import streamlit as st import tempfile import os import logging from pathlib import Path from PIL import Image import io import numpy as np import sys import subprocess import json from pygments import highlight from pygments.lexers import PythonLexer, CppLexer from pygments.formatters import HtmlFormatter import base64 from transformers import pipeline import re import shutil import time from datetime import datetime, timedelta import streamlit.components.v1 as components import uuid import platform import pandas as pd import plotly.express as px import markdown import zipfile import contextlib import threading import traceback from io import StringIO, BytesIO # Set up enhanced logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler() ] ) logger = logging.getLogger(__name__) # Check if sudo is available on the system def is_sudo_available(): """Check if sudo command is available on the system""" if platform.system() == "Windows": return False # Windows doesn't use sudo try: result = subprocess.run( ["which", "sudo"], capture_output=True, text=True, check=False ) return result.returncode == 0 except Exception: return False # Try to use sudo if available, with password prompt if needed def run_with_sudo(command, password=None): """Run a command with sudo if available, with optional password""" if not is_sudo_available(): # Fall back to running without sudo return subprocess.run(command, capture_output=True, text=True) # Prepare sudo command sudo_cmd = ["sudo", "-S"] + command try: if password: # Run with provided password process = subprocess.Popen( sudo_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) stdout, stderr = process.communicate(input=password + "\n") return subprocess.CompletedProcess( sudo_cmd, process.returncode, stdout, stderr ) else: # Run without password (relies on cached sudo credentials) return subprocess.run(sudo_cmd, capture_output=True, text=True) except Exception as e: logger.error(f"Error running sudo command: {str(e)}") # Fall back to running without sudo return subprocess.run(command, capture_output=True, text=True) # Model configuration mapping for different API requirements and limits MODEL_CONFIGS = { "DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, "DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, "gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "o3": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "o4-mini": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, # Default configuration for other models "default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None} } # Try to import Streamlit Ace try: from streamlit_ace import st_ace ACE_EDITOR_AVAILABLE = True except ImportError: ACE_EDITOR_AVAILABLE = False logger.warning("streamlit-ace not available, falling back to standard text editor") def prepare_api_params(messages, model_name): """Create appropriate API parameters based on model configuration""" # Get model configuration config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"]) # Base parameters common to all models api_params = { "messages": messages, "model": model_name } # Add the appropriate token parameter based on model's parameter name token_param = config["param_name"] token_value = config[token_param] # Get the actual value from the config # Add the parameter to the API params api_params[token_param] = token_value return api_params, config # New functions for accessing secrets and password verification def get_secret(github_token_api): """Retrieve a secret from HuggingFace Spaces environment variables""" secret_value = os.environ.get(github_token_api) if not secret_value: logger.warning(f"Secret '{github_token_api}' not found") return None return secret_value def check_password(): """Returns True if the user entered the correct password""" # Get the password from secrets correct_password = get_secret("password") if not correct_password: st.error("Admin password not configured in HuggingFace Spaces secrets") return False # Password input if "password_entered" not in st.session_state: st.session_state.password_entered = False if not st.session_state.password_entered: password = st.text_input("Enter password to access AI features", type="password") if password: if password == correct_password: st.session_state.password_entered = True return True else: st.error("Incorrect password") return False return False return True # Enhanced package management def ensure_packages(): """Install required packages with sudo if available""" required_packages = { 'manim': '0.17.3', 'Pillow': '9.0.0', 'numpy': '1.22.0', 'transformers': '4.30.0', 'torch': '2.0.0', 'pygments': '2.15.1', 'streamlit-ace': '0.1.1', 'pydub': '0.25.1', 'plotly': '5.14.0', 'pandas': '2.0.0', 'python-pptx': '0.6.21', 'markdown': '3.4.3', 'fpdf': '1.7.2', 'matplotlib': '3.5.0', 'seaborn': '0.11.2', 'scipy': '1.7.3', 'huggingface_hub': '0.16.0', 'azure-ai-inference': '1.0.0b9', 'azure-core': '1.33.0', 'openai': '1.0.0' } # System dependencies for manim (Ubuntu/Debian-based systems) system_dependencies = [ "libcairo2-dev", "pkg-config", "python3-dev", "libpango1.0-dev", "ffmpeg", "texlive-latex-recommended", "texlive-fonts-recommended", "texlive-latex-extra", "fonts-dejavu-core", "libsndfile1" ] with st.spinner("Checking and installing system dependencies..."): # Check if we're on a system that uses apt apt_available = False try: result = subprocess.run( ["which", "apt-get"], capture_output=True, text=True, check=False ) apt_available = result.returncode == 0 except Exception: apt_available = False if apt_available: # Install system dependencies progress_bar = st.progress(0) status_text = st.empty() # Update apt status_text.text("Updating package lists...") try: # First try with sudo sudo_password = None if is_sudo_available(): sudo_password = st.text_input("Enter sudo password for system package installation:", type="password") if sudo_password: run_with_sudo(["apt-get", "update"], sudo_password) else: # Try without password (cached sudo credentials) run_with_sudo(["apt-get", "update"]) else: # Try without sudo subprocess.run(["apt-get", "update"], capture_output=True) except Exception as e: logger.warning(f"Error updating apt: {str(e)}") # Install each dependency for i, package in enumerate(system_dependencies): progress = (i / len(system_dependencies)) progress_bar.progress(progress) status_text.text(f"Installing system dependency: {package}...") try: # Try with sudo if is_sudo_available() and sudo_password: result = run_with_sudo( ["apt-get", "install", "-y", package], sudo_password ) else: # Try without sudo result = subprocess.run( ["apt-get", "install", "-y", package], capture_output=True, text=True ) if result.returncode != 0: logger.warning(f"Could not install system package {package}: {result.stderr}") except Exception as e: logger.warning(f"Error installing system package {package}: {str(e)}") progress_bar.progress(1.0) status_text.text("System dependencies installation complete!") time.sleep(0.5) progress_bar.empty() status_text.empty() else: # If not on an apt-based system, show message st.warning("System dependencies may need to be installed manually. See the documentation for details.") # Check and install Python packages with st.spinner("Checking required Python packages..."): # First, quickly check if packages are already installed missing_packages = {} for package, version in required_packages.items(): try: # Try to import the package to check if it's available if package == 'manim': import manim elif package == 'Pillow': import PIL elif package == 'numpy': import numpy elif package == 'transformers': import transformers elif package == 'torch': import torch elif package == 'pygments': import pygments elif package == 'streamlit-ace': # This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag pass elif package == 'pydub': import pydub elif package == 'plotly': import plotly elif package == 'pandas': import pandas elif package == 'python-pptx': import pptx elif package == 'markdown': import markdown elif package == 'fpdf': import fpdf elif package == 'matplotlib': import matplotlib elif package == 'seaborn': import seaborn elif package == 'scipy': import scipy elif package == 'huggingface_hub': import huggingface_hub elif package == 'azure-ai-inference': import azure.ai.inference elif package == 'azure-core': import azure.core elif package == 'openai': import openai except ImportError: missing_packages[package] = version # If no packages are missing, return success immediately if not missing_packages: logger.info("All required Python packages already installed.") return True # If there are missing packages, install them with progress reporting progress_bar = st.progress(0) status_text = st.empty() # Check if pip install requires sudo pip_requires_sudo = False try: # Try to write to site-packages import site site_packages = site.getsitepackages()[0] # Check if we have write access test_file = os.path.join(site_packages, "test_write_access.txt") try: with open(test_file, "w") as f: f.write("test") os.remove(test_file) except (PermissionError, OSError): pip_requires_sudo = True except Exception: # If anything goes wrong, assume we might need sudo pip_requires_sudo = True # Ask for sudo password if needed sudo_password = None if pip_requires_sudo and is_sudo_available(): sudo_password = st.text_input("Enter sudo password for Python package installation:", type="password") for i, (package, version) in enumerate(missing_packages.items()): try: progress = (i / len(missing_packages)) progress_bar.progress(progress) status_text.text(f"Installing {package}...") pip_install_cmd = [sys.executable, "-m", "pip", "install", f"{package}>={version}"] if pip_requires_sudo and is_sudo_available(): # Use sudo for pip install if sudo_password: result = run_with_sudo(pip_install_cmd, sudo_password) else: # Try without password (cached sudo credentials) result = run_with_sudo(pip_install_cmd) else: # Use normal pip install result = subprocess.run( pip_install_cmd, capture_output=True, text=True ) if result.returncode != 0: st.error(f"Failed to install {package}: {result.stderr}") logger.error(f"Package installation failed: {package}") return False except Exception as e: st.error(f"Error installing {package}: {str(e)}") logger.error(f"Package installation error: {str(e)}") return False progress_bar.progress(1.0) status_text.text("All Python packages installed successfully!") time.sleep(0.5) progress_bar.empty() status_text.empty() return True def install_custom_packages(package_list): """Install custom packages specified by the user with sudo if needed""" if not package_list.strip(): return True, "No packages specified" # Split and clean package list packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()] if not packages: return True, "No valid packages specified" status_placeholder = st.sidebar.empty() progress_bar = st.sidebar.progress(0) # Check if pip install requires sudo pip_requires_sudo = False try: # Try to write to site-packages import site site_packages = site.getsitepackages()[0] # Check if we have write access test_file = os.path.join(site_packages, "test_write_access.txt") try: with open(test_file, "w") as f: f.write("test") os.remove(test_file) except (PermissionError, OSError): pip_requires_sudo = True except Exception: # If anything goes wrong, assume we might need sudo pip_requires_sudo = True # Ask for sudo password if needed sudo_password = None if pip_requires_sudo and is_sudo_available(): sudo_password = st.text_input("Enter sudo password for custom package installation:", type="password") results = [] success = True for i, package in enumerate(packages): try: progress = (i / len(packages)) progress_bar.progress(progress) status_placeholder.text(f"Installing {package}...") pip_install_cmd = [sys.executable, "-m", "pip", "install", package] if pip_requires_sudo and is_sudo_available(): # Use sudo for pip install if sudo_password: result = run_with_sudo(pip_install_cmd, sudo_password) else: # Try without password (cached sudo credentials) result = run_with_sudo(pip_install_cmd) else: # Use normal pip install result = subprocess.run( pip_install_cmd, capture_output=True, text=True ) if result.returncode != 0: error_msg = f"Failed to install {package}: {result.stderr}" results.append(error_msg) logger.error(error_msg) success = False else: results.append(f"Successfully installed {package}") logger.info(f"Successfully installed custom package: {package}") except Exception as e: error_msg = f"Error installing {package}: {str(e)}" results.append(error_msg) logger.error(error_msg) success = False progress_bar.progress(1.0) status_placeholder.text("Installation complete!") time.sleep(0.5) progress_bar.empty() status_placeholder.empty() return success, "\n".join(results) # Install C/C++ libraries with sudo if needed def install_cpp_libraries(libraries): """Install C/C++ libraries using system package manager with sudo if needed""" if not libraries: return True, "No libraries specified" # Library to package mappings for different systems library_packages = { "Ubuntu": { "Eigen": ["libeigen3-dev"], "Boost": ["libboost-all-dev"], "OpenCV": ["libopencv-dev", "python3-opencv"], "FFTW": ["libfftw3-dev"], "SDL2": ["libsdl2-dev"], "SFML": ["libsfml-dev"], "OpenGL": ["libgl1-mesa-dev", "libglu1-mesa-dev", "freeglut3-dev"] }, "Debian": { "Eigen": ["libeigen3-dev"], "Boost": ["libboost-all-dev"], "OpenCV": ["libopencv-dev", "python3-opencv"], "FFTW": ["libfftw3-dev"], "SDL2": ["libsdl2-dev"], "SFML": ["libsfml-dev"], "OpenGL": ["libgl1-mesa-dev", "libglu1-mesa-dev", "freeglut3-dev"] }, "Fedora": { "Eigen": ["eigen3-devel"], "Boost": ["boost-devel"], "OpenCV": ["opencv-devel", "python3-opencv"], "FFTW": ["fftw-devel"], "SDL2": ["SDL2-devel"], "SFML": ["SFML-devel"], "OpenGL": ["mesa-libGL-devel", "mesa-libGLU-devel", "freeglut-devel"] }, "CentOS": { "Eigen": ["eigen3-devel"], "Boost": ["boost-devel"], "OpenCV": ["opencv-devel"], "FFTW": ["fftw-devel"], "SDL2": ["SDL2-devel"], "SFML": ["SFML-devel"], "OpenGL": ["mesa-libGL-devel", "mesa-libGLU-devel", "freeglut-devel"] }, "Arch": { "Eigen": ["eigen"], "Boost": ["boost"], "OpenCV": ["opencv"], "FFTW": ["fftw"], "SDL2": ["sdl2"], "SFML": ["sfml"], "OpenGL": ["mesa", "glu", "freeglut"] }, "MacOS": { "Eigen": ["eigen"], "Boost": ["boost"], "OpenCV": ["opencv"], "FFTW": ["fftw"], "SDL2": ["sdl2"], "SFML": ["sfml"], "OpenGL": ["mesa", "freeglut"] } } # Detect OS os_name = "Unknown" package_manager = None install_cmd = [] if platform.system() == "Linux": # Try to detect Linux distribution try: if os.path.exists("/etc/os-release"): with open("/etc/os-release", "r") as f: os_release = f.read() if "Ubuntu" in os_release: os_name = "Ubuntu" package_manager = "apt-get" install_cmd = ["apt-get", "install", "-y"] elif "Debian" in os_release: os_name = "Debian" package_manager = "apt-get" install_cmd = ["apt-get", "install", "-y"] elif "Fedora" in os_release: os_name = "Fedora" package_manager = "dnf" install_cmd = ["dnf", "install", "-y"] elif "CentOS" in os_release: os_name = "CentOS" package_manager = "yum" install_cmd = ["yum", "install", "-y"] elif "Arch" in os_release: os_name = "Arch" package_manager = "pacman" install_cmd = ["pacman", "-S", "--noconfirm"] # Fallback detection if os_name == "Unknown": which_apt = subprocess.run(["which", "apt-get"], capture_output=True, text=True) which_dnf = subprocess.run(["which", "dnf"], capture_output=True, text=True) which_yum = subprocess.run(["which", "yum"], capture_output=True, text=True) which_pacman = subprocess.run(["which", "pacman"], capture_output=True, text=True) if which_apt.returncode == 0: os_name = "Debian" package_manager = "apt-get" install_cmd = ["apt-get", "install", "-y"] elif which_dnf.returncode == 0: os_name = "Fedora" package_manager = "dnf" install_cmd = ["dnf", "install", "-y"] elif which_yum.returncode == 0: os_name = "CentOS" package_manager = "yum" install_cmd = ["yum", "install", "-y"] elif which_pacman.returncode == 0: os_name = "Arch" package_manager = "pacman" install_cmd = ["pacman", "-S", "--noconfirm"] except Exception as e: logger.error(f"Error detecting Linux distribution: {str(e)}") elif platform.system() == "Darwin": os_name = "MacOS" which_brew = subprocess.run(["which", "brew"], capture_output=True, text=True) if which_brew.returncode == 0: package_manager = "brew" install_cmd = ["brew", "install"] # If package manager not detected, return error if not package_manager: return False, f"Could not detect package manager for {platform.system()}. Please install libraries manually." # Get packages to install all_packages = [] for library in libraries: if os_name in library_packages and library in library_packages[os_name]: all_packages.extend(library_packages[os_name][library]) if not all_packages: return False, f"No packages found for the selected libraries on {os_name}. Please install libraries manually." # Display progress status_placeholder = st.sidebar.empty() progress_bar = st.sidebar.progress(0) # Ask for sudo password if needed (most package managers need sudo) sudo_password = None if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo sudo_password = st.text_input("Enter sudo password for C/C++ library installation:", type="password") results = [] success = True # Update package lists if needed if package_manager in ["apt-get", "apt"]: status_placeholder.text("Updating package lists...") try: if is_sudo_available() and sudo_password: result = run_with_sudo(["apt-get", "update"], sudo_password) elif is_sudo_available(): result = run_with_sudo(["apt-get", "update"]) else: result = subprocess.run(["apt-get", "update"], capture_output=True, text=True) if result.returncode != 0: logger.warning(f"Failed to update package lists: {result.stderr}") results.append(f"Warning: Failed to update package lists: {result.stderr}") except Exception as e: logger.warning(f"Error updating package lists: {str(e)}") results.append(f"Warning: Error updating package lists: {str(e)}") # Install each package for i, package in enumerate(all_packages): try: progress = (i / len(all_packages)) progress_bar.progress(progress) status_placeholder.text(f"Installing {package}...") cmd = install_cmd + [package] if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo if sudo_password: result = run_with_sudo(cmd, sudo_password) else: result = run_with_sudo(cmd) else: result = subprocess.run(cmd, capture_output=True, text=True) if result.returncode != 0: error_msg = f"Failed to install {package}: {result.stderr}" results.append(error_msg) logger.error(error_msg) success = False else: results.append(f"Successfully installed {package}") logger.info(f"Successfully installed C/C++ library package: {package}") except Exception as e: error_msg = f"Error installing {package}: {str(e)}" results.append(error_msg) logger.error(error_msg) success = False progress_bar.progress(1.0) status_placeholder.text("Installation complete!") time.sleep(0.5) progress_bar.empty() status_placeholder.empty() return success, "\n".join(results) # Auto-detect C/C++ libraries def detect_cpp_libraries(): """Auto-detect installed C/C++ libraries on the system""" libraries = {} # Function to check if a library is installed def check_library(name, headers, pkg_config=None): # Check if headers exist header_found = False for header in headers: # Common include directories include_dirs = [ "/usr/include", "/usr/local/include", "/opt/local/include", "/opt/homebrew/include" ] for include_dir in include_dirs: if os.path.exists(os.path.join(include_dir, header)): header_found = True break # Check using pkg-config if available pkg_config_found = False if pkg_config: try: result = subprocess.run( ["pkg-config", "--exists", pkg_config], capture_output=True, check=False ) pkg_config_found = result.returncode == 0 except Exception: pass return header_found or pkg_config_found # Check for common libraries libraries["Eigen"] = check_library("Eigen", ["Eigen/Core", "eigen3/Eigen/Core"]) libraries["Boost"] = check_library("Boost", ["boost/config.hpp", "boost/version.hpp"]) libraries["OpenCV"] = check_library("OpenCV", ["opencv2/opencv.hpp"], "opencv4") libraries["FFTW"] = check_library("FFTW", ["fftw3.h"], "fftw3") libraries["SDL2"] = check_library("SDL2", ["SDL2/SDL.h"], "sdl2") libraries["SFML"] = check_library("SFML", ["SFML/Graphics.hpp"], "sfml-all") libraries["OpenGL"] = check_library("OpenGL", ["GL/gl.h", "OpenGL/gl.h"]) return libraries @st.cache_resource(ttl=3600) def init_ai_models_direct(): """Direct implementation using the exact pattern from the example code""" try: # Get token from secrets token = get_secret("github_token_api") if not token: st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.") return None # Log what we're doing - for debugging logger.info(f"Initializing AI model with token: {token[:5]}...") # Use exact imports as in your example import os from azure.ai.inference import ChatCompletionsClient from azure.ai.inference.models import SystemMessage, UserMessage from azure.core.credentials import AzureKeyCredential # Use exact endpoint as in your example endpoint = "https://models.inference.ai.azure.com" # Use default model model_name = "gpt-4o" # Create client exactly as in your example client = ChatCompletionsClient( endpoint=endpoint, credential=AzureKeyCredential(token), ) # Return the necessary information return { "client": client, "model_name": model_name, "endpoint": endpoint } except ImportError as ie: st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.") logger.error(f"Import error: {str(ie)}") return None except Exception as e: st.error(f"Error initializing AI model: {str(e)}") logger.error(f"Initialization error: {str(e)}") return None def suggest_code_completion(code_snippet, models): """Generate code completion using the AI model""" if not models: st.error("AI models not properly initialized.") return None try: # Create the prompt prompt = f"""Write a complete Manim animation scene based on this code or idea: {code_snippet} The code should be a complete, working Manim animation that includes: - Proper Scene class definition - Constructor with animations - Proper use of self.play() for animations - Proper wait times between animations Here's the complete Manim code: """ with st.spinner("AI is generating your animation code..."): # Get the current model name and base URL model_name = models["model_name"] # Convert message to the appropriate format based on model category config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"]) category = config.get("category", "Other") if category == "OpenAI": # Import OpenAI client from openai import OpenAI # Get token token = get_secret("github_token_api") # Create or get client if "openai_client" not in models: client = OpenAI( base_url="https://models.github.ai/inference", api_key=token ) models["openai_client"] = client else: client = models["openai_client"] # For OpenAI models, we need role-based messages messages = [ {"role": "system", "content": "You are an expert in Manim animations."}, {"role": "user", "content": prompt} ] # Create params params = { "messages": messages, "model": model_name } # Add token parameter token_param = config["param_name"] params[token_param] = config[token_param] # Make API call response = client.chat.completions.create(**params) completed_code = response.choices[0].message.content else: # Use Azure client from azure.ai.inference.models import UserMessage # Convert message format for Azure messages = [UserMessage(prompt)] api_params, _ = prepare_api_params(messages, model_name) # Make API call with Azure client response = models["client"].complete(**api_params) completed_code = response.choices[0].message.content # Process the code if "```python" in completed_code: completed_code = completed_code.split("```python")[1].split("```")[0] elif "```" in completed_code: completed_code = completed_code.split("```")[1].split("```")[0] # Add Scene class if missing if "Scene" not in completed_code: completed_code = f"""from manim import * class MyScene(Scene): def construct(self): {completed_code}""" return completed_code except Exception as e: st.error(f"Error generating code: {str(e)}") st.code(traceback.format_exc()) return None def check_model_freshness(): """Check if models need to be reloaded based on TTL""" if 'ai_models' not in st.session_state or st.session_state.ai_models is None: return False if 'last_loaded' not in st.session_state.ai_models: return False last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded']) ttl_hours = 1 # 1 hour TTL return datetime.now() - last_loaded < timedelta(hours=ttl_hours) def extract_scene_class_name(python_code): """Extract the scene class name from Python code.""" import re scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code) if scene_classes: # Return the first scene class found return scene_classes[0] else: # If no scene class is found, use a default name return "MyScene" def suggest_code_completion(code_snippet, models): if not models or "code_model" not in models: st.error("AI models not properly initialized") return None try: prompt = f"""Write a complete Manim animation scene based on this code or idea: {code_snippet} The code should be a complete, working Manim animation that includes: - Proper Scene class definition - Constructor with animations - Proper use of self.play() for animations - Proper wait times between animations Here's the complete Manim code: ```python """ with st.spinner("AI is generating your animation code..."): response = models["code_model"]( prompt, max_length=1024, do_sample=True, temperature=0.2, top_p=0.95, top_k=50, num_return_sequences=1, truncation=True, pad_token_id=50256 ) if not response or not response[0].get('generated_text'): st.error("No valid completion generated") return None completed_code = response[0]['generated_text'] if "```python" in completed_code: completed_code = completed_code.split("```python")[1].split("```")[0] if "Scene" not in completed_code: completed_code = f"""from manim import * class MyScene(Scene): def construct(self): {completed_code}""" return completed_code except Exception as e: st.error(f"Error suggesting code: {str(e)}") logger.error(f"Code suggestion error: {str(e)}") return None # Quality presets QUALITY_PRESETS = { "480p": {"resolution": "480p", "fps": "30"}, "720p": {"resolution": "720p", "fps": "30"}, "1080p": {"resolution": "1080p", "fps": "60"}, "4K": {"resolution": "2160p", "fps": "60"}, "8K": {"resolution": "4320p", "fps": "60"} # Added 8K option } # Animation speeds ANIMATION_SPEEDS = { "Slow": 0.5, "Normal": 1.0, "Fast": 2.0, "Very Fast": 3.0 } # Export formats EXPORT_FORMATS = { "MP4 Video": "mp4", "GIF Animation": "gif", "WebM Video": "webm", "PNG Image Sequence": "png_sequence", "SVG Image": "svg" } # FPS options FPS_OPTIONS = [15, 24, 30, 60, 120] def highlight_code(code): formatter = HtmlFormatter(style='monokai') highlighted = highlight(code, PythonLexer(), formatter) return highlighted, formatter.get_style_defs() def generate_manim_preview(python_code): """Generate a lightweight preview of the Manim animation""" try: # Extract scene components for preview scene_objects = [] if "Circle" in python_code: scene_objects.append("circle") if "Square" in python_code: scene_objects.append("square") if "MathTex" in python_code or "Tex" in python_code: scene_objects.append("equation") if "Text" in python_code: scene_objects.append("text") if "Axes" in python_code: scene_objects.append("graph") if "ThreeDScene" in python_code or "ThreeDAxes" in python_code: scene_objects.append("3D scene") if "Sphere" in python_code: scene_objects.append("sphere") if "Cube" in python_code: scene_objects.append("cube") # Generate a more detailed visual preview based on extracted objects object_icons = { "circle": "⭕", "square": "🔲", "equation": "📊", "text": "📝", "graph": "📈", "3D scene": "🧊", "sphere": "🌐", "cube": "🧊" } icon_html = "" for obj in scene_objects: if obj in object_icons: icon_html += f'{object_icons[obj]}' preview_html = f"""

Animation Preview

{icon_html if icon_html else 'đŸŽŦ'}

Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}

Full rendering required for accurate preview
""" return preview_html except Exception as e: logger.error(f"Preview generation error: {str(e)}") return f"""

Preview Error

{str(e)}

""" def prepare_audio_for_manim(audio_file, target_dir): """Process audio file and return path for use in Manim""" try: # Create audio directory if it doesn't exist audio_dir = os.path.join(target_dir, "audio") os.makedirs(audio_dir, exist_ok=True) # Generate a unique filename filename = f"audio_{int(time.time())}.mp3" output_path = os.path.join(audio_dir, filename) # Save audio file with open(output_path, "wb") as f: f.write(audio_file.getvalue()) return output_path except Exception as e: logger.error(f"Audio processing error: {str(e)}") return None def mp4_to_gif(mp4_path, output_path, fps=15): """Convert MP4 to GIF using ffmpeg as a backup when Manim fails""" try: # Use ffmpeg for conversion with optimized settings command = [ "ffmpeg", "-i", mp4_path, "-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse", "-loop", "0", output_path ] # Run the conversion result = subprocess.run(command, capture_output=True, text=True) if result.returncode != 0: logger.error(f"FFmpeg conversion error: {result.stderr}") return None return output_path except Exception as e: logger.error(f"GIF conversion error: {str(e)}") return None def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None, fps=None): temp_dir = None progress_placeholder = st.empty() status_placeholder = st.empty() log_placeholder = st.empty() video_data = None # Initialize video data variable try: if not python_code or not format_type: raise ValueError("Missing required parameters") # Create temporary directory temp_dir = tempfile.mkdtemp(prefix="manim_render_") # Extract the scene class name from the code scene_class = extract_scene_class_name(python_code) logger.info(f"Detected scene class: {scene_class}") # If audio is provided, we need to modify the code to include it if audio_path: # Check if the code already has a with_sound decorator if "with_sound" not in python_code: # Add the necessary import if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code: python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code # Add sound to the scene scene_def_pattern = f"class {scene_class}\\(.*?\\):" scene_def_match = re.search(scene_def_pattern, python_code) if scene_def_match: scene_def = scene_def_match.group(0) scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}" python_code = python_code.replace(scene_def, scene_def_with_sound) else: logger.warning("Could not find scene definition to add audio") # Write the code to a file scene_file = os.path.join(temp_dir, "scene.py") with open(scene_file, "w", encoding="utf-8") as f: f.write(python_code) # Map quality preset to Manim quality flag quality_map = { "480p": "-ql", # Low quality "720p": "-qm", # Medium quality "1080p": "-qh", # High quality "4K": "-qk", # 4K quality "8K": "-qp" # 8K quality (production quality) } quality_flag = quality_map.get(quality_preset, "-qm") # Handle special formats if format_type == "png_sequence": # For PNG sequence, we need additional flags format_arg = "--format=png" extra_args = ["--save_pngs"] elif format_type == "svg": # For SVG, we need a different format format_arg = "--format=svg" extra_args = [] else: # Standard video formats format_arg = f"--format={format_type}" extra_args = [] # Add custom FPS if specified if fps is not None: extra_args.append(f"--fps={fps}") # Show status and create progress bar status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...") progress_bar = progress_placeholder.progress(0) # Build command command = [ "manim", scene_file, scene_class, quality_flag, format_arg ] command.extend(extra_args) logger.info(f"Running command: {' '.join(command)}") # Execute the command process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True ) # Track output full_output = [] output_file_path = None mp4_output_path = None # Track MP4 output for GIF fallback # Animation tracking variables total_animations = None current_animation = 0 total_frames = None current_frame = 0 while True: line = process.stdout.readline() if not line and process.poll() is not None: break full_output.append(line) log_placeholder.code("".join(full_output[-10:])) # Try to detect total animations if "Rendering animation number" in line or "Processing animation" in line: try: # Extract current animation number anim_match = re.search(r"(?:Rendering animation number|Processing animation) (\d+) (?:out of|/) (\d+)", line) if anim_match: current_animation = int(anim_match.group(1)) total_animations = int(anim_match.group(2)) logger.info(f"Animation progress: {current_animation}/{total_animations}") # Calculate progress based on animations animation_progress = current_animation / total_animations progress_bar.progress(animation_progress) status_placeholder.info(f"Rendering {scene_class}: Animation {current_animation}/{total_animations} ({int(animation_progress*100)}%)") except Exception as e: logger.error(f"Error parsing animation progress: {str(e)}") # Try to extract total frames information as fallback elif "Render animations with total frames:" in line and not total_animations: try: total_frames = int(line.split("Render animations with total frames:")[1].strip().split()[0]) logger.info(f"Total frames to render: {total_frames}") except Exception as e: logger.error(f"Error parsing total frames: {str(e)}") # Update progress bar based on frame information if animation count not available elif "Rendering frame" in line and total_frames and not total_animations: try: # Extract current frame number frame_match = re.search(r"Rendering frame (\d+)", line) if frame_match: current_frame = int(frame_match.group(1)) # Calculate progress as current frame / total frames frame_progress = min(0.99, current_frame / total_frames) progress_bar.progress(frame_progress) # Update status with frame information status_placeholder.info(f"Rendering {scene_class}: Frame {current_frame}/{total_frames} ({int(frame_progress*100)}%)") except Exception as e: logger.error(f"Error parsing frame progress: {str(e)}") elif "%" in line and not total_animations and not total_frames: try: # Fallback to percentage if available percent = float(line.split("%")[0].strip().split()[-1]) progress_bar.progress(min(0.99, percent / 100)) except: pass # Try to capture the output file path from Manim's output if "File ready at" in line: try: # Combine next few lines to get the full path path_parts = [] path_parts.append(line.split("File ready at")[-1].strip()) # Read up to 5 more lines to get the complete path for _ in range(5): additional_line = process.stdout.readline() if additional_line: full_output.append(additional_line) path_parts.append(additional_line.strip()) if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')): break # Join all parts and clean up potential_path = ''.join(path_parts).replace("'", "").strip() # Look for path pattern surrounded by quotes path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path) if path_match: output_file_path = path_match.group(2) logger.info(f"Found output path in logs: {output_file_path}") # Track MP4 file for potential GIF fallback if output_file_path.endswith('.mp4'): mp4_output_path = output_file_path except Exception as e: logger.error(f"Error parsing output path: {str(e)}") # Wait for the process to complete process.wait() progress_bar.progress(1.0) # IMPORTANT: Wait a moment for file system to catch up time.sleep(3) # Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4 if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path): status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...") # Generate a GIF using FFmpeg gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") gif_path = mp4_to_gif(mp4_output_path, gif_output_path, fps=fps if fps else 15) if gif_path and os.path.exists(gif_path): output_file_path = gif_path logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}") # For PNG sequence, we need to collect the PNGs if format_type == "png_sequence": # Find the PNG directory png_dirs = [] search_dirs = [ os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"), os.path.join(temp_dir, "media", "images", scene_class, "Animations"), "/tmp/media/images", ] for search_dir in search_dirs: if os.path.exists(search_dir): for root, dirs, _ in os.walk(search_dir): for d in dirs: if os.path.exists(os.path.join(root, d)): png_dirs.append(os.path.join(root, d)) if png_dirs: # Get the newest directory newest_dir = max(png_dirs, key=os.path.getctime) # Create a zip file with all PNGs png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')] if png_files: zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip") with zipfile.ZipFile(zip_path, 'w') as zipf: for png in png_files: png_path = os.path.join(newest_dir, png) zipf.write(png_path, os.path.basename(png_path)) with open(zip_path, 'rb') as f: video_data = f.read() logger.info(f"Created PNG sequence zip: {zip_path}") else: logger.error("No PNG files found in directory") else: logger.error("No PNG directories found") elif output_file_path and os.path.exists(output_file_path): # For other formats, read the output file directly with open(output_file_path, 'rb') as f: video_data = f.read() logger.info(f"Read output file from path: {output_file_path}") else: # If we didn't find the output path, search for files search_paths = [ os.path.join(os.getcwd(), "media", "videos"), os.path.join(os.getcwd(), "media", "videos", "scene"), os.path.join(os.getcwd(), "media", "videos", scene_class), "/tmp/media/videos", temp_dir, os.path.join(temp_dir, "media", "videos"), ] # Add quality-specific paths for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]: search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality)) search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality)) # For SVG format if format_type == "svg": search_paths.extend([ os.path.join(os.getcwd(), "media", "designs"), os.path.join(os.getcwd(), "media", "designs", scene_class), ]) # Find all output files in the search paths output_files = [] for search_path in search_paths: if os.path.exists(search_path): for root, _, files in os.walk(search_path): for file in files: if file.endswith(f".{format_type}") and "partial" not in file: file_path = os.path.join(root, file) if os.path.exists(file_path): output_files.append(file_path) logger.info(f"Found output file: {file_path}") if output_files: # Get the newest file latest_file = max(output_files, key=os.path.getctime) with open(latest_file, 'rb') as f: video_data = f.read() logger.info(f"Read output from file search: {latest_file}") # If the format is GIF but we got an MP4, try to convert it if format_type == "gif" and latest_file.endswith('.mp4'): gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") gif_path = mp4_to_gif(latest_file, gif_output_path, fps=fps if fps else 15) if gif_path and os.path.exists(gif_path): with open(gif_path, 'rb') as f: video_data = f.read() logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}") # If we got output data, return it if video_data: file_size_mb = len(video_data) / (1024 * 1024) # Clear placeholders progress_placeholder.empty() status_placeholder.empty() log_placeholder.empty() return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)" else: output_str = ''.join(full_output) logger.error(f"No output files found. Full output: {output_str}") # Check if we have an MP4 but need a GIF (special handling for GIF issues) if format_type == "gif": # Try one more aggressive search for any MP4 file mp4_files = [] for search_path in [os.getcwd(), temp_dir, "/tmp"]: for root, _, files in os.walk(search_path): for file in files: if file.endswith('.mp4') and scene_class.lower() in file.lower(): mp4_path = os.path.join(root, file) if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0: mp4_files.append(mp4_path) if mp4_files: newest_mp4 = max(mp4_files, key=os.path.getctime) logger.info(f"Found MP4 for GIF conversion: {newest_mp4}") # Convert to GIF gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") gif_path = mp4_to_gif(newest_mp4, gif_output_path, fps=fps if fps else 15) if gif_path and os.path.exists(gif_path): with open(gif_path, 'rb') as f: video_data = f.read() # Clear placeholders progress_placeholder.empty() status_placeholder.empty() log_placeholder.empty() file_size_mb = len(video_data) / (1024 * 1024) return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)" return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..." except Exception as e: logger.error(f"Error: {str(e)}") import traceback logger.error(traceback.format_exc()) if progress_placeholder: progress_placeholder.empty() if status_placeholder: status_placeholder.error(f"Rendering Error: {str(e)}") if log_placeholder: log_placeholder.empty() return None, f"❌ Error: {str(e)}" finally: # CRITICAL: Only cleanup after we've captured the output data if temp_dir and os.path.exists(temp_dir) and video_data is not None: try: shutil.rmtree(temp_dir) logger.info(f"Cleaned up temp dir: {temp_dir}") except Exception as e: logger.error(f"Failed to clean temp dir: {str(e)}") # ENHANCED PYTHON RUNNER FUNCTIONS def detect_input_calls(code): """Detect input() calls in Python code to prepare for handling""" input_calls = [] lines = code.split('\n') for i, line in enumerate(lines): if 'input(' in line and not line.strip().startswith('#'): # Try to extract the prompt if available prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line) prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}" input_calls.append({"line": i+1, "prompt": prompt}) return input_calls def run_python_script_enhanced(code, inputs=None, timeout=60, enable_debug=False, enable_profile=False, additional_libs=None, project_files=None, realtime_viz=False): """Enhanced version of run_python_script with debugging, profiling, etc.""" result = { "stdout": "", "stderr": "", "exception": None, "plots": [], "dataframes": [], "execution_time": 0, "profile_data": None, "debug_steps": [], "realtime_data": [] } # Create a tempdir for script execution with tempfile.TemporaryDirectory() as temp_dir: # Path for saving plots plot_dir = os.path.join(temp_dir, 'plots') os.makedirs(plot_dir, exist_ok=True) # Handle multi-file project if provided if project_files: for filename, file_content in project_files.items(): with open(os.path.join(temp_dir, filename), 'w', encoding='utf-8') as f: f.write(file_content) # Set the main script path main_script = os.path.join(temp_dir, "main.py") else: # Write the single code file main_script = os.path.join(temp_dir, "script.py") with open(main_script, 'w', encoding='utf-8') as f: f.write(code) # Add library imports if specified if additional_libs: lib_imports = "\n".join([f"import {lib}" for lib in additional_libs if lib != "numpy" and lib != "matplotlib"]) if lib_imports: with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(lib_imports + "\n\n" + content) # Add debugging setup if enabled if enable_debug: debug_setup = """ import pdb import sys import traceback class StringIODebugger: def __init__(self): self.steps = [] def add_step(self, frame, event, arg): if event == 'line': self.steps.append({ 'file': frame.f_code.co_filename, 'line': frame.f_lineno, 'function': frame.f_code.co_name, 'locals': {k: str(v) for k, v in frame.f_locals.items() if not k.startswith('__')} }) return self debug_steps = [] def trace_calls(frame, event, arg): if event != 'call': return co = frame.f_code func_name = co.co_name if func_name == 'write': return line_no = frame.f_lineno filename = co.co_filename if 'debugger' in filename or func_name.startswith('__'): return debug_steps.append(f"Calling {func_name} in {filename} at line {line_no}") return trace_calls sys.settrace(trace_calls) """ with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(debug_setup + "\n" + content) # Add profiling if enabled if enable_profile: profile_setup = """ import cProfile import pstats import io # Set up profiler profiler = cProfile.Profile() profiler.enable() """ profile_teardown = """ # Finish profiling profiler.disable() s = io.StringIO() ps = pstats.Stats(profiler, stream=s).sort_stats('cumulative') ps.print_stats() with open('profile_results.txt', 'w') as f: f.write(s.getvalue()) """ with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(profile_setup + "\n" + content + "\n" + profile_teardown) # Add real-time visualization if enabled if realtime_viz: realtime_viz_setup = """ # Setup for real-time visualization import threading import json import time class RealTimeData: def __init__(self): self.data = [] def add_data(self, label, value): self.data.append({'label': label, 'value': value, 'time': time.time()}) # Write to file for real-time monitoring with open('realtime_data.json', 'w') as f: json.dump(self.data, f) rt_data = RealTimeData() # Example usage: rt_data.add_data("iteration", i) """ with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(realtime_viz_setup + "\n" + content) # Add input handling code if inputs and len(inputs) > 0: # Modify the code to use predefined inputs instead of waiting for user input input_handling = """ # Input values provided by the user __INPUT_VALUES = {} __INPUT_INDEX = 0 # Override the built-in input function def input(prompt=''): global __INPUT_INDEX print(prompt, end='') if __INPUT_INDEX < len(__INPUT_VALUES): value = __INPUT_VALUES[__INPUT_INDEX] __INPUT_INDEX += 1 print(value) # Echo the input return value else: print("\\n[WARNING] No more predefined inputs available, using empty string") return "" """.format(inputs) with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(input_handling + "\n" + content) # Add matplotlib and pandas handling data_handling = """ # Add plot saving code if matplotlib is used import os # For matplotlib plots if 'matplotlib' in globals() or 'matplotlib.pyplot' in globals() or 'plt' in globals(): import matplotlib matplotlib.use('Agg') # Use non-interactive backend import matplotlib.pyplot as plt # Hook to save all figures original_show = plt.show def custom_show(*args, **kwargs): for i, fig in enumerate(map(plt.figure, plt.get_fignums())): fig.savefig(os.path.join('{}', f'plot_{{i}}.png')) return original_show(*args, **kwargs) plt.show = custom_show # For pandas DataFrames if 'pandas' in globals() or 'pd' in globals(): import pandas as pd import json # Save DataFrames original_df_repr_html = pd.DataFrame._repr_html_ def custom_df_repr_html(self): try: df_info = {{ "name": str(id(self)), "shape": self.shape, "columns": list(map(str, self.columns)), "preview_html": self.head().to_html() }} with open(f'df_{{id(self)}}.json', 'w') as f: json.dump(df_info, f) except: pass return original_df_repr_html(self) pd.DataFrame._repr_html_ = custom_df_repr_html """.format(plot_dir.replace('\\', '\\\\')) with open(main_script, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(data_handling + "\n" + content) # Files for capturing stdout and stderr stdout_file = os.path.join(temp_dir, 'stdout.txt') stderr_file = os.path.join(temp_dir, 'stderr.txt') # Execute with timeout start_time = time.time() try: # Run the script with stdout and stderr redirection with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f: process = subprocess.Popen( [sys.executable, main_script], stdout=stdout_f, stderr=stderr_f, cwd=temp_dir ) # Real-time monitoring for real-time visualization if realtime_viz: realtime_data_file = os.path.join(temp_dir, 'realtime_data.json') while process.poll() is None: if os.path.exists(realtime_data_file): try: with open(realtime_data_file, 'r') as f: result["realtime_data"] = json.load(f) except: pass time.sleep(0.1) # Check for timeout if time.time() - start_time > timeout: process.kill() result["stderr"] += f"\nScript execution timed out after {timeout} seconds." result["exception"] = "TimeoutError" break else: try: process.wait(timeout=timeout) except subprocess.TimeoutExpired: process.kill() result["stderr"] += f"\nScript execution timed out after {timeout} seconds." result["exception"] = "TimeoutError" # Read the output with open(stdout_file, 'r') as f: result["stdout"] = f.read() with open(stderr_file, 'r') as f: result["stderr"] = f.read() # Collect plots if os.path.exists(plot_dir): plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')]) for plot_file in plot_files: with open(os.path.join(plot_dir, plot_file), 'rb') as f: result["plots"].append(f.read()) # Collect dataframes df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')] for df_file in df_files: with open(os.path.join(temp_dir, df_file), 'r') as f: result["dataframes"].append(json.load(f)) # Collect profiling data if enabled if enable_profile and os.path.exists(os.path.join(temp_dir, 'profile_results.txt')): with open(os.path.join(temp_dir, 'profile_results.txt'), 'r') as f: result["profile_data"] = f.read() # Collect debug data if enabled if enable_debug and 'debug_steps' in globals(): result["debug_steps"] = debug_steps # Calculate execution time result["execution_time"] = time.time() - start_time except Exception as e: result["exception"] = str(e) result["stderr"] += f"\nError executing script: {str(e)}" return result def display_python_script_results_enhanced(result): """Display the enhanced results from the Python script execution""" if not result: st.error("No results to display.") return # Display execution time st.info(f"Execution completed in {result['execution_time']:.2f} seconds") # Display any errors if result["exception"]: st.error(f"Exception occurred: {result['exception']}") if result["stderr"]: st.error("Errors:") st.code(result["stderr"], language="bash") # Display profiling data if available if result.get("profile_data"): with st.expander("Profiling Results"): st.code(result["profile_data"], language="bash") # Display debugging steps if available if result.get("debug_steps"): with st.expander("Debugging Steps"): for i, step in enumerate(result["debug_steps"]): st.markdown(f"**Step {i+1}**: {step}") # Display plots if any if result["plots"]: st.markdown("### Plots") cols = st.columns(min(3, len(result["plots"]))) for i, plot_data in enumerate(result["plots"]): cols[i % len(cols)].image(plot_data, use_column_width=True) # Add button to use this plot in Manim if cols[i % len(cols)].button(f"Use in Manim", key=f"use_plot_{i}"): # Create a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: tmp.write(plot_data) plot_path = tmp.name # Generate Manim code plot_code = f""" # Import the plot image plot_image = ImageMobject(r"{plot_path}") plot_image.scale(2) # Adjust size as needed self.play(FadeIn(plot_image)) self.wait(1) """ if st.session_state.code: st.session_state.code += "\n" + plot_code else: st.session_state.code = f"""from manim import * class PlotScene(Scene): def construct(self): {plot_code} """ st.session_state.temp_code = st.session_state.code st.success(f"Added plot to your Manim code!") # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() # Display dataframes if any if result["dataframes"]: st.markdown("### DataFrames") for df_info in result["dataframes"]: with st.expander(f"{df_info.get('name', 'DataFrame')} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"): st.markdown(df_info["preview_html"], unsafe_allow_html=True) # Add button to visualize this dataframe in Manim if st.button(f"Visualize in Manim", key=f"viz_df_{df_info.get('name', 'df')}"): # Generate Manim code for dataframe visualization df_viz_code = f""" # Create a simple table visualization columns = {df_info['columns']} table = Table( col_labels=[Text(col, font_size=24) for col in columns] ) # Add data rows (showing first 5 rows) for i in range(min(5, {df_info['shape'][0]})): # This is a placeholder - in a real implementation, you'd extract actual data table.add_row(*[Text(f"Row {{i}}, Col {{j}}", font_size=20) for j in range(len(columns))]) self.play(Create(table)) self.wait(1) """ if st.session_state.code: st.session_state.code += "\n" + df_viz_code else: st.session_state.code = f"""from manim import * class DataFrameScene(Scene): def construct(self): {df_viz_code} """ st.session_state.temp_code = st.session_state.code st.success(f"Added DataFrame visualization to your Manim code!") # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() # Display standard output if result["stdout"]: st.markdown("### Standard Output") st.code(result["stdout"], language="bash") # Display real-time data if available if result.get("realtime_data"): st.markdown("### Real-time Data") # Convert to DataFrame for easier visualization import pandas as pd rt_df = pd.DataFrame(result["realtime_data"]) # Create a plotly chart import plotly.express as px if not rt_df.empty and "time" in rt_df.columns and "value" in rt_df.columns: fig = px.line(rt_df, x="time", y="value", color="label" if "label" in rt_df.columns else None, title="Real-time Data Visualization") st.plotly_chart(fig, use_container_width=True) # Add button to create Manim animation from this data if st.button("Create Manim Animation from Data", key="create_manim_from_rt"): # Extract data points data_points = [] for _, row in rt_df.iterrows(): if "value" in row: data_points.append(float(row["value"])) # Generate Manim code rt_viz_code = f""" # Visualize real-time data data = {data_points} axes = Axes( x_range=[0, {len(data_points)}, 1], y_range=[{min(data_points) if data_points else 0}, {max(data_points) if data_points else 10}, {(max(data_points)-min(data_points))/10 if data_points and max(data_points) > min(data_points) else 1}], axis_config={{"color": BLUE}} ) points = [axes.coords_to_point(i, v) for i, v in enumerate(data)] graph = VMobject(color=RED) graph.set_points_as_corners(points) self.play(Create(axes)) self.play(Create(graph), run_time=2) self.wait(1) """ if st.session_state.code: st.session_state.code += "\n" + rt_viz_code else: st.session_state.code = f"""from manim import * class DataVisualizationScene(Scene): def construct(self): {rt_viz_code} """ st.session_state.temp_code = st.session_state.code st.success(f"Added real-time data visualization to your Manim code!") # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() # C/C++ RUNNER FUNCTIONS def compile_cpp_code_enhanced(code, settings, project_files=None, enable_debug=False, breakpoints=None, watch_vars=None): """Enhanced function to compile C++ code with advanced options.""" try: # Create a temporary directory for compilation temp_dir = tempfile.mkdtemp(prefix="cpp_runner_") # Write the project files if project_files: for filename, content in project_files.items(): file_path = os.path.join(temp_dir, filename) with open(file_path, "w") as f: f.write(content) # Set main file for single file mode cpp_file = os.path.join(temp_dir, "main.cpp") else: # Write the single code file cpp_file = os.path.join(temp_dir, "main.cpp") with open(cpp_file, "w") as f: f.write(code) # Output executable path exe_file = os.path.join(temp_dir, "program.exe" if platform.system() == "Windows" else "program") # Build the compilation command compiler = settings.get("compiler", "g++") std_version = settings.get("std", "c++17") optimization = settings.get("optimization", "-O2") compile_cmd = [ compiler, "-std=" + std_version, optimization ] # Add debug flag if debugging is enabled if enable_debug: compile_cmd.append("-g") # Auto-detect include paths if not specified include_paths = settings.get("include_paths", []) if not include_paths: # Common include directories common_include_dirs = [ "/usr/include", "/usr/local/include", "/opt/local/include", "/opt/homebrew/include" ] # Add detected paths for specified libraries for lib in settings.get("libraries", []): if lib == "Eigen": for dir in common_include_dirs: if os.path.exists(os.path.join(dir, "Eigen")): include_paths.append(dir) elif os.path.exists(os.path.join(dir, "eigen3")): include_paths.append(dir) elif lib == "OpenCV": try: # Get OpenCV include paths using pkg-config result = subprocess.run( ["pkg-config", "--cflags", "opencv4"], capture_output=True, text=True, check=False ) if result.returncode == 0: # Extract include paths from pkg-config output for flag in result.stdout.strip().split(): if flag.startswith("-I"): include_paths.append(flag[2:]) except Exception: pass # Add preprocessor definitions for definition in settings.get("definitions", []): if "=" in definition: name, value = definition.split("=", 1) compile_cmd.append(f"-D{name}={value}") else: compile_cmd.append(f"-D{definition}") # Add include paths for path in include_paths: compile_cmd.append(f"-I{path}") # Add library paths for path in settings.get("library_paths", []): compile_cmd.append(f"-L{path}") # Add files to compile if project_files: source_files = [os.path.join(temp_dir, f) for f in project_files.keys() if f.endswith((".cpp", ".c", ".cc"))] compile_cmd.extend(source_files) else: compile_cmd.append(cpp_file) # Output file compile_cmd.extend(["-o", exe_file]) # Add libraries for lib in settings.get("libraries", []): if lib == "Eigen": # Eigen is header-only, nothing to link pass elif lib == "OpenCV": # Add OpenCV libraries try: # Get OpenCV libraries using pkg-config pkg_config = subprocess.run( ["pkg-config", "--libs", "opencv4"], capture_output=True, text=True, check=False ) if pkg_config.returncode == 0: compile_cmd.extend(pkg_config.stdout.strip().split()) else: # Try opencv instead of opencv4 pkg_config = subprocess.run( ["pkg-config", "--libs", "opencv"], capture_output=True, text=True, check=False ) if pkg_config.returncode == 0: compile_cmd.extend(pkg_config.stdout.strip().split()) else: # Fallback to common OpenCV libraries compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"]) except: # Fallback to common OpenCV libraries compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"]) elif lib == "Boost": # Add common Boost libraries compile_cmd.extend(["-lboost_system", "-lboost_filesystem"]) elif lib == "FFTW": compile_cmd.append("-lfftw3") elif lib == "SDL2": compile_cmd.append("-lSDL2") elif lib == "SFML": compile_cmd.extend(["-lsfml-graphics", "-lsfml-window", "-lsfml-system"]) elif lib == "OpenGL": compile_cmd.extend(["-lGL", "-lGLU", "-lglut"]) # Add additional libraries for lib in settings.get("additional_libs", []): compile_cmd.append(f"-l{lib}") # Add advanced flags if settings.get("advanced_flags"): compile_cmd.extend(settings["advanced_flags"].split()) # Run the compilation process logger.info(f"Compiling with command: {' '.join(compile_cmd)}") result = subprocess.run( compile_cmd, capture_output=True, text=True, check=False, cwd=temp_dir ) if result.returncode != 0: return None, result.stderr, temp_dir return exe_file, None, temp_dir except Exception as e: return None, str(e), None def run_cpp_executable_enhanced(exe_path, temp_dir, inputs=None, timeout=30, enable_debug=False, breakpoints=None, watch_vars=None): """Enhanced function to run C++ executable with debugging support.""" result = { "stdout": "", "stderr": "", "execution_time": 0, "images": [], "exception": None, "debug_output": None, "memory_usage": None } try: # Prepare input data if provided input_data = "\n".join(inputs) if inputs else None # Start timing start_time = time.time() if enable_debug and breakpoints: # Run with GDB for debugging gdb_commands = ["set pagination off"] # Add breakpoints for bp in breakpoints: gdb_commands.append(f"break {bp}") # Add watchpoints for variables if watch_vars: for var in watch_vars: gdb_commands.append(f"watch {var}") # Run the program gdb_commands.append("run") # Continue to end gdb_commands.append("continue") # Quit GDB gdb_commands.append("quit") # Create GDB command file gdb_cmd_file = os.path.join(temp_dir, "gdb_commands.txt") with open(gdb_cmd_file, "w") as f: f.write("\n".join(gdb_commands)) # Run with GDB process = subprocess.run( ["gdb", "-x", gdb_cmd_file, "-batch", exe_path], input=input_data, text=True, capture_output=True, timeout=timeout, cwd=temp_dir ) # Capture outputs result["stdout"] = process.stdout result["stderr"] = process.stderr result["debug_output"] = process.stdout else: # Run normally process = subprocess.run( [exe_path], input=input_data, text=True, capture_output=True, timeout=timeout, cwd=temp_dir ) # Capture outputs result["stdout"] = process.stdout result["stderr"] = process.stderr # Calculate execution time result["execution_time"] = time.time() - start_time # Look for generated images in the executable directory for ext in [".png", ".jpg", ".jpeg", ".bmp", ".ppm"]: image_files = [f for f in os.listdir(temp_dir) if f.endswith(ext)] for img_file in image_files: try: img_path = os.path.join(temp_dir, img_file) # For PPM files, convert to PNG for easier display if img_file.endswith(".ppm"): # Create output path png_path = os.path.join(temp_dir, img_file.replace(".ppm", ".png")) # Convert using PIL from PIL import Image Image.open(img_path).save(png_path) img_path = png_path img_file = img_file.replace(".ppm", ".png") with open(img_path, "rb") as f: result["images"].append({ "name": img_file, "data": f.read() }) except Exception as e: logger.error(f"Error processing image {img_file}: {str(e)}") # Estimate memory usage try: if platform.system() != "Windows": # Use ps command to get memory usage ps_output = subprocess.run( ["ps", "-p", str(process.pid), "-o", "rss="], capture_output=True, text=True, check=False ) if ps_output.returncode == 0: mem_kb = int(ps_output.stdout.strip()) result["memory_usage"] = mem_kb / 1024 # Convert to MB except: pass return result except subprocess.TimeoutExpired: result["stderr"] += f"\nProgram execution timed out after {timeout} seconds." result["exception"] = "TimeoutError" return result except Exception as e: result["stderr"] += f"\nError executing program: {str(e)}" result["exception"] = str(e) return result def parse_animation_steps(python_code): """Parse Manim code to extract animation steps for timeline editor""" animation_steps = [] # Look for self.play calls in the code play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL) wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL) # Extract animation objects from play calls for i, play_call in enumerate(play_calls): # Parse the arguments to self.play() animations = [arg.strip() for arg in play_call.split(',')] # Get wait time after this animation if available wait_time = 1.0 # Default wait time if i < len(wait_calls): wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i]) if wait_match: wait_time = float(wait_match.group(1)) # Add to animation steps animation_steps.append({ "id": i+1, "type": "play", "animations": animations, "duration": wait_time, "start_time": sum([step.get("duration", 1.0) for step in animation_steps]), "code": f"self.play({play_call})" }) return animation_steps def generate_code_from_timeline(animation_steps, original_code): """Generate Manim code from the timeline data""" # Extract the class definition and setup class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL) if not class_match: return original_code # Can't find proper structure to modify setup_code = class_match.group(1) # Build the new construct method new_code = [setup_code] indent = " " # Standard Manim indentation # Add each animation step in order for step in sorted(animation_steps, key=lambda x: x["id"]): new_code.append(f"{indent}{step['code']}") if "duration" in step and step["duration"] > 0: new_code.append(f"{indent}self.wait({step['duration']})") # Add any code that might come after animations end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL) if end_match: new_code.append(end_match.group(1)) # Combine the code parts with proper indentation return "\n".join(new_code) def create_timeline_editor(code): """Create an interactive timeline editor for animation sequences""" st.markdown("### đŸŽžī¸ Animation Timeline Editor") if not code: st.warning("Add animation code first to use the timeline editor.") return code # Parse animation steps from the code animation_steps = parse_animation_steps(code) if not animation_steps: st.warning("No animation steps detected in your code.") return code # Convert to DataFrame for easier manipulation df = pd.DataFrame(animation_steps) # Create an interactive Gantt chart with plotly st.markdown("#### Animation Timeline") st.markdown("Drag timeline elements to reorder or resize to change duration") # Create the Gantt chart fig = px.timeline( df, x_start="start_time", x_end=df["start_time"] + df["duration"], y="id", color="type", hover_name="animations", labels={"id": "Step", "start_time": "Time (seconds)"} ) # Make it interactive fig.update_layout( height=400, xaxis=dict( title="Time (seconds)", rangeslider_visible=True ) ) # Add buttons and interactivity timeline_chart = st.plotly_chart(fig, use_container_width=True) # Control panel st.markdown("#### Timeline Controls") controls_col1, controls_col2, controls_col3 = st.columns(3) with controls_col1: selected_step = st.selectbox( "Select Step to Edit:", options=list(range(1, len(animation_steps) + 1)), format_func=lambda x: f"Step {x}" ) with controls_col2: new_duration = st.number_input( "Duration (seconds):", min_value=0.1, max_value=10.0, value=float(df[df["id"] == selected_step]["duration"].values[0]), step=0.1 ) with controls_col3: step_action = st.selectbox( "Action:", options=["Update Duration", "Move Up", "Move Down", "Delete Step"] ) apply_btn = st.button("Apply Change", key="apply_timeline_change") # Handle timeline modifications if apply_btn: modified = False if step_action == "Update Duration": # Update the duration of the selected step idx = df[df["id"] == selected_step].index[0] df.at[idx, "duration"] = new_duration modified = True elif step_action == "Move Up" and selected_step > 1: # Swap with the step above idx1 = df[df["id"] == selected_step].index[0] idx2 = df[df["id"] == selected_step - 1].index[0] # Swap IDs to maintain order df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step modified = True elif step_action == "Move Down" and selected_step < len(animation_steps): # Swap with the step below idx1 = df[df["id"] == selected_step].index[0] idx2 = df[df["id"] == selected_step + 1].index[0] # Swap IDs to maintain order df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step modified = True elif step_action == "Delete Step": # Remove the selected step df = df[df["id"] != selected_step] # Reindex remaining steps new_ids = list(range(1, len(df) + 1)) df["id"] = new_ids modified = True if modified: # Recalculate start times df = df.sort_values("id") cumulative_time = 0 for idx, row in df.iterrows(): df.at[idx, "start_time"] = cumulative_time cumulative_time += row["duration"] # Regenerate animation code animation_steps = df.to_dict('records') new_code = generate_code_from_timeline(animation_steps, code) st.success("Timeline updated! Code has been regenerated.") return new_code # Visual keyframe editor st.markdown("#### Visual Keyframe Editor") st.markdown("Add keyframes for smooth property transitions") keyframe_obj = st.selectbox( "Select object to animate:", options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects ) keyframe_prop = st.selectbox( "Select property:", options=["position", "scale", "rotation", "opacity", "color"] ) # Keyframe timeline visualization keyframe_times = [0, 1, 2, 3, 4] # Placeholder keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder keyframe_df = pd.DataFrame({ "time": keyframe_times, "value": keyframe_values }) keyframe_fig = px.line( keyframe_df, x="time", y="value", markers=True, title=f"{keyframe_prop.capitalize()} Keyframes" ) keyframe_fig.update_layout( xaxis_title="Time (seconds)", yaxis_title="Value", height=250 ) st.plotly_chart(keyframe_fig, use_container_width=True) keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3) with keyframe_col1: keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1) with keyframe_col2: keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1) with keyframe_col3: add_keyframe = st.button("Add Keyframe") # Return the original code or modified code return code def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir): """Export animation to various educational formats""" try: if format_type == "powerpoint": # Make sure python-pptx is installed try: import pptx from pptx.util import Inches except ImportError: logger.error("python-pptx not installed") subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True) import pptx from pptx.util import Inches # Create PowerPoint presentation prs = pptx.Presentation() # Title slide title_slide = prs.slides.add_slide(prs.slide_layouts[0]) title_slide.shapes.title.text = animation_title title_slide.placeholders[1].text = "Created with Manim Animation Studio" # Video slide video_slide = prs.slides.add_slide(prs.slide_layouts[5]) video_slide.shapes.title.text = "Animation" # Save video to temp file video_path = os.path.join(temp_dir, "animation.mp4") with open(video_path, "wb") as f: f.write(video_data) # Add video to slide try: left = Inches(1) top = Inches(1.5) width = Inches(8) height = Inches(4.5) video_slide.shapes.add_movie(video_path, left, top, width, height) except Exception as e: logger.error(f"Error adding video to PowerPoint: {str(e)}") # Fallback to adding a picture with link img_path = os.path.join(temp_dir, "thumbnail.png") # Generate thumbnail with ffmpeg subprocess.run([ "ffmpeg", "-i", video_path, "-ss", "00:00:01.000", "-vframes", "1", img_path ], check=True) if os.path.exists(img_path): pic = video_slide.shapes.add_picture(img_path, left, top, width, height) video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)" # Explanation slide if explanation_text: text_slide = prs.slides.add_slide(prs.slide_layouts[1]) text_slide.shapes.title.text = "Explanation" text_slide.placeholders[1].text = explanation_text # Save presentation output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx") prs.save(output_path) # Read the file to return it with open(output_path, "rb") as f: return f.read(), "powerpoint" elif format_type == "html": # Create interactive HTML animation html_template = """ {title}

{title}

Explanation

{explanation_html}
""" # Convert video data to base64 video_base64 = base64.b64encode(video_data).decode('utf-8') # Convert markdown explanation to HTML explanation_html = markdown.markdown(explanation_text) if explanation_text else "

No explanation provided.

" # Format the HTML template html_content = html_template.format( title=animation_title, video_base64=video_base64, explanation_html=explanation_html ) # Save to file output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html") with open(output_path, "w", encoding="utf-8") as f: f.write(html_content) # Read the file to return it with open(output_path, "rb") as f: return f.read(), "html" elif format_type == "sequence": # Generate animation sequence with explanatory text # Make sure FPDF is installed try: from fpdf import FPDF except ImportError: logger.error("fpdf not installed") subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True) from fpdf import FPDF # Save video temporarily temp_video_path = os.path.join(temp_dir, "temp_video.mp4") with open(temp_video_path, "wb") as f: f.write(video_data) # Create frames directory frames_dir = os.path.join(temp_dir, "frames") os.makedirs(frames_dir, exist_ok=True) # Extract frames using ffmpeg (assuming it's installed) frame_count = 5 # Number of key frames to extract try: subprocess.run([ "ffmpeg", "-i", temp_video_path, "-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})", "-vsync", "0", os.path.join(frames_dir, "frame_%03d.png") ], check=True) except Exception as e: logger.error(f"Error extracting frames: {str(e)}") # Try a simpler approach subprocess.run([ "ffmpeg", "-i", temp_video_path, "-r", "1", # 1 frame per second os.path.join(frames_dir, "frame_%03d.png") ], check=True) # Parse explanation text into segments (assuming sections divided by ##) explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."] # Create a PDF with frames and explanations pdf = FPDF() pdf.set_auto_page_break(auto=True, margin=15) # Title page pdf.add_page() pdf.set_font("Arial", "B", 20) pdf.cell(190, 10, animation_title, ln=True, align="C") pdf.ln(10) pdf.set_font("Arial", "", 12) pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C") # Add each frame with explanation frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')]) for i, frame_file in enumerate(frame_files): pdf.add_page() # Add frame image frame_path = os.path.join(frames_dir, frame_file) pdf.image(frame_path, x=10, y=10, w=190) # Add explanation text pdf.ln(140) # Move below the image pdf.set_font("Arial", "B", 12) pdf.cell(190, 10, f"Step {i+1}", ln=True) pdf.set_font("Arial", "", 10) # Use the corresponding explanation segment if available explanation = explanation_segments[min(i, len(explanation_segments)-1)] pdf.multi_cell(190, 5, explanation.strip()) # Save PDF output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf") pdf.output(output_path) # Read the file to return it with open(output_path, "rb") as f: return f.read(), "pdf" return None, None except Exception as e: logger.error(f"Educational export error: {str(e)}") import traceback logger.error(traceback.format_exc()) return None, None def main(): # Initialize session state variables if they don't exist if 'init' not in st.session_state: st.session_state.init = True st.session_state.video_data = None st.session_state.status = None st.session_state.ai_models = None st.session_state.generated_code = "" st.session_state.code = "" st.session_state.temp_code = "" st.session_state.editor_key = str(uuid.uuid4()) st.session_state.packages_checked = False # Track if packages were already checked st.session_state.audio_path = None st.session_state.image_paths = [] st.session_state.custom_library_result = "" st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n" st.session_state.python_result = None st.session_state.active_tab = 0 # Track currently active tab st.session_state.settings = { "quality": "720p", "format_type": "mp4", "animation_speed": "Normal", "fps": 30 # Default FPS } st.session_state.password_entered = False # Track password authentication st.session_state.custom_model = "gpt-4o" # Default model st.session_state.first_load_complete = False # Prevent refreshes on first load st.session_state.pending_tab_switch = None # Track pending tab switches # C++ runner state st.session_state.cpp_code = """#include #include #include int main() { std::cout << "Hello, Manim Animation Studio!" << std::endl; // Create a vector of numbers std::vector numbers = {5, 2, 8, 1, 9, 3, 7, 4, 6}; // Sort the vector std::sort(numbers.begin(), numbers.end()); // Print the sorted numbers std::cout << "Sorted numbers: "; for (int num : numbers) { std::cout << num << " "; } std::cout << std::endl; return 0; }""" st.session_state.cpp_result = None st.session_state.cpp_project_files = {"main.cpp": st.session_state.cpp_code} st.session_state.cpp_settings = { "compiler": "g++", "std": "c++17", "optimization": "-O2", "include_paths": [], "library_paths": [], "libraries": [] } # Page configuration with improved layout st.set_page_config( page_title="Manim Animation Studio", page_icon="đŸŽŦ", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for improved UI st.markdown(""" """, unsafe_allow_html=True) # Header st.markdown("""
đŸŽŦ Manim Animation Studio

Create mathematical animations with Manim

""", unsafe_allow_html=True) # Check for packages ONLY ONCE per session if not st.session_state.packages_checked: if ensure_packages(): st.session_state.packages_checked = True else: st.error("Failed to install required packages. Please try again.") st.stop() # Create main tabs tab_names = ["✨ Editor", "🤖 AI Assistant", "🎨 Assets", "đŸŽžī¸ Timeline", "🎓 Educational Export", "🐍 Python Runner", "🔧 C/C++ Runner"] tabs = st.tabs(tab_names) # Sidebar for rendering settings and custom libraries with st.sidebar: # Rendering settings section st.markdown("## âš™ī¸ Rendering Settings") col1, col2 = st.columns(2) with col1: quality = st.selectbox( "đŸŽ¯ Quality", options=list(QUALITY_PRESETS.keys()), index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]), key="quality_select" ) with col2: format_type_display = st.selectbox( "đŸ“Ļ Format", options=list(EXPORT_FORMATS.keys()), index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"]) if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0, key="format_select_display" ) # Convert display name to actual format value format_type = EXPORT_FORMATS[format_type_display] # Add FPS control fps = st.selectbox( "đŸŽžī¸ FPS", options=FPS_OPTIONS, index=FPS_OPTIONS.index(st.session_state.settings["fps"]) if st.session_state.settings["fps"] in FPS_OPTIONS else 2, # Default to 30 FPS (index 2) key="fps_select" ) animation_speed = st.selectbox( "⚡ Speed", options=list(ANIMATION_SPEEDS.keys()), index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]), key="speed_select" ) # Apply the settings without requiring a button st.session_state.settings = { "quality": quality, "format_type": format_type, "animation_speed": animation_speed, "fps": fps } # Custom libraries section st.markdown("## 📚 Custom Libraries") st.markdown("Enter additional Python packages needed for your animations (comma-separated):") custom_libraries = st.text_area( "Libraries to install", placeholder="e.g., scipy, networkx, matplotlib", key="custom_libraries" ) if st.button("Install Libraries", key="install_libraries_btn"): success, result = install_custom_packages(custom_libraries) st.session_state.custom_library_result = result if success: st.success("Installation complete!") else: st.error("Installation failed for some packages.") if st.session_state.custom_library_result: with st.expander("Installation Results"): st.code(st.session_state.custom_library_result) # System Package Management section with st.sidebar.expander("đŸ› ī¸ System Package Management"): st.markdown("## System Dependencies") st.markdown("Manage system packages and libraries") # Auto-detect C/C++ libraries if st.button("Detect Installed Libraries", key="detect_system_libs"): with st.spinner("Detecting installed libraries..."): libraries = detect_cpp_libraries() # Display results st.markdown("### Detected Libraries") for lib, installed in libraries.items(): if installed: st.success(f"✅ {lib}: Installed") else: st.warning(f"âš ī¸ {lib}: Not detected") # Install C/C++ libraries st.markdown("### Install C/C++ Libraries") cpp_libs_to_install = st.multiselect( "Select libraries to install", options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL"], default=[] ) if st.button("Install Selected Libraries", key="install_cpp_libs"): success, result = install_cpp_libraries(cpp_libs_to_install) if success: st.success("Libraries installed successfully!") else: st.error("Failed to install some libraries") st.code(result) # System package installation st.markdown("### Install System Packages") system_packages = st.text_area( "Enter system packages to install (comma separated)", placeholder="e.g., ffmpeg, git, cmake" ) if st.button("Install System Packages", key="install_system_packages"): if not system_packages.strip(): st.warning("No packages specified") else: packages = [pkg.strip() for pkg in system_packages.split(',') if pkg.strip()] # Detect package manager package_manager = None install_cmd = [] if platform.system() == "Linux": which_apt = subprocess.run(["which", "apt-get"], capture_output=True, text=True) which_dnf = subprocess.run(["which", "dnf"], capture_output=True, text=True) which_yum = subprocess.run(["which", "yum"], capture_output=True, text=True) which_pacman = subprocess.run(["which", "pacman"], capture_output=True, text=True) if which_apt.returncode == 0: package_manager = "apt-get" install_cmd = ["apt-get", "install", "-y"] elif which_dnf.returncode == 0: package_manager = "dnf" install_cmd = ["dnf", "install", "-y"] elif which_yum.returncode == 0: package_manager = "yum" install_cmd = ["yum", "install", "-y"] elif which_pacman.returncode == 0: package_manager = "pacman" install_cmd = ["pacman", "-S", "--noconfirm"] elif platform.system() == "Darwin": which_brew = subprocess.run(["which", "brew"], capture_output=True, text=True) if which_brew.returncode == 0: package_manager = "brew" install_cmd = ["brew", "install"] if not package_manager: st.error(f"Could not detect package manager for {platform.system()}. Please install packages manually.") else: # Ask for sudo password if needed sudo_password = None if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo sudo_password = st.text_input("Enter sudo password for system package installation:", type="password") # Update package lists if needed if package_manager in ["apt-get", "apt"]: with st.spinner("Updating package lists..."): try: if is_sudo_available() and sudo_password: result = run_with_sudo(["apt-get", "update"], sudo_password) elif is_sudo_available(): result = run_with_sudo(["apt-get", "update"]) else: result = subprocess.run(["apt-get", "update"], capture_output=True, text=True) if result.returncode != 0: st.warning(f"Failed to update package lists: {result.stderr}") except Exception as e: st.warning(f"Error updating package lists: {str(e)}") # Install packages results = [] success = True progress_bar = st.sidebar.progress(0) status_text = st.sidebar.empty() for i, package in enumerate(packages): try: progress = (i / len(packages)) progress_bar.progress(progress) status_text.text(f"Installing {package}...") cmd = install_cmd + [package] if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo if sudo_password: result = run_with_sudo(cmd, sudo_password) else: result = run_with_sudo(cmd) else: result = subprocess.run(cmd, capture_output=True, text=True) if result.returncode != 0: error_msg = f"Failed to install {package}: {result.stderr}" results.append(error_msg) success = False else: results.append(f"Successfully installed {package}") except Exception as e: error_msg = f"Error installing {package}: {str(e)}" results.append(error_msg) success = False progress_bar.progress(1.0) time.sleep(0.5) progress_bar.empty() status_text.empty() if success: st.success("All packages installed successfully!") else: st.error("Failed to install some packages") st.code("\n".join(results)) # C/C++ Library Options with st.sidebar.expander("C/C++ Library Options"): st.markdown("### Advanced C/C++ Settings") cpp_libs = st.multiselect( "Include Libraries", options=["Eigen", "Boost", "OpenCV", "FFTW", "Matplotlib-cpp"], default=st.session_state.cpp_settings.get("libraries", []) ) st.session_state.cpp_settings["libraries"] = cpp_libs custom_include = st.text_input("Custom Include Path:") custom_lib = st.text_input("Custom Library Path:") if custom_include and custom_include not in st.session_state.cpp_settings.get("include_paths", []): if "include_paths" not in st.session_state.cpp_settings: st.session_state.cpp_settings["include_paths"] = [] st.session_state.cpp_settings["include_paths"].append(custom_include) if custom_lib and custom_lib not in st.session_state.cpp_settings.get("library_paths", []): if "library_paths" not in st.session_state.cpp_settings: st.session_state.cpp_settings["library_paths"] = [] st.session_state.cpp_settings["library_paths"].append(custom_lib) if st.button("Update Library Settings"): st.success("Library settings updated!") # EDITOR TAB with tabs[0]: col1, col2 = st.columns([3, 2]) with col1: st.markdown("### 📝 Animation Editor") # Toggle between upload and type editor_mode = st.radio( "Choose how to input your code:", ["Type Code", "Upload File"], key="editor_mode" ) if editor_mode == "Upload File": uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader") if uploaded_file: code_content = uploaded_file.getvalue().decode("utf-8") if code_content.strip(): # Only update if file has content st.session_state.code = code_content st.session_state.temp_code = code_content # Code editor if ACE_EDITOR_AVAILABLE: current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else "" st.session_state.temp_code = st_ace( value=current_code, language="python", theme="monokai", min_lines=20, key=f"ace_editor_{st.session_state.editor_key}" ) else: current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else "" st.session_state.temp_code = st.text_area( "Manim Python Code", value=current_code, height=400, key=f"code_textarea_{st.session_state.editor_key}" ) # Update code in session state if it changed if st.session_state.temp_code != st.session_state.code: st.session_state.code = st.session_state.temp_code # Generate button (use a form to prevent page reloads) generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn") if generate_btn: if not st.session_state.code: st.error("Please enter some code before generating animation") else: # Extract scene class name scene_class = extract_scene_class_name(st.session_state.code) # If no valid scene class found, add a basic one if scene_class == "MyScene" and "class MyScene" not in st.session_state.code: default_scene = """ class MyScene(Scene): def construct(self): text = Text("Default Scene") self.play(Write(text)) self.wait(2) """ st.session_state.code += default_scene st.session_state.temp_code = st.session_state.code st.warning("No scene class found. Added a default scene.") with st.spinner("Generating animation..."): video_data, status = generate_manim_video( st.session_state.code, st.session_state.settings["format_type"], st.session_state.settings["quality"], ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]], st.session_state.audio_path, st.session_state.settings["fps"] ) st.session_state.video_data = video_data st.session_state.status = status with col2: st.markdown("### đŸ–Ĩī¸ Preview & Output") # Preview container if st.session_state.code: with st.container(): st.markdown("
", unsafe_allow_html=True) preview_html = generate_manim_preview(st.session_state.code) components.html(preview_html, height=250) st.markdown("
", unsafe_allow_html=True) # Generated output display if st.session_state.video_data: # Different handling based on format type format_type = st.session_state.settings["format_type"] if format_type == "png_sequence": st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.") # Add download button for ZIP st.download_button( label="âŦ‡ī¸ Download PNG Sequence (ZIP)", data=st.session_state.video_data, file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip", mime="application/zip", use_container_width=True ) elif format_type == "svg": # Display SVG preview try: svg_data = st.session_state.video_data.decode('utf-8') components.html(svg_data, height=400) except Exception as e: st.error(f"Error displaying SVG: {str(e)}") # Download button for SVG st.download_button( label="âŦ‡ī¸ Download SVG", data=st.session_state.video_data, file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg", mime="image/svg+xml", use_container_width=True ) else: # Standard video display for MP4, GIF, WebM try: st.video(st.session_state.video_data, format=format_type) except Exception as e: st.error(f"Error displaying video: {str(e)}") # Fallback for GIF if st.video fails if format_type == "gif": st.markdown("GIF preview:") gif_b64 = base64.b64encode(st.session_state.video_data).decode() st.markdown(f'animation', unsafe_allow_html=True) # Add download button st.download_button( label=f"âŦ‡ī¸ Download {format_type.upper()}", data=st.session_state.video_data, file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}", mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}", use_container_width=True ) if st.session_state.status: if "Error" in st.session_state.status: st.error(st.session_state.status) # Show troubleshooting tips with st.expander("🔍 Troubleshooting Tips"): st.markdown(""" ### Common Issues: 1. **Syntax Errors**: Check your Python code for any syntax issues 2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene 3. **High Resolution Issues**: Try a lower quality preset for complex animations 4. **Memory Issues**: For 4K animations, reduce complexity or try again 5. **Format Issues**: Some formats require specific Manim configurations 6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically ### Example Code: ```python from manim import * class MyScene(Scene): def construct(self): circle = Circle(color=RED) self.play(Create(circle)) self.wait(1) ``` """) else: st.success(st.session_state.status) # AI ASSISTANT TAB with tabs[1]: st.markdown("### 🤖 AI Animation Assistant") # Check password before allowing access if check_password(): # Debug section with st.expander("🔧 Debug Connection"): st.markdown("Test the AI model connection directly") if st.button("Test API Connection", key="test_api_btn"): with st.spinner("Testing API connection..."): try: # Get token from secrets token = get_secret("github_token_api") if not token: st.error("GitHub token not found in secrets") st.stop() # Get model details model_name = st.session_state.custom_model config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"]) category = config.get("category", "Other") if category == "OpenAI": # Use OpenAI client for GitHub AI models try: from openai import OpenAI except ImportError: st.error("OpenAI package not installed. Please run 'pip install openai'") st.stop() # Create OpenAI client with GitHub AI endpoint client = OpenAI( base_url="https://models.github.ai/inference", api_key=token, ) # For GitHub AI models, ensure the model_name includes the publisher # If it doesn't have a publisher prefix, add "openai/" if "/" not in model_name: full_model_name = f"openai/{model_name}" st.info(f"Using full model name: {full_model_name}") else: full_model_name = model_name # Prepare parameters based on model configuration params = { "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, this is a connection test."} ], "model": full_model_name } # Add appropriate token parameter token_param = config["param_name"] params[token_param] = config[token_param] # Make API call response = client.chat.completions.create(**params) # Check if response is valid if response and response.choices and len(response.choices) > 0: test_response = response.choices[0].message.content st.success(f"✅ Connection successful! Response: {test_response[:50]}...") # Save working connection to session state st.session_state.ai_models = { "openai_client": client, "model_name": full_model_name, # Store the full model name "endpoint": "https://models.github.ai/inference", "last_loaded": datetime.now().isoformat(), "category": category } else: st.error("❌ API returned an empty response") elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]: # Use Azure client for Azure API models try: from azure.ai.inference import ChatCompletionsClient from azure.ai.inference.models import SystemMessage, UserMessage from azure.core.credentials import AzureKeyCredential except ImportError: st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'") st.stop() # Define endpoint endpoint = "https://models.inference.ai.azure.com" # Prepare API parameters messages = [UserMessage("Hello, this is a connection test.")] api_params, config = prepare_api_params(messages, model_name) # Create client with appropriate API version api_version = config.get("api_version") if api_version: client = ChatCompletionsClient( endpoint=endpoint, credential=AzureKeyCredential(token), api_version=api_version ) else: client = ChatCompletionsClient( endpoint=endpoint, credential=AzureKeyCredential(token), ) # Test with the prepared parameters response = client.complete(**api_params) # Check if response is valid if response and response.choices and len(response.choices) > 0: test_response = response.choices[0].message.content st.success(f"✅ Connection successful! Response: {test_response[:50]}...") # Save working connection to session state st.session_state.ai_models = { "client": client, "model_name": model_name, "endpoint": endpoint, "last_loaded": datetime.now().isoformat(), "category": category, "api_version": api_version } else: st.error("❌ API returned an empty response") else: st.error(f"Unsupported model category: {category}") except ImportError as ie: st.error(f"Module import error: {str(ie)}") st.info("Try installing required packages: openai, azure-ai-inference and azure-core") except Exception as e: st.error(f"❌ API test failed: {str(e)}") import traceback st.code(traceback.format_exc()) # Model selection with enhanced UI st.markdown("### 🤖 Model Selection") st.markdown("Select an AI model for generating animation code:") # Group models by category for better organization model_categories = {} for model_name in MODEL_CONFIGS: if model_name != "default": category = MODEL_CONFIGS[model_name].get("category", "Other") if category not in model_categories: model_categories[category] = [] model_categories[category].append(model_name) # Create tabbed interface for model categories category_tabs = st.tabs(sorted(model_categories.keys())) for i, category in enumerate(sorted(model_categories.keys())): with category_tabs[i]: for model_name in sorted(model_categories[category]): config = MODEL_CONFIGS[model_name] is_selected = model_name == st.session_state.custom_model warning = config.get("warning") # Create styled card for each model warning_html = f'

âš ī¸ {warning}

' if warning else "" st.markdown(f"""

{model_name}

Max Tokens: {config.get(config['param_name'], 'Unknown')}

Category: {config['category']}

API Version: {config['api_version'] if config['api_version'] else 'Default'}

{warning_html}
""", unsafe_allow_html=True) # Button to select this model button_label = "Selected ✓" if is_selected else "Select Model" if st.button(button_label, key=f"model_{model_name}", disabled=is_selected): st.session_state.custom_model = model_name if st.session_state.ai_models and 'model_name' in st.session_state.ai_models: st.session_state.ai_models['model_name'] = model_name st.rerun() # Display current model selection st.info(f"🤖 **Currently using: {st.session_state.custom_model}**") # Add a refresh button to update model connection if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"): if st.session_state.ai_models and 'client' in st.session_state.ai_models: try: # Test connection with minimal prompt from azure.ai.inference.models import UserMessage model_name = st.session_state.custom_model # Prepare parameters messages = [UserMessage("Hello")] api_params, config = prepare_api_params(messages, model_name) # Check if we need a new client with specific API version if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"): # Create version-specific client if needed token = get_secret("github_token_api") from azure.ai.inference import ChatCompletionsClient from azure.core.credentials import AzureKeyCredential client = ChatCompletionsClient( endpoint=st.session_state.ai_models["endpoint"], credential=AzureKeyCredential(token), api_version=config["api_version"] ) response = client.complete(**api_params) # Update session state with the new client st.session_state.ai_models["client"] = client st.session_state.ai_models["api_version"] = config["api_version"] else: response = st.session_state.ai_models["client"].complete(**api_params) st.success(f"✅ Connection to {model_name} successful!") st.session_state.ai_models["model_name"] = model_name except Exception as e: st.error(f"❌ Connection error: {str(e)}") st.info("Please try the Debug Connection section to re-initialize the API connection.") # AI code generation if st.session_state.ai_models and "client" in st.session_state.ai_models: st.markdown("
", unsafe_allow_html=True) st.markdown("#### Generate Animation from Description") st.write("Describe the animation you want to create, or provide partial code to complete.") # Predefined animation ideas dropdown animation_ideas = [ "Select an idea...", "Create a 3D animation showing a sphere morphing into a torus", "Show a visual proof of the Pythagorean theorem", "Visualize a Fourier transform converting a signal from time domain to frequency domain", "Create an animation explaining neural network forward propagation", "Illustrate the concept of integration with area under a curve" ] selected_idea = st.selectbox( "Try one of these ideas", options=animation_ideas ) prompt_value = selected_idea if selected_idea != "Select an idea..." else "" code_input = st.text_area( "Your Prompt or Code", value=prompt_value, placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue", height=150 ) if st.button("Generate Animation Code", key="gen_ai_code"): if code_input: with st.spinner("AI is generating your animation code..."): try: # Get the client and model name client = st.session_state.ai_models["client"] model_name = st.session_state.ai_models["model_name"] # Create the prompt prompt = f"""Write a complete Manim animation scene based on this code or idea: {code_input} The code should be a complete, working Manim animation that includes: - Proper Scene class definition - Constructor with animations - Proper use of self.play() for animations - Proper wait times between animations Here's the complete Manim code: """ # Prepare API parameters from azure.ai.inference.models import UserMessage messages = [UserMessage(prompt)] api_params, config = prepare_api_params(messages, model_name) # Make the API call with proper parameters response = client.complete(**api_params) # Process the response if response and response.choices and len(response.choices) > 0: completed_code = response.choices[0].message.content # Extract code from markdown if present if "```python" in completed_code: completed_code = completed_code.split("```python")[1].split("```")[0] elif "```" in completed_code: completed_code = completed_code.split("```")[1].split("```")[0] # Add Scene class if missing if "Scene" not in completed_code: completed_code = f"""from manim import * class MyScene(Scene): def construct(self): {completed_code}""" # Store the generated code st.session_state.generated_code = completed_code else: st.error("Failed to generate code. API returned an empty response.") except Exception as e: st.error(f"Error generating code: {str(e)}") import traceback st.code(traceback.format_exc()) else: st.warning("Please enter a description or prompt first") # AI generated code display and actions if "generated_code" in st.session_state and st.session_state.generated_code: st.markdown("
", unsafe_allow_html=True) st.markdown("#### Generated Animation Code") st.code(st.session_state.generated_code, language="python") col_ai1, col_ai2 = st.columns(2) with col_ai1: if st.button("Use This Code", key="use_gen_code"): st.session_state.code = st.session_state.generated_code st.session_state.temp_code = st.session_state.generated_code # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() with col_ai2: if st.button("Render Preview", key="render_preview"): with st.spinner("Rendering preview..."): video_data, status = generate_manim_video( st.session_state.generated_code, "mp4", "480p", # Use lowest quality for preview ANIMATION_SPEEDS["Normal"], fps=st.session_state.settings["fps"] ) if video_data: st.video(video_data) st.download_button( label="Download Preview", data=video_data, file_name=f"manim_preview_{int(time.time())}.mp4", mime="video/mp4" ) else: st.error(f"Failed to generate preview: {status}") st.markdown("
", unsafe_allow_html=True) else: st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.") else: st.info("Please enter the correct password to access AI features") # ASSETS TAB with tabs[2]: st.markdown("### 🎨 Asset Management") asset_col1, asset_col2 = st.columns([1, 1]) with asset_col1: # Image uploader section st.markdown("#### 📸 Image Assets") st.markdown("Upload images to use in your animations:") # Allow multiple image uploads uploaded_images = st.file_uploader( "Upload Images", type=["jpg", "png", "jpeg", "svg"], accept_multiple_files=True, key="image_uploader_tab" ) if uploaded_images: # Create a unique image directory if it doesn't exist image_dir = os.path.join(os.getcwd(), "manim_assets", "images") os.makedirs(image_dir, exist_ok=True) # Process each uploaded image for uploaded_image in uploaded_images: # Generate a unique filename and save the image file_extension = uploaded_image.name.split(".")[-1] unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}" image_path = os.path.join(image_dir, unique_filename) with open(image_path, "wb") as f: f.write(uploaded_image.getvalue()) # Store the path in session state if "image_paths" not in st.session_state: st.session_state.image_paths = [] # Check if this image was already added image_already_added = False for img in st.session_state.image_paths: if img["name"] == uploaded_image.name: image_already_added = True break if not image_already_added: st.session_state.image_paths.append({ "name": uploaded_image.name, "path": image_path }) # Display uploaded images in a grid st.markdown("##### Uploaded Images:") image_cols = st.columns(3) for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]): with image_cols[i % 3]: try: img = Image.open(img_info["path"]) st.image(img, caption=img_info["name"], width=150) # Show code snippet for this specific image if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"): image_code = f""" # Load and display image image = ImageMobject(r"{img_info['path']}") image.scale(2) # Adjust size as needed self.play(FadeIn(image)) self.wait(1) """ if not st.session_state.code: base_code = """from manim import * class ImageScene(Scene): def construct(self): """ st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ") else: st.session_state.code += "\n" + image_code st.session_state.temp_code = st.session_state.code st.success(f"Added {img_info['name']} to your code!") # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() except Exception as e: st.error(f"Error loading image {img_info['name']}: {e}") # Display previously uploaded images if st.session_state.image_paths: with st.expander("Previously Uploaded Images"): # Group images by 3 in each row for i in range(0, len(st.session_state.image_paths), 3): prev_cols = st.columns(3) for j in range(3): if i+j < len(st.session_state.image_paths): img_info = st.session_state.image_paths[i+j] with prev_cols[j]: try: img = Image.open(img_info["path"]) st.image(img, caption=img_info["name"], width=100) st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True) except: st.markdown(f"**{img_info['name']}**") st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True) with asset_col2: # Audio uploader section st.markdown("#### đŸŽĩ Audio Assets") st.markdown("Upload audio files for background or narration:") uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader") if uploaded_audio: # Create a unique audio directory if it doesn't exist audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio") os.makedirs(audio_dir, exist_ok=True) # Generate a unique filename and save the audio file_extension = uploaded_audio.name.split(".")[-1] unique_filename = f"audio_{int(time.time())}.{file_extension}" audio_path = os.path.join(audio_dir, unique_filename) with open(audio_path, "wb") as f: f.write(uploaded_audio.getvalue()) # Store the path in session state st.session_state.audio_path = audio_path # Display audio player st.audio(uploaded_audio) st.markdown(f"""

Audio: {uploaded_audio.name}

Path: {audio_path}

""", unsafe_allow_html=True) # Two options for audio usage st.markdown("#### Add Audio to Your Animation") option = st.radio( "Choose how to use audio:", ["Background Audio", "Generate Audio from Text"] ) if option == "Background Audio": st.markdown("##### Code to add background audio:") # For with_sound decorator audio_code1 = f""" # Add this import at the top of your file from manim.scene.scene_file_writer import SceneFileWriter # Add this decorator before your scene class @with_sound("{audio_path}") class YourScene(Scene): def construct(self): # Your animation code here """ st.code(audio_code1, language="python") if st.button("Use This Audio in Animation", key="use_audio_btn"): st.success("Audio set for next render!") elif option == "Generate Audio from Text": # Text-to-speech input tts_text = st.text_area( "Enter text for narration", placeholder="Type the narration text here...", height=100 ) if st.button("Create Narration", key="create_narration_btn"): try: # Use basic TTS (placeholder for actual implementation) st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.") st.session_state.audio_path = audio_path st.success("Audio set for next render!") except Exception as e: st.error(f"Error creating narration: {str(e)}") # TIMELINE EDITOR TAB with tabs[3]: # New code for reordering animation steps updated_code = create_timeline_editor(st.session_state.code) # If code was modified by the timeline editor, update the session state if updated_code != st.session_state.code: st.session_state.code = updated_code st.session_state.temp_code = updated_code # EDUCATIONAL EXPORT TAB with tabs[4]: st.markdown("### 🎓 Educational Export Options") # Check if we have an animation to export if not st.session_state.video_data: st.warning("Generate an animation first before using educational export features.") else: st.markdown("Create various educational assets from your animation:") # Animation title and explanation animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title") st.markdown("#### Explanation Text") st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.") st.markdown("Use ## to separate explanation sections for step-by-step sequence export.") explanation_text = st.text_area( "Explanation (markdown supported)", height=150, placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..." ) # Export format selection edu_format = st.selectbox( "Export Format", options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"] ) # Format-specific options if edu_format == "PowerPoint Presentation": st.info("Creates a PowerPoint file with your animation and explanation text.") elif edu_format == "Interactive HTML": st.info("Creates an interactive HTML webpage with playback controls and explanation.") include_controls = st.checkbox("Include interactive controls", value=True) elif edu_format == "Explanation Sequence PDF": st.info("Creates a PDF with key frames and step-by-step explanations.") frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5) # Export button if st.button("Export Educational Material", key="export_edu_btn"): with st.spinner(f"Creating {edu_format}..."): # Map selected format to internal format type format_map = { "PowerPoint Presentation": "powerpoint", "Interactive HTML": "html", "Explanation Sequence PDF": "sequence" } # Create a temporary directory for export temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_") # Process the export exported_data, file_type = export_to_educational_format( st.session_state.video_data, format_map[edu_format], animation_title, explanation_text, temp_export_dir ) if exported_data: # File extension mapping ext_map = { "powerpoint": "pptx", "html": "html", "pdf": "pdf" } # Download button ext = ext_map.get(file_type, "zip") filename = f"{animation_title.replace(' ', '_')}.{ext}" st.success(f"{edu_format} created successfully!") st.download_button( label=f"âŦ‡ī¸ Download {edu_format}", data=exported_data, file_name=filename, mime=f"application/{ext}", use_container_width=True ) # For HTML, also offer to open in browser if file_type == "html": html_path = os.path.join(temp_export_dir, filename) st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True) else: st.error(f"Failed to create {edu_format}. Check logs for details.") # Show usage examples and tips with st.expander("Usage Tips"): st.markdown(""" ### Educational Export Tips **PowerPoint Presentations** - Great for lectures and classroom presentations - Animation will autoplay when clicked - Add detailed explanations in notes section **Interactive HTML** - Perfect for websites and online learning platforms - Students can control playback speed and navigation - Mobile-friendly for learning on any device **Explanation Sequence** - Ideal for printed materials and study guides - Use ## headers to mark different explanation sections - Each section will be paired with a key frame """) # PYTHON RUNNER TAB with tabs[5]: st.markdown("### 🐍 Python Script Runner") st.markdown("Execute Python scripts and visualize the results directly.") # New UI elements for advanced features with st.expander("🔧 Advanced Python Features"): py_feature_col1, py_feature_col2 = st.columns(2) with py_feature_col1: enable_debugging = st.checkbox("Enable Debugging", value=False, key="py_debug_enable") enable_profiling = st.checkbox("Enable Profiling", value=False, key="py_profile_enable") with py_feature_col2: py_libs = st.multiselect( "Additional Libraries", options=["numpy", "scipy", "pandas", "matplotlib", "seaborn", "plotly", "scikit-learn", "tensorflow", "pytorch", "sympy"], default=["numpy", "matplotlib"], key="py_additional_libs" ) # Multi-file project support with st.expander("📁 Multi-file Project"): st.markdown("Add multiple Python files to your project") # File manager if "py_project_files" not in st.session_state: st.session_state.py_project_files = {"main.py": st.session_state.python_script} # File selector current_file = st.selectbox( "Select File", options=list(st.session_state.py_project_files.keys()), key="py_current_file" ) # New file creation new_file_col1, new_file_col2 = st.columns([3, 1]) with new_file_col1: new_filename = st.text_input("New File Name", value="", key="py_new_filename") with new_file_col2: if st.button("Add File", key="py_add_file_btn"): if new_filename and new_filename not in st.session_state.py_project_files: if not new_filename.endswith(".py"): new_filename += ".py" st.session_state.py_project_files[new_filename] = "# New Python file\n\n" st.session_state.py_current_file = new_filename st.experimental_rerun() # Update the current file content in session state if current_file in st.session_state.py_project_files: st.session_state.py_project_files[current_file] = st.session_state.python_script # Update main script if we're editing the main file if current_file == "main.py": st.session_state.python_script = st.session_state.python_script # Real-time visualization toggle real_time_viz = st.checkbox("Enable Real-time Visualization", value=False, key="py_realtime_viz") # Predefined example scripts example_scripts = { "Select an example...": "", "Basic Matplotlib Plot": """import matplotlib.pyplot as plt import numpy as np # Create data x = np.linspace(0, 10, 100) y = np.sin(x) # Create plot plt.figure(figsize=(10, 6)) plt.plot(x, y, 'b-', label='sin(x)') plt.title('Sine Wave') plt.xlabel('x') plt.ylabel('sin(x)') plt.grid(True) plt.legend() """, "User Input Example": """# This example demonstrates how to handle user input name = input("Enter your name: ") age = int(input("Enter your age: ")) print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.") # Let's get some numbers and calculate the average num_count = int(input("How many numbers would you like to average? ")) total = 0 for i in range(num_count): num = float(input(f"Enter number {i+1}: ")) total += num average = total / num_count print(f"The average of your {num_count} numbers is: {average}") """, "Pandas DataFrame": """import pandas as pd import numpy as np # Create a sample dataframe data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'], 'Age': [25, 30, 35, 40, 45], 'Salary': [50000, 60000, 70000, 80000, 90000], 'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering'] } df = pd.DataFrame(data) # Display the dataframe print("Sample DataFrame:") print(df) # Basic statistics print("\\nSummary Statistics:") print(df.describe()) # Filtering print("\\nEmployees older than 30:") print(df[df['Age'] > 30]) """, "Seaborn Visualization": """import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd # Set the style sns.set_style("whitegrid") # Create sample data np.random.seed(42) data = np.random.randn(100, 3) df = pd.DataFrame(data, columns=['A', 'B', 'C']) df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50) # Create a paired plot sns.pairplot(df, hue='category', palette='viridis') # Create another plot plt.figure(figsize=(10, 6)) sns.violinplot(x='category', y='A', data=df, palette='magma') plt.title('Distribution of A by Category') """ } # Select example script selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys())) # Python code editor if selected_example != "Select an example..." and selected_example in example_scripts: python_code = example_scripts[selected_example] else: python_code = st.session_state.python_script if ACE_EDITOR_AVAILABLE: python_code = st_ace( value=python_code, language="python", theme="monokai", min_lines=15, key=f"python_editor_{st.session_state.editor_key}" ) else: python_code = st.text_area( "Python Code", value=python_code, height=400, key=f"python_textarea_{st.session_state.editor_key}" ) # Store script in session state (without clearing existing code) st.session_state.python_script = python_code # Check for input() calls input_calls = detect_input_calls(python_code) user_inputs = [] if input_calls: st.markdown("### Input Values") st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:") for i, input_call in enumerate(input_calls): user_input = st.text_input( f"{input_call['prompt']} (Line {input_call['line']})", key=f"input_{i}" ) user_inputs.append(user_input) # Options and execution col1, col2 = st.columns([2, 1]) with col1: timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30) with col2: run_btn = st.button("â–ļī¸ Run Script", use_container_width=True) if run_btn: with st.spinner("Executing Python script..."): # Use the enhanced function result = run_python_script_enhanced( python_code, inputs=user_inputs, timeout=timeout_seconds, enable_debug=enable_debugging, enable_profile=enable_profiling, additional_libs=py_libs, project_files=st.session_state.py_project_files if "py_project_files" in st.session_state else None, realtime_viz=real_time_viz ) st.session_state.python_result = result # Display results if st.session_state.python_result: display_python_script_results_enhanced(st.session_state.python_result) # Provide option to save the script if st.button("📄 Save This Script", key="save_script_btn"): # Generate a unique filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") script_filename = f"script_{timestamp}.py" # Offer download button for the script st.download_button( label="âŦ‡ī¸ Download Script", data=python_code, file_name=script_filename, mime="text/plain" ) # Show advanced examples and tips with st.expander("Python Script Runner Tips"): st.markdown(""" ### Python Script Runner Tips **What can I run?** - Any Python code that doesn't require direct UI interaction - Libraries like Matplotlib, NumPy, Pandas, SciPy, etc. - Data processing and visualization code - Scripts that ask for user input (now supported!) **What can't I run?** - Streamlit, Gradio, Dash, or other web UIs - Long-running operations (timeout will occur) - Code that requires file access outside the temporary environment **Working with visualizations:** - All Matplotlib/Seaborn plots will be automatically captured - Pandas DataFrames are detected and displayed as tables - Use `print()` to show text output **Handling user input:** - The app detects input() calls and automatically creates text fields - Input values you provide will be passed to the script when it runs - Type conversion (like int(), float()) is preserved **Adding to animations:** - Charts and plots can be directly added to your Manim animations - Generated images will be properly scaled for your animation - Perfect for educational content combining data and animations """) # C/C++ RUNNER TAB with tabs[6]: # Assuming this is the 7th tab (index 6) st.markdown("### 🔧 C/C++ Runner") st.markdown("Write, compile, and run C/C++ code with advanced features.") # Create a tabbed interface for different C++ features cpp_tabs = st.tabs(["Code Editor", "Project Files", "Libraries", "Build Settings", "Debugger"]) with cpp_tabs[0]: # Code Editor tab # Compiler options cpp_col1, cpp_col2, cpp_col3 = st.columns(3) with cpp_col1: compiler = st.selectbox( "Compiler", options=["g++", "clang++", "gcc", "msvc"], index=["g++", "clang++", "gcc", "msvc"].index(st.session_state.cpp_settings["compiler"]), key="cpp_compiler" ) st.session_state.cpp_settings["compiler"] = compiler with cpp_col2: std_version = st.selectbox( "Standard", options=["c++11", "c++14", "c++17", "c++20"], index=["c++11", "c++14", "c++17", "c++20"].index(st.session_state.cpp_settings["std"]), key="cpp_std" ) st.session_state.cpp_settings["std"] = std_version with cpp_col3: optimization = st.selectbox( "Optimization", options=["-O0", "-O1", "-O2", "-O3"], index=["-O0", "-O1", "-O2", "-O3"].index(st.session_state.cpp_settings["optimization"]), key="cpp_opt" ) st.session_state.cpp_settings["optimization"] = optimization # Example code templates cpp_examples = { "Select an example...": "", "Hello World": """#include int main() { std::cout << "Hello, World!" << std::endl; return 0; }""", "Calculate Prime Numbers": """#include #include #include bool isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i += 6) { if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } int main() { int limit = 10000; std::vector primes; auto start = std::chrono::high_resolution_clock::now(); for (int i = 2; i <= limit; i++) { if (isPrime(i)) { primes.push_back(i); } } auto end = std::chrono::high_resolution_clock::now(); auto duration = std::chrono::duration_cast(end - start); std::cout << "Found " << primes.size() << " prime numbers up to " << limit << std::endl; std::cout << "First 10 primes: "; for (int i = 0; i < std::min(10, (int)primes.size()); i++) { std::cout << primes[i] << " "; } std::cout << std::endl; std::cout << "Computation time: " << duration.count() << " ms" << std::endl; return 0; }""", "Image Generation (PPM)": """#include #include #include // Generate a simple gradient image in PPM format int main() { const int width = 800; const int height = 600; // Create a PPM file (P3 format - ASCII) std::ofstream image("output.ppm"); image << "P3\\n" << width << " " << height << "\\n255\\n"; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { // Create a gradient based on position int r = static_cast(255.0 * x / width); int g = static_cast(255.0 * y / height); int b = static_cast(255.0 * (x + y) / (width + height)); // Write RGB values image << r << " " << g << " " << b << "\\n"; } } image.close(); std::cout << "Generated gradient image: output.ppm" << std::endl; return 0; }""", "Data Processing with Vectors": """#include #include #include #include #include #include int main() { const int data_size = 1000; // Generate random data std::vector data(data_size); std::random_device rd; std::mt19937 gen(rd()); std::normal_distribution dist(100.0, 15.0); std::cout << "Generating " << data_size << " random values..." << std::endl; for (auto& value : data) { value = dist(gen); } // Calculate statistics double sum = std::accumulate(data.begin(), data.end(), 0.0); double mean = sum / data.size(); std::vector deviations(data_size); std::transform(data.begin(), data.end(), deviations.begin(), [mean](double x) { return x - mean; }); double sq_sum = std::inner_product(deviations.begin(), deviations.end(), deviations.begin(), 0.0); double stddev = std::sqrt(sq_sum / data.size()); // Sort data std::sort(data.begin(), data.end()); double median = data.size() % 2 == 0 ? (data[data.size()/2 - 1] + data[data.size()/2]) / 2 : data[data.size()/2]; // Output results std::cout << std::fixed << std::setprecision(2); std::cout << "Data analysis results:" << std::endl; std::cout << "Mean: " << mean << std::endl; std::cout << "Median: " << median << std::endl; std::cout << "StdDev: " << stddev << std::endl; std::cout << "Min: " << data.front() << std::endl; std::cout << "Max: " << data.back() << std::endl; return 0; }""", "Interactive User Input": """#include #include #include int main() { std::string name; int age; // Get user input std::cout << "Enter your name: "; std::getline(std::cin, name); std::cout << "Enter your age: "; std::cin >> age; std::cin.ignore(); // Clear the newline from the buffer std::cout << "Hello, " << name << "! "; std::cout << "In 10 years, you will be " << age + 10 << " years old." << std::endl; // Get multiple numbers int num_count; std::cout << "How many numbers would you like to enter? "; std::cin >> num_count; std::vector numbers; double total = 0.0; for (int i = 0; i < num_count; i++) { double num; std::cout << "Enter number " << (i+1) << ": "; std::cin >> num; numbers.push_back(num); total += num; } if (!numbers.empty()) { double average = total / numbers.size(); std::cout << "The average of your numbers is: " << average << std::endl; } return 0; }""", "Eigen Matrix Operations": """#include #include using Eigen::MatrixXd; using Eigen::VectorXd; int main() { // Create a 3x3 matrix MatrixXd A(3, 3); A << 1, 2, 3, 4, 5, 6, 7, 8, 9; // Create a 3D vector VectorXd b(3); b << 1, 2, 3; // Perform operations std::cout << "Matrix A:\\n" << A << std::endl; std::cout << "Vector b:\\n" << b << std::endl; std::cout << "A * b:\\n" << A * b << std::endl; std::cout << "A transpose:\\n" << A.transpose() << std::endl; // Solve a linear system Ax = b VectorXd x = A.colPivHouseholderQr().solve(b); std::cout << "Solution to Ax = b:\\n" << x << std::endl; // Compute eigenvalues and eigenvectors Eigen::EigenSolver solver(A); std::cout << "Eigenvalues:\\n" << solver.eigenvalues() << std::endl; std::cout << "Eigenvectors:\\n" << solver.eigenvectors() << std::endl; return 0; }""", "OpenCV Image Processing": """#include #include int main() { // Load an image (this will create a blank image if no file is found) cv::Mat image = cv::Mat::zeros(500, 500, CV_8UC3); // Draw a circle cv::circle(image, cv::Point(250, 250), 100, cv::Scalar(0, 0, 255), 5); // Draw a rectangle cv::rectangle(image, cv::Point(150, 150), cv::Point(350, 350), cv::Scalar(0, 255, 0), 3); // Add text cv::putText(image, "OpenCV Example", cv::Point(100, 50), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2); // Save the image cv::imwrite("opencv_output.png", image); std::cout << "Image created and saved as 'opencv_output.png'" << std::endl; return 0; }""" } # Example selection selected_cpp_example = st.selectbox("Example code:", options=list(cpp_examples.keys())) # Set initial code from example or session state if selected_cpp_example != "Select an example..." and cpp_examples[selected_cpp_example] != "": initial_code = cpp_examples[selected_cpp_example] else: if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files: initial_code = st.session_state.cpp_project_files[st.session_state.cpp_current_file] else: initial_code = st.session_state.cpp_code # Code editor for C++ if ACE_EDITOR_AVAILABLE: cpp_code = st_ace( value=initial_code, language="c_cpp", theme="monokai", min_lines=15, key=f"cpp_editor_{st.session_state.editor_key}" ) else: cpp_code = st.text_area( "C/C++ Code", value=initial_code, height=400, key=f"cpp_textarea_{st.session_state.editor_key}" ) # Save the code to session state st.session_state.cpp_code = cpp_code # Update project files if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files: st.session_state.cpp_project_files[st.session_state.cpp_current_file] = cpp_code # Check for standard input in the code has_cin = "std::cin" in cpp_code or "cin" in cpp_code # Input values section if needed cpp_inputs = [] if has_cin: with st.expander("Input Values"): st.info("This program uses standard input. Please provide input values below:") num_inputs = st.number_input("Number of input lines:", min_value=1, max_value=10, value=1) for i in range(int(num_inputs)): cpp_input = st.text_input(f"Input line {i+1}:", key=f"cpp_input_{i}") cpp_inputs.append(cpp_input) with cpp_tabs[1]: # Project Files tab st.markdown("### Project Files") st.markdown("Manage multiple source files for your C/C++ project") # File selector cpp_current_file = st.selectbox( "Current File", options=list(st.session_state.cpp_project_files.keys()), index=list(st.session_state.cpp_project_files.keys()).index(st.session_state.cpp_current_file) if "cpp_current_file" in st.session_state else 0, key="cpp_file_selector" ) # Update the current file in session state st.session_state.cpp_current_file = cpp_current_file # Create new file form new_file_col1, new_file_col2 = st.columns([3, 1]) with new_file_col1: new_cpp_filename = st.text_input("New File Name", placeholder="e.g., utils.h, helper.cpp", key="new_cpp_file") with new_file_col2: if st.button("Add File", key="add_cpp_file"): if new_cpp_filename and new_cpp_filename not in st.session_state.cpp_project_files: # Add file extension if missing if not new_cpp_filename.endswith((".cpp", ".h", ".hpp", ".c", ".cc")): new_cpp_filename += ".cpp" # Create a template based on file type if new_cpp_filename.endswith((".h", ".hpp")): template = f"""#ifndef {new_cpp_filename.split('.')[0].upper()}_H #define {new_cpp_filename.split('.')[0].upper()}_H // Your header content here #endif // {new_cpp_filename.split('.')[0].upper()}_H """ else: template = f"""#include // Your implementation here """ st.session_state.cpp_project_files[new_cpp_filename] = template st.session_state.cpp_current_file = new_cpp_filename st.experimental_rerun() # File actions file_action_col1, file_action_col2 = st.columns(2) with file_action_col1: if st.button("Delete Current File", key="delete_cpp_file"): if cpp_current_file != "main.cpp" and cpp_current_file in st.session_state.cpp_project_files: del st.session_state.cpp_project_files[cpp_current_file] st.session_state.cpp_current_file = "main.cpp" st.experimental_rerun() else: st.error("Cannot delete main.cpp") with file_action_col2: if st.button("Download Project Files", key="download_cpp_project"): # Create a zip file with all project files with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp: with zipfile.ZipFile(tmp.name, 'w') as zipf: for filename, content in st.session_state.cpp_project_files.items(): # Add file to zip zipf.writestr(filename, content) # Download the zip file with open(tmp.name, "rb") as f: zip_data = f.read() st.download_button( label="Download ZIP", data=zip_data, file_name="cpp_project.zip", mime="application/zip" ) # Project structure visualization st.markdown("### Project Structure") # Group files by type headers = [] sources = [] others = [] for filename in st.session_state.cpp_project_files: if filename.endswith((".h", ".hpp")): headers.append(filename) elif filename.endswith((".cpp", ".c", ".cc")): sources.append(filename) else: others.append(filename) # Display structure st.markdown("#### Header Files") if headers: for header in sorted(headers): st.markdown(f"- `{header}`") else: st.markdown("No header files") st.markdown("#### Source Files") if sources: for source in sorted(sources): st.markdown(f"- `{source}`") else: st.markdown("No source files") if others: st.markdown("#### Other Files") for other in sorted(others): st.markdown(f"- `{other}`") with cpp_tabs[2]: # Libraries tab st.markdown("### Library Manager") st.markdown("Configure libraries and dependencies for your C/C++ project") # Common library selection common_libs = st.multiselect( "Common Libraries", options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL", "stb_image", "nlohmann_json", "fmt"], default=st.session_state.cpp_settings.get("libraries", []), key="cpp_common_libs" ) # Update libraries in settings st.session_state.cpp_settings["libraries"] = common_libs # Include paths st.markdown("#### Include Paths") include_paths = st.text_area( "Include Directories (one per line)", value="\n".join(st.session_state.cpp_settings.get("include_paths", [])), height=100, key="cpp_include_paths" ) # Update include paths in settings st.session_state.cpp_settings["include_paths"] = [path for path in include_paths.split("\n") if path.strip()] # Library paths st.markdown("#### Library Paths") library_paths = st.text_area( "Library Directories (one per line)", value="\n".join(st.session_state.cpp_settings.get("library_paths", [])), height=100, key="cpp_library_paths" ) # Update library paths in settings st.session_state.cpp_settings["library_paths"] = [path for path in library_paths.split("\n") if path.strip()] # Additional libraries st.markdown("#### Additional Libraries") additional_libs = st.text_area( "Additional Libraries (one per line, without -l prefix)", value="\n".join(st.session_state.cpp_settings.get("additional_libs", [])), height=100, key="cpp_additional_libs" ) # Update additional libraries in settings st.session_state.cpp_settings["additional_libs"] = [lib for lib in additional_libs.split("\n") if lib.strip()] # Library detection if st.button("Detect Installed Libraries", key="detect_libs"): with st.spinner("Detecting libraries..."): # This is a placeholder - in a real implementation, you'd scan the system detected_libs = [] # Check for Eigen try: result = subprocess.run( ["find", "/usr/include", "-name", "Eigen"], capture_output=True, text=True, timeout=5 ) if "Eigen" in result.stdout: detected_libs.append("Eigen") except: pass # Check for Boost try: result = subprocess.run( ["find", "/usr/include", "-name", "boost"], capture_output=True, text=True, timeout=5 ) if "boost" in result.stdout: detected_libs.append("Boost") except: pass # Check for OpenCV try: result = subprocess.run( ["pkg-config", "--exists", "opencv4"], capture_output=True, timeout=5 ) if result.returncode == 0: detected_libs.append("OpenCV") except: pass # Display detected libraries if detected_libs: st.success(f"Detected libraries: {', '.join(detected_libs)}") # Add to selected libraries if not already present for lib in detected_libs: if lib not in st.session_state.cpp_settings["libraries"]: st.session_state.cpp_settings["libraries"].append(lib) else: st.warning("No common libraries detected") with cpp_tabs[3]: # Build Settings tab st.markdown("### Build Configuration") # Build type build_type = st.radio( "Build Type", options=["Debug", "Release", "RelWithDebInfo"], index=1, # Default to Release key="cpp_build_type" ) # Update build type in settings st.session_state.cpp_settings["build_type"] = build_type # Advanced compiler flags st.markdown("#### Advanced Compiler Flags") advanced_flags = st.text_area( "Additional Compiler Flags", value=st.session_state.cpp_settings.get("advanced_flags", ""), height=100, key="cpp_advanced_flags" ) # Update advanced flags in settings st.session_state.cpp_settings["advanced_flags"] = advanced_flags # Preprocessor definitions st.markdown("#### Preprocessor Definitions") definitions = st.text_area( "Preprocessor Definitions (one per line)", value="\n".join(st.session_state.cpp_settings.get("definitions", [])), height=100, placeholder="Example:\nDEBUG\nVERSION=1.0\nUSE_FEATURE_X", key="cpp_definitions" ) # Update definitions in settings st.session_state.cpp_settings["definitions"] = [d for d in definitions.split("\n") if d.strip()] # Generate CMakeLists.txt if st.button("Generate CMakeLists.txt", key="gen_cmake"): # Create CMakeLists.txt content cmake_content = f"""cmake_minimum_required(VERSION 3.10) project(ManimCppProject) set(CMAKE_CXX_STANDARD {st.session_state.cpp_settings["std"].replace("c++", "")}) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_EXTENSIONS OFF) # Build type set(CMAKE_BUILD_TYPE {build_type}) # Preprocessor definitions """ # Add definitions for definition in st.session_state.cpp_settings.get("definitions", []): if "=" in definition: name, value = definition.split("=", 1) cmake_content += f'add_definitions(-D{name}="{value}")\n' else: cmake_content += f"add_definitions(-D{definition})\n" # Add include paths if st.session_state.cpp_settings.get("include_paths", []): cmake_content += "\n# Include directories\n" for path in st.session_state.cpp_settings["include_paths"]: cmake_content += f"include_directories({path})\n" # Add library paths if st.session_state.cpp_settings.get("library_paths", []): cmake_content += "\n# Library directories\n" for path in st.session_state.cpp_settings["library_paths"]: cmake_content += f"link_directories({path})\n" # Add common libraries if "Eigen" in st.session_state.cpp_settings.get("libraries", []): cmake_content += "\n# Eigen\n" cmake_content += "find_package(Eigen3 REQUIRED)\n" cmake_content += "include_directories(${EIGEN3_INCLUDE_DIR})\n" if "OpenCV" in st.session_state.cpp_settings.get("libraries", []): cmake_content += "\n# OpenCV\n" cmake_content += "find_package(OpenCV REQUIRED)\n" cmake_content += "include_directories(${OpenCV_INCLUDE_DIRS})\n" if "Boost" in st.session_state.cpp_settings.get("libraries", []): cmake_content += "\n# Boost\n" cmake_content += "find_package(Boost REQUIRED)\n" cmake_content += "include_directories(${Boost_INCLUDE_DIRS})\n" # Add source files cmake_content += "\n# Source files\n" source_files = [f for f in st.session_state.cpp_project_files.keys() if f.endswith((".cpp", ".c", ".cc"))] cmake_content += "add_executable(main\n" for src in source_files: cmake_content += f" {src}\n" cmake_content += ")\n" # Add libraries to link cmake_content += "\n# Link libraries\n" cmake_content += "target_link_libraries(main\n" if "OpenCV" in st.session_state.cpp_settings.get("libraries", []): cmake_content += " ${OpenCV_LIBS}\n" if "Boost" in st.session_state.cpp_settings.get("libraries", []): cmake_content += " ${Boost_LIBRARIES}\n" # Additional libraries for lib in st.session_state.cpp_settings.get("additional_libs", []): cmake_content += f" {lib}\n" cmake_content += ")\n" # Save CMakeLists.txt to project files st.session_state.cpp_project_files["CMakeLists.txt"] = cmake_content # Show the generated file st.success("CMakeLists.txt generated!") st.code(cmake_content, language="cmake") with cpp_tabs[4]: # Debugger tab st.markdown("### C++ Debugger") st.markdown("Debug your C++ code with breakpoints and variable inspection") # Enable debugging enable_cpp_debug = st.checkbox("Enable Debugging", value=False, key="cpp_debug_enable") if enable_cpp_debug: # Breakpoints st.markdown("#### Breakpoints") st.markdown("Enter line numbers for breakpoints (one per line)") breakpoints = st.text_area( "Breakpoints", placeholder="Example:\n10\n15\n20", height=100, key="cpp_breakpoints" ) breakpoint_lines = [] for line in breakpoints.split("\n"): try: line_num = int(line.strip()) if line_num > 0: breakpoint_lines.append(line_num) except: pass # Watch variables st.markdown("#### Watch Variables") st.markdown("Enter variable names to watch (one per line)") watch_vars = st.text_area( "Watch Variables", placeholder="Example:\ni\nsum\nresult", height=100, key="cpp_watch_vars" ) watch_variables = [var.strip() for var in watch_vars.split("\n") if var.strip()] # Compilation and execution options st.markdown("### Run Configuration") run_options_col1, run_options_col2 = st.columns(2) with run_options_col1: cpp_timeout = st.slider("Execution Timeout (seconds)", 1, 60, 10) with run_options_col2: compile_btn = st.button("đŸ› ī¸ Compile and Run", use_container_width=True) # Compile and run the C++ code if compile_btn: with st.spinner("Compiling C++ code..."): cpp_code_to_compile = st.session_state.cpp_code if "cpp_project_files" in st.session_state and st.session_state.cpp_project_files: # Use project files executable_path, compile_error, temp_dir = compile_cpp_code_enhanced( cpp_code_to_compile, st.session_state.cpp_settings, project_files=st.session_state.cpp_project_files, enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False, breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None, watch_vars=watch_variables if "watch_variables" in locals() else None ) else: # Use single file executable_path, compile_error, temp_dir = compile_cpp_code_enhanced( cpp_code_to_compile, st.session_state.cpp_settings, enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False, breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None, watch_vars=watch_variables if "watch_variables" in locals() else None ) if compile_error: st.error("Compilation Error:") st.code(compile_error, language="bash") else: st.success("Compilation successful!") with st.spinner("Running program..."): result = run_cpp_executable_enhanced( executable_path, temp_dir, inputs=cpp_inputs if "cpp_inputs" in locals() else None, timeout=cpp_timeout, enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False, breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None, watch_vars=watch_variables if "watch_variables" in locals() else None ) st.session_state.cpp_result = result # Display results if "cpp_result" in st.session_state and st.session_state.cpp_result: result = st.session_state.cpp_result st.markdown("### Results") # Execution information info_cols = st.columns(3) with info_cols[0]: st.info(f"Execution Time: {result['execution_time']:.3f} seconds") with info_cols[1]: if result.get("memory_usage"): st.info(f"Memory Usage: {result['memory_usage']:.2f} MB") with info_cols[2]: if result["exception"]: st.error(f"Exception: {result['exception']}") # Show debug output if available if result.get("debug_output"): with st.expander("Debug Output", expanded=True): st.code(result["debug_output"], language="bash") # Result tabs result_tabs = st.tabs(["Output", "Images", "Manim Integration"]) with result_tabs[0]: # Output tab # Show stdout if any if result["stdout"]: st.markdown("#### Standard Output") st.code(result["stdout"], language="bash") # Show stderr if any if result["stderr"]: st.markdown("#### Standard Error") st.code(result["stderr"], language="bash") with result_tabs[1]: # Images tab # Show images if any if result["images"]: st.markdown("#### Generated Images") img_cols = st.columns(min(3, len(result["images"]))) for i, img in enumerate(result["images"]): with img_cols[i % len(img_cols)]: st.image(img["data"], caption=img["name"]) else: st.info("No images were generated by the program.") with result_tabs[2]: # Manim Integration tab st.markdown("#### Integrate C++ Results with Manim") # Create options for integration integration_type = st.radio( "Integration Type", options=["Data Visualization", "Image Import", "Animation Sequence"], key="cpp_integration_type" ) if integration_type == "Data Visualization": # Extract numerical data from stdout if possible lines = result["stdout"].strip().split("\n") data_options = [] for i, line in enumerate(lines): # Check if line contains numbers numbers = [] try: # Try to extract numbers from the line numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()] if numbers: data_options.append(f"Line {i+1}: {line[:30]}{'...' if len(line) > 30 else ''}") except: pass if data_options: selected_data_line = st.selectbox( "Select Data to Visualize", options=["Select a line..."] + data_options, key="cpp_data_line" ) if selected_data_line != "Select a line...": line_idx = int(selected_data_line.split(":")[0].replace("Line ", "")) - 1 line = lines[line_idx] # Extract numbers try: numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()] # Preview the data st.markdown(f"**Extracted Data:** {numbers}") # Create visualization code if st.button("Create Manim Visualization", key="cpp_create_viz"): viz_code = f""" # Visualize data from C++ output values = {numbers} axes = Axes( x_range=[0, {len(numbers)}, 1], y_range=[{min(numbers) if numbers else 0}, {max(numbers) if numbers else 10}, {(max(numbers)-min(numbers))/10 if numbers and max(numbers) > min(numbers) else 1}], axis_config={{"color": BLUE}} ) points = [axes.coords_to_point(i, v) for i, v in enumerate(values)] dots = VGroup(*[Dot(point, color=RED) for point in points]) graph = VMobject(color=YELLOW) graph.set_points_as_corners(points) self.play(Create(axes)) self.play(Create(dots), run_time=2) self.play(Create(graph), run_time=2) self.wait(1) """ if st.session_state.code: st.session_state.code += "\n" + viz_code else: st.session_state.code = f"""from manim import * class CppDataVisualizationScene(Scene): def construct(self): {viz_code} """ st.session_state.temp_code = st.session_state.code st.success("Added C++ data visualization to your Manim code!") # Set pending tab switch to editor tab st.session_state.pending_tab_switch = 0 st.rerun() except Exception as e: st.error(f"Error extracting numbers: {str(e)}") else: st.warning("No numeric data detected in the output.") elif integration_type == "Image Import": # Handle image import if result["images"]: st.markdown("#### Select Images to Import") for i, img in enumerate(result["images"]): st.markdown(f"**{img['name']}**") st.image(img["data"], width=300) if st.button(f"Use in Manim", key=f"use_cpp_img_{i}"): # Save image to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{img['name']}") as tmp: tmp.write(img["data"]) img_path = tmp.name # Generate Manim code image_code = f""" # Load and display image generated from C++ cpp_image = ImageMobject(r"{img_path}") cpp_image.scale(2) # Adjust size as needed self.play(FadeIn(cpp_image)) self.wait(1) """ if st.session_state.code: st.session_state.code += "\n" + image_code else: st.session_state.code = f"""from manim import * class CppImageScene(Scene): def construct(self): {image_code} """ st.session_state.temp_code = st.session_state.code st.success(f"Added C++ generated image to your Manim code!") st.session_state.pending_tab_switch = 0 # Switch to editor tab st.rerun() else: st.warning("No images were generated by the C++ program.") elif integration_type == "Animation Sequence": st.markdown("#### Create Animation Sequence") st.info("This will create a Manim animation that visualizes the execution of your C++ program.") # Animation type options animation_style = st.selectbox( "Animation Style", options=["Algorithm Visualization", "Data Flow", "Memory Model"], key="cpp_anim_style" ) if st.button("Generate Animation Sequence", key="cpp_gen_anim_seq"): # Create different animations based on selected style if animation_style == "Algorithm Visualization": # Example code for algorithm visualization algo_code = f""" # C++ Algorithm Visualization title = Text("C++ Algorithm Visualization") self.play(Write(title)) self.play(title.animate.to_edge(UP)) self.wait(0.5) # Create an array representation values = [5, 2, 8, 1, 9, 3, 7, 4, 6] # Example values squares = VGroup(*[Square(side_length=0.7, fill_opacity=0.8, fill_color=BLUE) for _ in values]) squares.arrange(RIGHT, buff=0.1) labels = VGroup(*[Text(str(v), font_size=24) for v in values]) for label, square in zip(labels, squares): label.move_to(square.get_center()) array = VGroup(squares, labels) array_label = Text("Array", font_size=20).next_to(array, UP) self.play(FadeIn(array), Write(array_label)) self.wait(1) # Simulate sorting algorithm for i in range(len(values)-1): # Highlight current element self.play(squares[i].animate.set_fill(RED)) for j in range(i+1, len(values)): # Highlight comparison element self.play(squares[j].animate.set_fill(YELLOW)) # Simulate comparison if values[i] > values[j]: # Swap animation self.play( labels[i].animate.move_to(squares[j].get_center()), labels[j].animate.move_to(squares[i].get_center()) ) # Update values and labels labels[i], labels[j] = labels[j], labels[i] values[i], values[j] = values[j], values[i] # Reset comparison element self.play(squares[j].animate.set_fill(BLUE)) # Mark current element as processed self.play(squares[i].animate.set_fill(GREEN)) # Mark the last element as processed self.play(squares[-1].animate.set_fill(GREEN)) # Show sorted array sorted_label = Text("Sorted Array", font_size=20).next_to(array, DOWN) self.play(Write(sorted_label)) self.wait(2) """ if st.session_state.code: st.session_state.code += "\n" + algo_code else: st.session_state.code = f"""from manim import * class CppAlgorithmScene(Scene): def construct(self): {algo_code} """ st.session_state.temp_code = st.session_state.code st.success("Added C++ algorithm visualization to your Manim code!") st.session_state.pending_tab_switch = 0 # Switch to editor tab st.rerun() elif animation_style == "Data Flow": # Example code for data flow visualization data_flow_code = f""" # C++ Data Flow Visualization title = Text("C++ Data Flow") self.play(Write(title)) self.play(title.animate.to_edge(UP)) self.wait(0.5) # Create nodes for data flow input_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=BLUE) process_node = Square(side_length=1, fill_opacity=0.8, fill_color=GREEN) output_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=RED) # Position nodes input_node.move_to(LEFT*4) process_node.move_to(ORIGIN) output_node.move_to(RIGHT*4) # Add labels input_label = Text("Input", font_size=20).next_to(input_node, DOWN) process_label = Text("Process", font_size=20).next_to(process_node, DOWN) output_label = Text("Output", font_size=20).next_to(output_node, DOWN) # Create arrows arrow1 = Arrow(input_node.get_right(), process_node.get_left(), buff=0.2) arrow2 = Arrow(process_node.get_right(), output_node.get_left(), buff=0.2) # Display nodes and arrows self.play(FadeIn(input_node), Write(input_label)) self.wait(0.5) self.play(FadeIn(process_node), Write(process_label)) self.wait(0.5) self.play(FadeIn(output_node), Write(output_label)) self.wait(0.5) self.play(Create(arrow1), Create(arrow2)) self.wait(1) # Simulate data flow data = Text("Data", font_size=16).move_to(input_node.get_center()) self.play(FadeIn(data)) self.wait(0.5) # Move data along the flow self.play(data.animate.move_to(arrow1.get_center())) self.wait(0.5) self.play(data.animate.move_to(process_node.get_center())) self.wait(0.5) transformed_data = Text("Processed", font_size=16, color=YELLOW) transformed_data.move_to(process_node.get_center()) self.play(Transform(data, transformed_data)) self.wait(0.5) self.play(data.animate.move_to(arrow2.get_center())) self.wait(0.5) self.play(data.animate.move_to(output_node.get_center())) self.wait(1) result_text = Text("Final Result", font_size=24).to_edge(DOWN) self.play(Write(result_text)) self.wait(2) """ if st.session_state.code: st.session_state.code += "\n" + data_flow_code else: st.session_state.code = f"""from manim import * class CppDataFlowScene(Scene): def construct(self): {data_flow_code} """ st.session_state.temp_code = st.session_state.code st.success("Added C++ data flow visualization to your Manim code!") st.session_state.pending_tab_switch = 0 # Switch to editor tab st.rerun() elif animation_style == "Memory Model": # Example code for memory model visualization memory_code = f""" # C++ Memory Model Visualization title = Text("C++ Memory Model") self.play(Write(title)) self.play(title.animate.to_edge(UP)) self.wait(0.5) # Create memory blocks stack_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=BLUE) stack_rect.move_to(LEFT*3.5) stack_label = Text("Stack", font_size=20).next_to(stack_rect, UP) heap_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=RED) heap_rect.move_to(RIGHT*3.5) heap_label = Text("Heap", font_size=20).next_to(heap_rect, UP) # Display memory areas self.play( Create(stack_rect), Write(stack_label), Create(heap_rect), Write(heap_label) ) self.wait(1) # Create variables on the stack int_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_C) int_var.move_to(stack_rect.get_center() + UP*1) int_label = Text("int x = 5", font_size=16).next_to(int_var, RIGHT) pointer_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_D) pointer_var.move_to(stack_rect.get_center()) pointer_label = Text("int* ptr", font_size=16).next_to(pointer_var, RIGHT) # Display stack variables self.play(FadeIn(int_var), Write(int_label)) self.wait(0.5) self.play(FadeIn(pointer_var), Write(pointer_label)) self.wait(1) # Create heap allocation heap_alloc = Rectangle(height=0.8, width=2, fill_opacity=0.8, fill_color=RED_C) heap_alloc.move_to(heap_rect.get_center() + UP*0.5) heap_label = Text("new int[4]", font_size=16).next_to(heap_alloc, LEFT) # Display heap allocation self.play(FadeIn(heap_alloc), Write(heap_label)) self.wait(1) # Create arrow from pointer to heap arrow = Arrow(pointer_var.get_right(), heap_alloc.get_left(), buff=0.2, color=YELLOW) self.play(Create(arrow)) self.wait(0.5) # Simulate pointer assignment assign_text = Text("ptr = new int[4]", font_size=24).to_edge(DOWN) self.play(Write(assign_text)) self.wait(1) # Simulate memory deallocation delete_text = Text("delete[] ptr", font_size=24).to_edge(DOWN) self.play(Transform(assign_text, delete_text)) self.play(FadeOut(arrow), FadeOut(heap_alloc), FadeOut(heap_label)) self.wait(1) # Simulate end of scope end_scope = Text("End of scope", font_size=24).to_edge(DOWN) self.play(Transform(assign_text, end_scope)) self.play(FadeOut(int_var), FadeOut(int_label), FadeOut(pointer_var), FadeOut(pointer_label)) self.wait(2) """ if st.session_state.code: st.session_state.code += "\n" + memory_code else: st.session_state.code = f"""from manim import * class CppMemoryModelScene(Scene): def construct(self): {memory_code} """ st.session_state.temp_code = st.session_state.code st.success("Added C++ memory model visualization to your Manim code!") st.session_state.pending_tab_switch = 0 # Switch to editor tab st.rerun() # C++ Information and tips with st.expander("C/C++ Runner Information"): st.markdown(""" ### C/C++ Runner Tips **Compilation Options:** - Choose the appropriate compiler based on your platform - Select the C++ standard version for your code - Optimization levels affect performance and debugging **Library Support:** - Common libraries like Eigen, OpenCV, and Boost are supported - Add custom include paths and library paths as needed - Use the library detection feature to find installed libraries **Input/Output:** - Standard input/output (cin/cout) is fully supported - File I/O works within the execution directory - For interactive programs, provide input values in advance **Debugging:** - Set breakpoints at specific line numbers - Watch variables to track their values - Debug with GDB for detailed analysis **Project Management:** - Create multi-file projects with headers and source files - Generate CMakeLists.txt for complex projects - Download project files as a ZIP archive **Images and Visualization:** - Generate images in PPM, PNG, JPG formats - Use OpenCV for more advanced image processing - All generated images can be used in Manim animations **Manim Integration:** - Create algorithm visualizations from C++ code - Import C++ generated images into Manim scenes - Visualize data structures and memory models **Performance:** - Use release mode for best performance - Profile your code to identify bottlenecks - C++ is ideal for computationally intensive tasks """) # Help section with st.sidebar.expander("â„šī¸ Help & Info"): st.markdown(""" ### About Manim Animation Studio This app allows you to create mathematical animations using Manim, an animation engine for explanatory math videos. ### Example Code ```python from manim import * class SimpleExample(Scene): def construct(self): circle = Circle(color=BLUE) self.play(Create(circle)) square = Square(color=RED).next_to(circle, RIGHT) self.play(Create(square)) text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN) self.play(Write(text)) self.wait(2) ``` """) # Handle tab switching with session state to prevent refresh loop if st.session_state.pending_tab_switch is not None: st.session_state.active_tab = st.session_state.pending_tab_switch st.session_state.pending_tab_switch = None # Set tabs active state for i, tab in enumerate(tabs): if i == st.session_state.active_tab: tab.active = True # Mark first load as complete to prevent unnecessary refreshes if not st.session_state.first_load_complete: st.session_state.first_load_complete = True if __name__ == "__main__": main()