except Exception as e:
+ st.error(f"Error displaying SVG: {str(e)}")
+
+ # Download button for SVG
+ st.download_button(
+ label="⬇️ Download SVG",
+ data=st.session_state.video_data,
+ file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
+ mime="image/svg+xml",
+ use_container_width=True
+ )
+ else:
+ # Standard video display for MP4, GIF, WebM
+ try:
+ st.video(st.session_state.video_data, format=format_type)
+ except Exception as e:
+ st.error(f"Error displaying video: {str(e)}")
+ # Fallback for GIF if st.video fails
+ if format_type == "gif":
+ st.markdown("GIF preview:")
+ gif_b64 = base64.b64encode(st.session_state.video_data).decode()
+ st.markdown(f' ', unsafe_allow_html=True)
+
+ # Add download button
+ st.download_button(
+ label=f"⬇️ Download {format_type.upper()}",
+ data=st.session_state.video_data,
+ file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
+ mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
+ use_container_width=True
+ )
+
+ if st.session_state.status:
+ if "Error" in st.session_state.status:
+ st.error(st.session_state.status)
+
+ # Show troubleshooting tips
+ with st.expander("🔍 Troubleshooting Tips"):
+ st.markdown("""
+ ### Common Issues:
+ 1. **Syntax Errors**: Check your Python code for any syntax issues
+ 2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
+ 3. **High Resolution Issues**: Try a lower quality preset for complex animations
+ 4. **Memory Issues**: For 4K animations, reduce complexity or try again
+ 5. **Format Issues**: Some formats require specific Manim configurations
+ 6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
+
+ ### Example Code:
+ ```python
+ from manim import *
+
+ class MyScene(Scene):
+ def construct(self):
+ circle = Circle(color=RED)
+ self.play(Create(circle))
+ self.wait(1)
+ ```
+ """)
+ else:
+ st.success(st.session_state.status)
+
+ # AI ASSISTANT TAB
+ with tabs[1]:
+ st.markdown("### 🤖 AI Animation Assistant")
+
+ # Check password before allowing access
+ if check_password():
+ # Debug section
+ with st.expander("🔧 Debug Connection"):
+ st.markdown("Test the AI model connection directly")
+
+ if st.button("Test API Connection", key="test_api_btn"):
+ with st.spinner("Testing API connection..."):
+ try:
+ # Get token from secrets
+ token = get_secret("github_token_api")
+ if not token:
+ st.error("GitHub token not found in secrets")
+ st.stop()
+
+ # Get model details
+ model_name = st.session_state.custom_model
+ config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
+ category = config.get("category", "Other")
+
+ if category == "OpenAI":
+ # Use OpenAI client for GitHub AI models
+ try:
+ from openai import OpenAI
+ except ImportError:
+ st.error("OpenAI package not installed. Please run 'pip install openai'")
+ st.stop()
+
+ # Create OpenAI client with GitHub AI endpoint
+ client = OpenAI(
+ base_url="https://models.github.ai/inference",
+ api_key=token,
+ )
+
+ # For GitHub AI models, ensure the model_name includes the publisher
+ # If it doesn't have a publisher prefix, add "openai/"
+ if "/" not in model_name:
+ full_model_name = f"openai/{model_name}"
+ st.info(f"Using full model name: {full_model_name}")
+ else:
+ full_model_name = model_name
+
+ # Prepare parameters based on model configuration
+ params = {
+ "messages": [
+ {"role": "system", "content": "You are a helpful assistant."},
+ {"role": "user", "content": "Hello, this is a connection test."}
+ ],
+ "model": full_model_name
+ }
+
+ # Add appropriate token parameter
+ token_param = config["param_name"]
+ params[token_param] = config[token_param]
+
+ # Make API call
+ response = client.chat.completions.create(**params)
+
+ # Check if response is valid
+ if response and response.choices and len(response.choices) > 0:
+ test_response = response.choices[0].message.content
+ st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
+
+ # Save working connection to session state
+ st.session_state.ai_models = {
+ "openai_client": client,
+ "model_name": full_model_name, # Store the full model name
+ "endpoint": "https://models.github.ai/inference",
+ "last_loaded": datetime.now().isoformat(),
+ "category": category
+ }
+ else:
+ st.error("❌ API returned an empty response")
+
+ elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]:
+ # Use Azure client for Azure API models
+ try:
+ from azure.ai.inference import ChatCompletionsClient
+ from azure.ai.inference.models import SystemMessage, UserMessage
+ from azure.core.credentials import AzureKeyCredential
+ except ImportError:
+ st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'")
+ st.stop()
+
+ # Define endpoint
+ endpoint = "https://models.inference.ai.azure.com"
+
+ # Prepare API parameters
+ messages = [UserMessage("Hello, this is a connection test.")]
+ api_params, config = prepare_api_params(messages, model_name)
+
+ # Create client with appropriate API version
+ api_version = config.get("api_version")
+ if api_version:
+ client = ChatCompletionsClient(
+ endpoint=endpoint,
+ credential=AzureKeyCredential(token),
+ api_version=api_version
+ )
+ else:
+ client = ChatCompletionsClient(
+ endpoint=endpoint,
+ credential=AzureKeyCredential(token),
+ )
+
+ # Test with the prepared parameters
+ response = client.complete(**api_params)
+
+ # Check if response is valid
+ if response and response.choices and len(response.choices) > 0:
+ test_response = response.choices[0].message.content
+ st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
+
+ # Save working connection to session state
+ st.session_state.ai_models = {
+ "client": client,
+ "model_name": model_name,
+ "endpoint": endpoint,
+ "last_loaded": datetime.now().isoformat(),
+ "category": category,
+ "api_version": api_version
+ }
+ else:
+ st.error("❌ API returned an empty response")
+
+ else:
+ st.error(f"Unsupported model category: {category}")
+
+ except ImportError as ie:
+ st.error(f"Module import error: {str(ie)}")
+ st.info("Try installing required packages: openai, azure-ai-inference and azure-core")
+ except Exception as e:
+ st.error(f"❌ API test failed: {str(e)}")
+ import traceback
+ st.code(traceback.format_exc())
+
+ # Model selection with enhanced UI
+ st.markdown("### 🤖 Model Selection")
+ st.markdown("Select an AI model for generating animation code:")
+
+ # Group models by category for better organization
+ model_categories = {}
+ for model_name in MODEL_CONFIGS:
+ if model_name != "default":
+ category = MODEL_CONFIGS[model_name].get("category", "Other")
+ if category not in model_categories:
+ model_categories[category] = []
+ model_categories[category].append(model_name)
+
+ # Create tabbed interface for model categories
+ category_tabs = st.tabs(sorted(model_categories.keys()))
+
+ for i, category in enumerate(sorted(model_categories.keys())):
+ with category_tabs[i]:
+ for model_name in sorted(model_categories[category]):
+ config = MODEL_CONFIGS[model_name]
+ is_selected = model_name == st.session_state.custom_model
+ warning = config.get("warning")
+
+ # Create styled card for each model
+ warning_html = f'⚠️ {warning}
' if warning else ""
+
+ st.markdown(f"""
+
+
{model_name}
+
+
Max Tokens: {config.get(config['param_name'], 'Unknown')}
+
Category: {config['category']}
+
API Version: {config['api_version'] if config['api_version'] else 'Default'}
+ {warning_html}
+
+
+ """, unsafe_allow_html=True)
+
+ # Button to select this model
+ button_label = "Selected ✓" if is_selected else "Select Model"
+ if st.button(button_label, key=f"model_{model_name}", disabled=is_selected):
+ st.session_state.custom_model = model_name
+ if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
+ st.session_state.ai_models['model_name'] = model_name
+ st.rerun()
+
+ # Display current model selection
+ st.info(f"🤖 **Currently using: {st.session_state.custom_model}**")
+
+ # Add a refresh button to update model connection
+ if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"):
+ if st.session_state.ai_models and 'client' in st.session_state.ai_models:
+ try:
+ # Test connection with minimal prompt
+ from azure.ai.inference.models import UserMessage
+ model_name = st.session_state.custom_model
+
+ # Prepare parameters
+ messages = [UserMessage("Hello")]
+ api_params, config = prepare_api_params(messages, model_name)
+
+ # Check if we need a new client with specific API version
+ if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"):
+ # Create version-specific client if needed
+ token = get_secret("github_token_api")
+ from azure.ai.inference import ChatCompletionsClient
+ from azure.core.credentials import AzureKeyCredential
+
+ client = ChatCompletionsClient(
+ endpoint=st.session_state.ai_models["endpoint"],
+ credential=AzureKeyCredential(token),
+ api_version=config["api_version"]
+ )
+ response = client.complete(**api_params)
+
+ # Update session state with the new client
+ st.session_state.ai_models["client"] = client
+ st.session_state.ai_models["api_version"] = config["api_version"]
+ else:
+ response = st.session_state.ai_models["client"].complete(**api_params)
+
+ st.success(f"✅ Connection to {model_name} successful!")
+ st.session_state.ai_models["model_name"] = model_name
+
+ except Exception as e:
+ st.error(f"❌ Connection error: {str(e)}")
+ st.info("Please try the Debug Connection section to re-initialize the API connection.")
+
+ # AI code generation
+ if st.session_state.ai_models and "client" in st.session_state.ai_models:
+ st.markdown("", unsafe_allow_html=True)
+ st.markdown("#### Generate Animation from Description")
+ st.write("Describe the animation you want to create, or provide partial code to complete.")
+
+ # Predefined animation ideas dropdown
+ animation_ideas = [
+ "Select an idea...",
+ "Create a 3D animation showing a sphere morphing into a torus",
+ "Show a visual proof of the Pythagorean theorem",
+ "Visualize a Fourier transform converting a signal from time domain to frequency domain",
+ "Create an animation explaining neural network forward propagation",
+ "Illustrate the concept of integration with area under a curve"
+ ]
+
+ selected_idea = st.selectbox(
+ "Try one of these ideas",
+ options=animation_ideas
+ )
+
+ prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
+
+ code_input = st.text_area(
+ "Your Prompt or Code",
+ value=prompt_value,
+ placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
+ height=150
+ )
+
+ if st.button("Generate Animation Code", key="gen_ai_code"):
+ if code_input:
+ with st.spinner("AI is generating your animation code..."):
+ try:
+ # Get the client and model name
+ client = st.session_state.ai_models["client"]
+ model_name = st.session_state.ai_models["model_name"]
+
+ # Create the prompt
+ prompt = f"""Write a complete Manim animation scene based on this code or idea:
+ {code_input}
+
+ The code should be a complete, working Manim animation that includes:
+ - Proper Scene class definition
+ - Constructor with animations
+ - Proper use of self.play() for animations
+ - Proper wait times between animations
+
+ Here's the complete Manim code:
+ """
+
+ # Prepare API parameters
+ from azure.ai.inference.models import UserMessage
+ messages = [UserMessage(prompt)]
+ api_params, config = prepare_api_params(messages, model_name)
+
+ # Make the API call with proper parameters
+ response = client.complete(**api_params)
+
+ # Process the response
+ if response and response.choices and len(response.choices) > 0:
+ completed_code = response.choices[0].message.content
+
+ # Extract code from markdown if present
+ if "```python" in completed_code:
+ completed_code = completed_code.split("```python")[1].split("```")[0]
+ elif "```" in completed_code:
+ completed_code = completed_code.split("```")[1].split("```")[0]
+
+ # Add Scene class if missing
+ if "Scene" not in completed_code:
+ completed_code = f"""from manim import *
+
+ class MyScene(Scene):
+ def construct(self):
+ {completed_code}"""
+
+ # Store the generated code
+ st.session_state.generated_code = completed_code
+ else:
+ st.error("Failed to generate code. API returned an empty response.")
+ except Exception as e:
+ st.error(f"Error generating code: {str(e)}")
+ import traceback
+ st.code(traceback.format_exc())
+ else:
+ st.warning("Please enter a description or prompt first")
+
+
+ # AI generated code display and actions
+ if "generated_code" in st.session_state and st.session_state.generated_code:
+ st.markdown("
", unsafe_allow_html=True)
+ st.markdown("#### Generated Animation Code")
+ st.code(st.session_state.generated_code, language="python")
+
+ col_ai1, col_ai2 = st.columns(2)
+ with col_ai1:
+ if st.button("Use This Code", key="use_gen_code"):
+ st.session_state.code = st.session_state.generated_code
+ st.session_state.temp_code = st.session_state.generated_code
+ # Set pending tab switch to editor tab
+ st.session_state.pending_tab_switch = 0
+ st.rerun()
+
+ with col_ai2:
+ if st.button("Render Preview", key="render_preview"):
+ with st.spinner("Rendering preview..."):
+ video_data, status = generate_manim_video(
+ st.session_state.generated_code,
+ "mp4",
+ "480p", # Use lowest quality for preview
+ ANIMATION_SPEEDS["Normal"],
+ fps=st.session_state.settings["fps"]
+ )
+
+ if video_data:
+ st.video(video_data)
+ st.download_button(
+ label="Download Preview",
+ data=video_data,
+ file_name=f"manim_preview_{int(time.time())}.mp4",
+ mime="video/mp4"
+ )
+ else:
+ st.error(f"Failed to generate preview: {status}")
+ st.markdown("
", unsafe_allow_html=True)
+ else:
+ st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
+ else:
+ st.info("Please enter the correct password to access AI features")
+
+ # ASSETS TAB
+ with tabs[2]:
+ st.markdown("### 🎨 Asset Management")
+
+ asset_col1, asset_col2 = st.columns([1, 1])
+
+ with asset_col1:
+ # Image uploader section
+ st.markdown("#### 📸 Image Assets")
+ st.markdown("Upload images to use in your animations:")
+
+ # Allow multiple image uploads
+ uploaded_images = st.file_uploader(
+ "Upload Images",
+ type=["jpg", "png", "jpeg", "svg"],
+ accept_multiple_files=True,
+ key="image_uploader_tab"
+ )
+
+ if uploaded_images:
+ # Create a unique image directory if it doesn't exist
+ image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
+ os.makedirs(image_dir, exist_ok=True)
+
+ # Process each uploaded image
+ for uploaded_image in uploaded_images:
+ # Generate a unique filename and save the image
+ file_extension = uploaded_image.name.split(".")[-1]
+ unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
+ image_path = os.path.join(image_dir, unique_filename)
+
+ with open(image_path, "wb") as f:
+ f.write(uploaded_image.getvalue())
+
+ # Store the path in session state
+ if "image_paths" not in st.session_state:
+ st.session_state.image_paths = []
+
+ # Check if this image was already added
+ image_already_added = False
+ for img in st.session_state.image_paths:
+ if img["name"] == uploaded_image.name:
+ image_already_added = True
+ break
+
+ if not image_already_added:
+ st.session_state.image_paths.append({
+ "name": uploaded_image.name,
+ "path": image_path
+ })
+
+ # Display uploaded images in a grid
+ st.markdown("##### Uploaded Images:")
+ image_cols = st.columns(3)
+
+ for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
+ with image_cols[i % 3]:
+ try:
+ img = Image.open(img_info["path"])
+ st.image(img, caption=img_info["name"], width=150)
+
+ # Show code snippet for this specific image
+ if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
+ image_code = f"""
+# Load and display image
+image = ImageMobject(r"{img_info['path']}")
+image.scale(2) # Adjust size as needed
+self.play(FadeIn(image))
+self.wait(1)
+"""
+ if not st.session_state.code:
+ base_code = """from manim import *
+class ImageScene(Scene):
+ def construct(self):
+"""
+ st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ")
+ else:
+ st.session_state.code += "\n" + image_code
+
+ st.session_state.temp_code = st.session_state.code
+ st.success(f"Added {img_info['name']} to your code!")
+
+ # Set pending tab switch to editor tab
+ st.session_state.pending_tab_switch = 0
+ st.rerun()
+ except Exception as e:
+ st.error(f"Error loading image {img_info['name']}: {e}")
+
+ # Display previously uploaded images
+ if st.session_state.image_paths:
+ with st.expander("Previously Uploaded Images"):
+ # Group images by 3 in each row
+ for i in range(0, len(st.session_state.image_paths), 3):
+ prev_cols = st.columns(3)
+ for j in range(3):
+ if i+j < len(st.session_state.image_paths):
+ img_info = st.session_state.image_paths[i+j]
+ with prev_cols[j]:
+ try:
+ img = Image.open(img_info["path"])
+ st.image(img, caption=img_info["name"], width=100)
+ st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True)
+ except:
+ st.markdown(f"**{img_info['name']}**")
+ st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True)
+
+ with asset_col2:
+ # Audio uploader section
+ st.markdown("#### 🎵 Audio Assets")
+ st.markdown("Upload audio files for background or narration:")
+
+ uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
+
+ if uploaded_audio:
+ # Create a unique audio directory if it doesn't exist
+ audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
+ os.makedirs(audio_dir, exist_ok=True)
+
+ # Generate a unique filename and save the audio
+ file_extension = uploaded_audio.name.split(".")[-1]
+ unique_filename = f"audio_{int(time.time())}.{file_extension}"
+ audio_path = os.path.join(audio_dir, unique_filename)
+
+ with open(audio_path, "wb") as f:
+ f.write(uploaded_audio.getvalue())
+
+ # Store the path in session state
+ st.session_state.audio_path = audio_path
+
+ # Display audio player
+ st.audio(uploaded_audio)
+
+ st.markdown(f"""
+
+
Audio: {uploaded_audio.name}
+
Path: {audio_path}
+
+ """, unsafe_allow_html=True)
+
+ # Two options for audio usage
+ st.markdown("#### Add Audio to Your Animation")
+
+ option = st.radio(
+ "Choose how to use audio:",
+ ["Background Audio", "Generate Audio from Text"]
)
+
+ if option == "Background Audio":
+ st.markdown("##### Code to add background audio:")
+
+ # For with_sound decorator
+ audio_code1 = f"""
+# Add this import at the top of your file
+from manim.scene.scene_file_writer import SceneFileWriter
+# Add this decorator before your scene class
+@with_sound("{audio_path}")
+class YourScene(Scene):
+ def construct(self):
+ # Your animation code here
+"""
+ st.code(audio_code1, language="python")
+
+ if st.button("Use This Audio in Animation", key="use_audio_btn"):
+ st.success("Audio set for next render!")
+
+ elif option == "Generate Audio from Text":
+ # Text-to-speech input
+ tts_text = st.text_area(
+ "Enter text for narration",
+ placeholder="Type the narration text here...",
+ height=100
+ )
+
+ if st.button("Create Narration", key="create_narration_btn"):
+ try:
+ # Use basic TTS (placeholder for actual implementation)
+ st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
+ st.session_state.audio_path = audio_path
+ st.success("Audio set for next render!")
+ except Exception as e:
+ st.error(f"Error creating narration: {str(e)}")
+
+ # TIMELINE EDITOR TAB
+ with tabs[3]:
+ # New code for reordering animation steps
+ updated_code = create_timeline_editor(st.session_state.code)
+
+ # If code was modified by the timeline editor, update the session state
+ if updated_code != st.session_state.code:
+ st.session_state.code = updated_code
+ st.session_state.temp_code = updated_code
+
+ # EDUCATIONAL EXPORT TAB
+ with tabs[4]:
+ st.markdown("### 🎓 Educational Export Options")
+
+ # Check if we have an animation to export
+ if not st.session_state.video_data:
+ st.warning("Generate an animation first before using educational export features.")
+ else:
+ st.markdown("Create various educational assets from your animation:")
+
+ # Animation title and explanation
+ animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
+
+ st.markdown("#### Explanation Text")
+ st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
+ st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
+
+ explanation_text = st.text_area(
+ "Explanation (markdown supported)",
+ height=150,
+ placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
+ )
+
+ # Export format selection
+ edu_format = st.selectbox(
+ "Export Format",
+ options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
)
- st.plotly_chart(fig_diff, use_container_width=True)
+ # Format-specific options
+ if edu_format == "PowerPoint Presentation":
+ st.info("Creates a PowerPoint file with your animation and explanation text.")
+
+ elif edu_format == "Interactive HTML":
+ st.info("Creates an interactive HTML webpage with playback controls and explanation.")
+ include_controls = st.checkbox("Include interactive controls", value=True)
+
+ elif edu_format == "Explanation Sequence PDF":
+ st.info("Creates a PDF with key frames and step-by-step explanations.")
+ frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
+
+ # Export button
+ if st.button("Export Educational Material", key="export_edu_btn"):
+ with st.spinner(f"Creating {edu_format}..."):
+ # Map selected format to internal format type
+ format_map = {
+ "PowerPoint Presentation": "powerpoint",
+ "Interactive HTML": "html",
+ "Explanation Sequence PDF": "sequence"
+ }
+
+ # Create a temporary directory for export
+ temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
+
+ # Process the export
+ exported_data, file_type = export_to_educational_format(
+ st.session_state.video_data,
+ format_map[edu_format],
+ animation_title,
+ explanation_text,
+ temp_export_dir
+ )
+
+ if exported_data:
+ # File extension mapping
+ ext_map = {
+ "powerpoint": "pptx",
+ "html": "html",
+ "pdf": "pdf"
+ }
+
+ # Download button
+ ext = ext_map.get(file_type, "zip")
+ filename = f"{animation_title.replace(' ', '_')}.{ext}"
+
+ st.success(f"{edu_format} created successfully!")
+ st.download_button(
+ label=f"⬇️ Download {edu_format}",
+ data=exported_data,
+ file_name=filename,
+ mime=f"application/{ext}",
+ use_container_width=True
+ )
+
+ # For HTML, also offer to open in browser
+ if file_type == "html":
+ html_path = os.path.join(temp_export_dir, filename)
+ st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True)
+ else:
+ st.error(f"Failed to create {edu_format}. Check logs for details.")
+
+ # Show usage examples and tips
+ with st.expander("Usage Tips"):
+ st.markdown("""
+ ### Educational Export Tips
+
+ **PowerPoint Presentations**
+ - Great for lectures and classroom presentations
+ - Animation will autoplay when clicked
+ - Add detailed explanations in notes section
+
+ **Interactive HTML**
+ - Perfect for websites and online learning platforms
+ - Students can control playback speed and navigation
+ - Mobile-friendly for learning on any device
+
+ **Explanation Sequence**
+ - Ideal for printed materials and study guides
+ - Use ## headers to mark different explanation sections
+ - Each section will be paired with a key frame
+ """)
+
+ # PYTHON RUNNER TAB
+ with tabs[5]:
+ st.markdown("### 🐍 Python Script Runner")
+ st.markdown("Execute Python scripts and visualize the results directly.")
+
+ # Predefined example scripts
+ example_scripts = {
+ "Select an example...": "",
+ "Basic Matplotlib Plot": """import matplotlib.pyplot as plt
+import numpy as np
+# Create data
+x = np.linspace(0, 10, 100)
+y = np.sin(x)
+# Create plot
+plt.figure(figsize=(10, 6))
+plt.plot(x, y, 'b-', label='sin(x)')
+plt.title('Sine Wave')
+plt.xlabel('x')
+plt.ylabel('sin(x)')
+plt.grid(True)
+plt.legend()
+""",
+ "User Input Example": """# This example demonstrates how to handle user input
+name = input("Enter your name: ")
+age = int(input("Enter your age: "))
+print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
+# Let's get some numbers and calculate the average
+num_count = int(input("How many numbers would you like to average? "))
+total = 0
+for i in range(num_count):
+ num = float(input(f"Enter number {i+1}: "))
+ total += num
+average = total / num_count
+print(f"The average of your {num_count} numbers is: {average}")
+""",
+ "Pandas DataFrame": """import pandas as pd
+import numpy as np
+# Create a sample dataframe
+data = {
+ 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
+ 'Age': [25, 30, 35, 40, 45],
+ 'Salary': [50000, 60000, 70000, 80000, 90000],
+ 'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
+}
+df = pd.DataFrame(data)
+# Display the dataframe
+print("Sample DataFrame:")
+print(df)
+# Basic statistics
+print("\\nSummary Statistics:")
+print(df.describe())
+# Filtering
+print("\\nEmployees older than 30:")
+print(df[df['Age'] > 30])
+""",
+ "Seaborn Visualization": """import matplotlib.pyplot as plt
+import seaborn as sns
+import numpy as np
+import pandas as pd
+# Set the style
+sns.set_style("whitegrid")
+# Create sample data
+np.random.seed(42)
+data = np.random.randn(100, 3)
+df = pd.DataFrame(data, columns=['A', 'B', 'C'])
+df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
+# Create a paired plot
+sns.pairplot(df, hue='category', palette='viridis')
+# Create another plot
+plt.figure(figsize=(10, 6))
+sns.violinplot(x='category', y='A', data=df, palette='magma')
+plt.title('Distribution of A by Category')
+"""
+ }
+
+ # Select example script
+ selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
+
+ # Python code editor
+ if selected_example != "Select an example..." and selected_example in example_scripts:
+ python_code = example_scripts[selected_example]
+ else:
+ python_code = st.session_state.python_script
+
+ if ACE_EDITOR_AVAILABLE:
+ python_code = st_ace(
+ value=python_code,
+ language="python",
+ theme="monokai",
+ min_lines=15,
+ key=f"python_editor_{st.session_state.editor_key}"
+ )
+ else:
+ python_code = st.text_area(
+ "Python Code",
+ value=python_code,
+ height=400,
+ key=f"python_textarea_{st.session_state.editor_key}"
+ )
+
+ # Store script in session state (without clearing existing code)
+ st.session_state.python_script = python_code
+
+ # Check for input() calls
+ input_calls = detect_input_calls(python_code)
+ user_inputs = []
+
+ if input_calls:
+ st.markdown("### Input Values")
+ st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
+
+ for i, input_call in enumerate(input_calls):
+ user_input = st.text_input(
+ f"{input_call['prompt']} (Line {input_call['line']})",
+ key=f"input_{i}"
+ )
+ user_inputs.append(user_input)
+
+ # Options and execution
+ col1, col2 = st.columns([2, 1])
+
+ with col1:
+ timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
+
+ with col2:
+ run_btn = st.button("▶️ Run Script", use_container_width=True)
+
+ if run_btn:
+ with st.spinner("Executing Python script..."):
+ result = run_python_script(python_code, inputs=user_inputs, timeout=timeout_seconds)
+ st.session_state.python_result = result
+
+ # Display results
+ if st.session_state.python_result:
+ display_python_script_results(st.session_state.python_result)
+
+ # Option to insert plots into Manim animation
+ if st.session_state.python_result["plots"]:
+ with st.expander("Add Plots to Manim Animation"):
+ st.markdown("Select a plot to include in your Manim animation:")
+
+ plot_cols = st.columns(min(3, len(st.session_state.python_result["plots"])))
+
+ for i, plot_data in enumerate(st.session_state.python_result["plots"]):
+ # Create a unique temporary file for each plot
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
+ tmp.write(plot_data)
+ plot_path = tmp.name
+
+ # Display the plot with selection button
+ with plot_cols[i % len(plot_cols)]:
+ st.image(plot_data, use_column_width=True)
+ if st.button(f"Use Plot {i+1}", key=f"use_plot_{i}"):
+ # Create code to include this plot in Manim
+ plot_code = f"""
+# Import the plot image
+plot_image = ImageMobject(r"{plot_path}")
+plot_image.scale(2) # Adjust size as needed
+self.play(FadeIn(plot_image))
+self.wait(1)
+"""
+ # Insert into editor code
+ if st.session_state.code:
+ st.session_state.code += "\n" + plot_code
+ st.session_state.temp_code = st.session_state.code
+ st.success(f"Plot {i+1} added to your animation code!")
+ # Set pending tab switch to editor tab
+ st.session_state.pending_tab_switch = 0
+ st.rerun()
+ else:
+ basic_scene = f"""from manim import *
+class PlotScene(Scene):
+ def construct(self):
+ {plot_code}
+"""
+ st.session_state.code = basic_scene
+ st.session_state.temp_code = basic_scene
+ st.success(f"Created new scene with Plot {i+1}!")
+ # Set pending tab switch to editor tab
+ st.session_state.pending_tab_switch = 0
+ st.rerun()
+
+ # Provide option to save the script
+ if st.button("📄 Save This Script", key="save_script_btn"):
+ # Generate a unique filename
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
+ script_filename = f"script_{timestamp}.py"
+
+ # Offer download button for the script
+ st.download_button(
+ label="⬇️ Download Script",
+ data=python_code,
+ file_name=script_filename,
+ mime="text/plain"
+ )
+
+ # Show advanced examples and tips
+ with st.expander("Python Script Runner Tips"):
st.markdown("""
- ### Curve Types
- - Solid lines: Original curves
- - Dashed lines: First derivatives (d/dβ)
- - Dotted lines: Second derivatives (d²/dβ²)
- """)
\ No newline at end of file
+ ### Python Script Runner Tips
+
+ **What can I run?**
+ - Any Python code that doesn't require direct UI interaction
+ - Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
+ - Data processing and visualization code
+ - Scripts that ask for user input (now supported!)
+
+ **What can't I run?**
+ - Streamlit, Gradio, Dash, or other web UIs
+ - Long-running operations (timeout will occur)
+ - Code that requires file access outside the temporary environment
+
+ **Working with visualizations:**
+ - All Matplotlib/Seaborn plots will be automatically captured
+ - Pandas DataFrames are detected and displayed as tables
+ - Use `print()` to show text output
+
+ **Handling user input:**
+ - The app detects input() calls and automatically creates text fields
+ - Input values you provide will be passed to the script when it runs
+ - Type conversion (like int(), float()) is preserved
+
+ **Adding to animations:**
+ - Charts and plots can be directly added to your Manim animations
+ - Generated images will be properly scaled for your animation
+ - Perfect for educational content combining data and animations
+ """)
+
+ # Help section
+ with st.sidebar.expander("ℹ️ Help & Info"):
+ st.markdown("""
+ ### About Manim Animation Studio
+
+ This app allows you to create mathematical animations using Manim,
+ an animation engine for explanatory math videos.
+
+ ### Example Code
+
+ ```python
+ from manim import *
+
+ class SimpleExample(Scene):
+ def construct(self):
+ circle = Circle(color=BLUE)
+ self.play(Create(circle))
+
+ square = Square(color=RED).next_to(circle, RIGHT)
+ self.play(Create(square))
+
+ text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
+ self.play(Write(text))
+
+ self.wait(2)
+ ```
+ """)
+
+ # Handle tab switching with session state to prevent refresh loop
+ if st.session_state.pending_tab_switch is not None:
+ st.session_state.active_tab = st.session_state.pending_tab_switch
+ st.session_state.pending_tab_switch = None
+
+ # Set tabs active state
+ for i, tab in enumerate(tabs):
+ if i == st.session_state.active_tab:
+ tab.active = True
+
+ # Mark first load as complete to prevent unnecessary refreshes
+ if not st.session_state.first_load_complete:
+ st.session_state.first_load_complete = True
+
+if __name__ == "__main__":
+ main()
\ No newline at end of file