import streamlit as st import tempfile import os import logging from pathlib import Path from PIL import Image import io import numpy as np import sys import subprocess import json from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter import base64 from transformers import pipeline import torch import re import shutil import time from datetime import datetime, timedelta import streamlit.components.v1 as components import uuid import platform import pandas as pd import plotly.express as px import markdown import zipfile import contextlib import threading import traceback from io import StringIO, BytesIO # Set up enhanced logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler() ] ) logger = logging.getLogger(__name__) # Model configuration mapping for different API requirements and limits MODEL_CONFIGS = { "DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, "DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, "Llama-4-Scout-17B-16E-Instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None}, "Llama-4-Maverick-17B-128E-Instruct-FP8": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None}, "gpt-4o-mini": {"max_tokens": 15000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "o4-mini": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None}, "o1": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None}, "o1-mini": {"max_completion_tokens": 66000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None}, "o1-preview": {"max_tokens": 33000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None}, "Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft", "warning": None}, "Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None}, "Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None}, # Default configuration for other models "default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None} } # Try to import Streamlit Ace try: from streamlit_ace import st_ace ACE_EDITOR_AVAILABLE = True except ImportError: ACE_EDITOR_AVAILABLE = False logger.warning("streamlit-ace not available, falling back to standard text editor") def prepare_api_params(messages, model_name): """Create appropriate API parameters based on model configuration""" config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"]) api_params = { "messages": messages, "model": model_name } token_param = config["param_name"] api_params[token_param] = config.get(token_param) return api_params, config def get_secret(env_var): """Retrieve a secret from environment variables""" val = os.environ.get(env_var) if not val: logger.warning(f"Secret '{env_var}' not found") return val def check_password(): """Verify password entered against secret""" correct = get_secret("password") if not correct: st.error("Admin password not configured") return False if "password_entered" not in st.session_state: st.session_state.password_entered = False if not st.session_state.password_entered: pwd = st.text_input("Enter password to access AI features", type="password") if pwd: if pwd == correct: st.session_state.password_entered = True return True else: st.error("Incorrect password") return False return False return True def ensure_packages(): required = { 'manim': '0.17.3', 'Pillow': '9.0.0', 'numpy': '1.22.0', 'transformers': '4.30.0', 'torch': '2.0.0', 'pygments': '2.15.1', 'streamlit-ace': '0.1.1', 'pydub': '0.25.1', 'plotly': '5.14.0', 'pandas': '2.0.0', 'python-pptx': '0.6.21', 'markdown': '3.4.3', 'fpdf': '1.7.2', 'matplotlib': '3.5.0', 'seaborn': '0.11.2', 'scipy': '1.7.3', 'huggingface_hub': '0.16.0', } missing = {} for pkg, ver in required.items(): try: __import__(pkg if pkg != 'Pillow' else 'PIL') except ImportError: missing[pkg] = ver if not missing: return True bar = st.progress(0) txt = st.empty() for i, (pkg, ver) in enumerate(missing.items()): bar.progress(i / len(missing)) txt.text(f"Installing {pkg}...") res = subprocess.run([sys.executable, "-m", "pip", "install", f"{pkg}>={ver}"], capture_output=True, text=True) if res.returncode != 0: st.error(f"Failed to install {pkg}") return False bar.progress(1.0) txt.empty() return True def install_custom_packages(pkgs): if not pkgs.strip(): return True, "No packages specified" parts = [p.strip() for p in pkgs.split(",") if p.strip()] if not parts: return True, "No valid packages" sidebar_txt = st.sidebar.empty() bar = st.sidebar.progress(0) results = [] success = True for i, p in enumerate(parts): bar.progress(i / len(parts)) sidebar_txt.text(f"Installing {p}...") res = subprocess.run([sys.executable, "-m", "pip", "install", p], capture_output=True, text=True) if res.returncode != 0: results.append(f"Failed {p}: {res.stderr}") success = False else: results.append(f"Installed {p}") bar.progress(1.0) sidebar_txt.empty() return success, "\n".join(results) @st.cache_resource(ttl=3600) def init_ai_models_direct(): token = get_secret("github_token_api") if not token: st.error("API token not configured") return None try: from azure.ai.inference import ChatCompletionsClient from azure.ai.inference.models import UserMessage from azure.core.credentials import AzureKeyCredential client = ChatCompletionsClient( endpoint="https://models.inference.ai.azure.com", credential=AzureKeyCredential(token) ) return {"client": client, "model_name": "gpt-4o", "last_loaded": datetime.now().isoformat()} except ImportError as e: st.error("Azure AI SDK not installed") logger.error(str(e)) return None def generate_manim_preview(python_code): scene_objects = [] if "Circle" in python_code: scene_objects.append("circle") if "Square" in python_code: scene_objects.append("square") if "MathTex" in python_code or "Tex" in python_code: scene_objects.append("equation") if "Text" in python_code: scene_objects.append("text") if "Axes" in python_code: scene_objects.append("graph") icons = {"circle":"⭕","square":"🔲","equation":"📊","text":"📝","graph":"📈"} icon_html = "".join(f'{icons[o]}' for o in scene_objects if o in icons) html = f"""

Animation Preview

{icon_html or '🎬'}

Contains: {', '.join(scene_objects) or 'none'}

Full rendering required for accurate preview

""" return html def extract_scene_class_name(python_code): names = re.findall(r'class\s+(\w+)\s*\([^)]*Scene', python_code) return names[0] if names else "MyScene" def mp4_to_gif(mp4, out, fps=15): cmd = [ "ffmpeg","-i",mp4, "-vf",f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse", "-loop","0",out ] r = subprocess.run(cmd, capture_output=True, text=True) return out if r.returncode==0 else None def generate_manim_video(code, format_type, quality_preset, speed=1.0, audio_path=None): temp_dir = tempfile.mkdtemp(prefix="manim_") scene_class = extract_scene_class_name(code) file_py = os.path.join(temp_dir, "scene.py") with open(file_py, "w", encoding="utf-8") as f: f.write(code) quality_flags = {"480p":"-ql","720p":"-qm","1080p":"-qh","4K":"-qk","8K":"-qp"} qf = quality_flags.get(quality_preset, "-qm") fmt_arg = f"--format={format_type}" cmd = ["manim", file_py, scene_class, qf, fmt_arg] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) output = [] out_path = None mp4_path = None bar = st.empty() log = st.empty() while True: line = proc.stdout.readline() if not line and proc.poll() is not None: break if line: output.append(line) log.code("".join(output[-10:])) if "File ready at" in line: m = re.search(r'([\'"])?(.+?\.(?:mp4|gif|webm|svg))\1', line) if m: out_path = m.group(2) if out_path.endswith(".mp4"): mp4_path = out_path proc.wait() time.sleep(1) data = None if format_type=="gif" and (not out_path or not os.path.exists(out_path)) and mp4_path and os.path.exists(mp4_path): gif = os.path.join(temp_dir, scene_class+"_conv.gif") conv = mp4_to_gif(mp4_path, gif) if conv and os.path.exists(conv): out_path = conv if out_path and os.path.exists(out_path): with open(out_path,"rb") as f: data = f.read() shutil.rmtree(temp_dir) if data: return data, f"✅ Generated successfully ({len(data)/(1024*1024):.1f} MB)" else: return None, "❌ No output generated. Check logs." def detect_input_calls(code): calls = [] for i, line in enumerate(code.split("\n"),1): if "input(" in line and not line.strip().startswith("#"): m = re.search(r'input\(["\'](.+?)["\']\)', line) prompt = m.group(1) if m else f"Input at line {i}" calls.append({"line":i,"prompt":prompt}) return calls def run_python_script(code, inputs=None, timeout=60): result = {"stdout":"","stderr":"","exception":None,"plots":[],"dataframes":[],"execution_time":0} mod = "" if inputs: mod = f""" __INPUTS={inputs} __IDX=0 def input(prompt=''): global __IDX print(prompt,end='') if __IDX", unsafe_allow_html=True) components.html(generate_manim_preview(st.session_state.code), height=250) st.markdown("", unsafe_allow_html=True) if st.session_state.video_data: fmt=st.session_state.settings["format_type"] if fmt=="png_sequence": st.download_button("⬇️ Download PNG ZIP", data=st.session_state.video_data, file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip", mime="application/zip") elif fmt=="svg": try: svg=st.session_state.video_data.decode('utf-8') components.html(svg, height=400) except: st.error("Cannot display SVG") st.download_button("⬇️ Download SVG", data=st.session_state.video_data, file_name="animation.svg", mime="image/svg+xml") else: st.video(st.session_state.video_data, format=fmt) st.download_button(f"⬇️ Download {fmt.upper()}", st.session_state.video_data, file_name=f"animation.{fmt}", mime=f"video/{fmt}" if fmt!="gif" else "image/gif") if st.session_state.status: if "Error" in st.session_state.status: st.error(st.session_state.status) else: st.success(st.session_state.status) # AI Assistant Tab with tabs[1]: st.markdown("### 🤖 AI Animation Assistant") if check_password(): client_data = init_ai_models_direct() if client_data: if st.button("Test API Connection"): with st.spinner("Testing..."): from azure.ai.inference.models import UserMessage api_params,_=prepare_api_params([UserMessage("Hello")], client_data["model_name"]) resp=client_data["client"].complete(**api_params) if resp.choices: st.success("✅ Connection successful!") st.session_state.ai_models=client_data else: st.error("❌ No response") if st.session_state.ai_models: st.info(f"Using model {st.session_state.ai_models['model_name']}") prompt = st.text_area("Describe animation or paste partial code", height=150) if st.button("Generate Animation Code"): if prompt.strip(): from azure.ai.inference.models import UserMessage api_params,_=prepare_api_params([UserMessage(f"Write a complete Manim scene for:\n{prompt}")], st.session_state.ai_models["model_name"]) resp=st.session_state.ai_models["client"].complete(**api_params) if resp.choices: code = resp.choices[0].message.content if "```python" in code: code=code.split("```python")[1].split("```")[0] st.session_state.generated_code=code else: st.error("No code generated") else: st.warning("Enter prompt first") if st.session_state.generated_code: st.code(st.session_state.generated_code, language="python") if st.button("Use This Code"): st.session_state.code=st.session_state.generated_code st.session_state.temp_code=st.session_state.generated_code st.session_state.pending_tab_switch=0 st.rerun() else: st.info("Enter password to access") # LaTeX Formulas Tab with tabs[2]: st.markdown("### 📚 LaTeX Formula Builder") col1,col2=st.columns([3,2]) with col1: latex_input = st.text_area("LaTeX Formula", value=st.session_state.latex_formula, height=100, placeholder=r"e^{i\pi}+1=0") st.session_state.latex_formula=latex_input if latex_input: manim_latex_code = f""" # LaTeX formula formula = MathTex(r"{latex_input}") self.play(Write(formula)) self.wait(2) """ st.code(manim_latex_code, language="python") if st.button("Insert into Editor"): if st.session_state.code: if "def construct(self):" in st.session_state.code: lines=st.session_state.code.split("\n") idx=-1 for i,l in enumerate(lines): if "def construct(self):" in l: idx=i; break if idx>=0: for j in range(idx+1,len(lines)): if lines[j].strip() and not lines[j].strip().startswith("#"): indent=re.match(r"(\s*)",lines[j]).group(1) new_block="\n".join(indent+ln for ln in manim_latex_code.strip().split("\n")) lines.insert(j,new_block) break else: lines.append(" "+ "\n ".join(manim_latex_code.strip().split("\n"))) st.session_state.code="\n".join(lines) st.session_state.temp_code=st.session_state.code st.success("Inserted LaTeX into editor") st.session_state.pending_tab_switch=0 st.rerun() else: st.warning("No construct() found") else: basic_scene = f"""from manim import * class LatexScene(Scene): def construct(self): # LaTeX formula formula = MathTex(r"{latex_input}") self.play(Write(formula)) self.wait(2) """ st.session_state.code=basic_scene st.session_state.temp_code=basic_scene st.success("Created new scene with LaTeX") st.session_state.pending_tab_switch=0 st.rerun() with col2: components.html(render_latex_preview(latex_input), height=300) # Assets Tab with tabs[3]: st.markdown("### 🎨 Asset Management") c1,c2 = st.columns(2) with c1: imgs=st.file_uploader("Upload Images", type=["png","jpg","jpeg","svg"], accept_multiple_files=True) if imgs: img_dir=os.path.join(os.getcwd(),"manim_assets","images") os.makedirs(img_dir, exist_ok=True) for up in imgs: ext=up.name.split(".")[-1] fname=f"img_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}" path=os.path.join(img_dir,fname) with open(path,"wb") as f: f.write(up.getvalue()) st.session_state.image_paths.append({"name":up.name,"path":path}) if st.session_state.image_paths: for info in st.session_state.image_paths: img=Image.open(info["path"]) st.image(img, caption=info["name"], width=100) if st.button(f"Use {info['name']}"): code_snippet=f""" # Image asset image = ImageMobject(r"{info['path']}") image.scale(2) self.play(FadeIn(image)) self.wait(1) """ st.session_state.code+=code_snippet st.session_state.temp_code=st.session_state.code st.success(f"Added {info['name']} to code") st.session_state.pending_tab_switch=0 st.rerun() with c2: aud=st.file_uploader("Upload Audio", type=["mp3","wav","ogg"]) if aud: adir=os.path.join(os.getcwd(),"manim_assets","audio") os.makedirs(adir,exist_ok=True) ext=aud.name.split(".")[-1] aname=f"audio_{int(time.time())}.{ext}" ap=os.path.join(adir,aname) with open(ap,"wb") as f: f.write(aud.getvalue()) st.session_state.audio_path=ap st.audio(aud) st.success("Audio uploaded") # Timeline Tab with tabs[4]: st.markdown("### 🎞️ Timeline Editor") st.info("Drag and adjust steps in code directly for now.") # Educational Export Tab with tabs[5]: st.markdown("### 🎓 Educational Export") if not st.session_state.video_data: st.warning("Generate an animation first") else: title = st.text_input("Title", "Manim Animation") expl = st.text_area("Explanation (use ## to separate steps)", height=150) fmt = st.selectbox("Format", ["PowerPoint","HTML","PDF Sequence"]) if st.button("Export"): # Simplified, reuse generate_manim_video logic or placeholder st.success(f"{fmt} export not yet implemented.") # Python Runner Tab with tabs[6]: st.markdown("### 🐍 Python Script Runner") examples = { "Select...":"", "Sine Plot":"""import matplotlib.pyplot as plt import numpy as np x=np.linspace(0,10,100) y=np.sin(x) plt.plot(x,y) print("Done plotting")""" } sel=st.selectbox("Example", list(examples.keys())) code = examples.get(sel, st.session_state.python_script) if ACE_EDITOR_AVAILABLE: code = st_ace(value=code, language="python", theme="monokai", min_lines=15, key="pyace") else: code = st.text_area("Code", code, height=300, key="pyta") st.session_state.python_script=code inputs = detect_input_calls(code) vals=[] if inputs: st.info(f"{len(inputs)} input() calls detected") for i,c in enumerate(inputs): vals.append(st.text_input(f"{c['prompt']} (line {c['line']})", key=f"inp{i}")) timeout = st.slider("Timeout", 5,300,30) if st.button("▶️ Run"): res=run_python_script(code, inputs=vals, timeout=timeout) st.session_state.python_result=res if st.session_state.python_result: display_python_script_results(st.session_state.python_result) # Handle tab switch after actions if st.session_state.pending_tab_switch is not None: st.session_state.active_tab = st.session_state.pending_tab_switch st.session_state.pending_tab_switch=None if __name__ == "__main__": main()