import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import torch
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
# New functions for accessing secrets and password verification
def get_secret(github_token_api):
"""Retrieve a secret from HuggingFace Spaces environment variables"""
secret_value = os.environ.get(github_token_api)
if not secret_value:
logger.warning(f"Secret '{github_token_api}' not found")
return None
return secret_value
def check_password():
"""Returns True if the user entered the correct password"""
# Get the password from secrets
correct_password = get_secret("password")
if not correct_password:
st.error("Admin password not configured in HuggingFace Spaces secrets")
return False
# Password input
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
password = st.text_input("Enter password to access AI features", type="password")
if password:
if password == correct_password:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required_packages = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1', # For audio processing
'plotly': '5.14.0', # For timeline editor
'pandas': '2.0.0', # For data manipulation
'python-pptx': '0.6.21', # For PowerPoint export
'markdown': '3.4.3', # For markdown processing
'fpdf': '1.7.2', # For PDF generation
'matplotlib': '3.5.0', # For Python script runner
'seaborn': '0.11.2', # For enhanced visualizations
'scipy': '1.7.3', # For scientific computations
'huggingface_hub': '0.16.0', # For Hugging Face API
}
with st.spinner("Checking required packages..."):
# First, quickly check if packages are already installed
missing_packages = {}
for package, version in required_packages.items():
try:
# Try to import the package to check if it's available
if package == 'manim':
import manim
elif package == 'Pillow':
import PIL
elif package == 'numpy':
import numpy
elif package == 'transformers':
import transformers
elif package == 'torch':
import torch
elif package == 'pygments':
import pygments
elif package == 'streamlit-ace':
# This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
pass
elif package == 'pydub':
import pydub
elif package == 'plotly':
import plotly
elif package == 'pandas':
import pandas
elif package == 'python-pptx':
import pptx
elif package == 'markdown':
import markdown
elif package == 'fpdf':
import fpdf
elif package == 'matplotlib':
import matplotlib
elif package == 'seaborn':
import seaborn
elif package == 'scipy':
import scipy
elif package == 'huggingface_hub':
import huggingface_hub
except ImportError:
missing_packages[package] = version
# If no packages are missing, return success immediately
if not missing_packages:
logger.info("All required packages already installed.")
return True
# If there are missing packages, install them with progress reporting
progress_bar = st.progress(0)
status_text = st.empty()
for i, (package, version) in enumerate(missing_packages.items()):
try:
progress = (i / len(missing_packages))
progress_bar.progress(progress)
status_text.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", f"{package}>={version}"],
capture_output=True,
text=True
)
if result.returncode != 0:
st.error(f"Failed to install {package}: {result.stderr}")
logger.error(f"Package installation failed: {package}")
return False
except Exception as e:
st.error(f"Error installing {package}: {str(e)}")
logger.error(f"Package installation error: {str(e)}")
return False
progress_bar.progress(1.0)
status_text.text("All packages installed successfully!")
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
return True
def install_custom_packages(package_list):
"""Install custom packages specified by the user without page refresh"""
if not package_list.strip():
return True, "No packages specified"
# Split and clean package list
packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
if not packages:
return True, "No valid packages specified"
status_placeholder = st.sidebar.empty()
progress_bar = st.sidebar.progress(0)
results = []
success = True
for i, package in enumerate(packages):
try:
progress = (i / len(packages))
progress_bar.progress(progress)
status_placeholder.text(f"Installing {package}...")
result = subprocess.run(
[sys.executable, "-m", "pip", "install", package],
capture_output=True,
text=True
)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
logger.error(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
logger.info(f"Successfully installed custom package: {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
logger.error(error_msg)
success = False
progress_bar.progress(1.0)
status_placeholder.text("Installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_placeholder.empty()
return success, "\n".join(results)
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
"""Direct implementation using the exact pattern from the example code"""
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
return None
# Log what we're doing - for debugging
logger.info(f"Initializing AI model with token: {token[:5]}...")
# Use exact imports as in your example
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Use exact endpoint as in your example
endpoint = "https://models.inference.ai.azure.com"
# Use default model
model_name = "gpt-4o"
# Create client exactly as in your example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Return the necessary information
return {
"client": client,
"model_name": model_name,
"endpoint": endpoint
}
except ImportError as ie:
st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
logger.error(f"Import error: {str(ie)}")
return None
except Exception as e:
st.error(f"Error initializing AI model: {str(e)}")
logger.error(f"Initialization error: {str(e)}")
return None
def suggest_code_completion(code_snippet, models):
"""Generate code completion using the AI model"""
if not models or "client" not in models:
st.error("AI models not properly initialized. Please use the Debug Connection section to test API connectivity.")
return None
try:
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
with st.spinner("AI is generating your animation code..."):
from azure.ai.inference.models import UserMessage
# Make an API call exactly like in your example
response = models["client"].complete(
messages=[
UserMessage(prompt),
],
max_tokens=1000,
model=models["model_name"]
)
# Process the response exactly like in your example
completed_code = response.choices[0].message.content
# Process the code
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error generating code: {str(e)}")
st.code(traceback.format_exc())
return None
def check_model_freshness():
"""Check if models need to be reloaded based on TTL"""
if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
return False
if 'last_loaded' not in st.session_state.ai_models:
return False
last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
ttl_hours = 1 # 1 hour TTL
return datetime.now() - last_loaded < timedelta(hours=ttl_hours)
def extract_scene_class_name(python_code):
"""Extract the scene class name from Python code."""
import re
scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
if scene_classes:
# Return the first scene class found
return scene_classes[0]
else:
# If no scene class is found, use a default name
return "MyScene"
def suggest_code_completion(code_snippet, models):
if not models or "code_model" not in models:
st.error("AI models not properly initialized")
return None
try:
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
```python
"""
with st.spinner("AI is generating your animation code..."):
response = models["code_model"](
prompt,
max_length=1024,
do_sample=True,
temperature=0.2,
top_p=0.95,
top_k=50,
num_return_sequences=1,
truncation=True,
pad_token_id=50256
)
if not response or not response[0].get('generated_text'):
st.error("No valid completion generated")
return None
completed_code = response[0]['generated_text']
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error suggesting code: {str(e)}")
logger.error(f"Code suggestion error: {str(e)}")
return None
# Quality presets
QUALITY_PRESETS = {
"480p": {"resolution": "480p", "fps": "30"},
"720p": {"resolution": "720p", "fps": "30"},
"1080p": {"resolution": "1080p", "fps": "60"},
"4K": {"resolution": "2160p", "fps": "60"},
"8K": {"resolution": "4320p", "fps": "60"} # Added 8K option
}
# Animation speeds
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
# Export formats
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Image Sequence": "png_sequence",
"SVG Image": "svg"
}
def highlight_code(code):
formatter = HtmlFormatter(style='monokai')
highlighted = highlight(code, PythonLexer(), formatter)
return highlighted, formatter.get_style_defs()
def generate_manim_preview(python_code):
"""Generate a lightweight preview of the Manim animation"""
try:
# Extract scene components for preview
scene_objects = []
if "Circle" in python_code:
scene_objects.append("circle")
if "Square" in python_code:
scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code:
scene_objects.append("equation")
if "Text" in python_code:
scene_objects.append("text")
if "Axes" in python_code:
scene_objects.append("graph")
if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
scene_objects.append("3D scene")
if "Sphere" in python_code:
scene_objects.append("sphere")
if "Cube" in python_code:
scene_objects.append("cube")
# Generate a more detailed visual preview based on extracted objects
object_icons = {
"circle": "β",
"square": "π²",
"equation": "π",
"text": "π",
"graph": "π",
"3D scene": "π§",
"sphere": "π",
"cube": "π§"
}
icon_html = ""
for obj in scene_objects:
if obj in object_icons:
icon_html += f'{object_icons[obj]}'
preview_html = f"""
Animation Preview
{icon_html if icon_html else 'π¬'}
Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}
"""
def render_latex_preview(latex_formula):
"""Generate HTML for LaTeX preview using MathJax"""
if not latex_formula:
return """
Enter LaTeX formula to see preview
"""
# Create a dark-themed preview with MathJax
html = f"""
LaTeX Preview
$$
{latex_formula}
$$
Use MathTex(r"{latex_formula}") in your Manim code
"""
return html
def prepare_audio_for_manim(audio_file, target_dir):
"""Process audio file and return path for use in Manim"""
try:
# Create audio directory if it doesn't exist
audio_dir = os.path.join(target_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename
filename = f"audio_{int(time.time())}.mp3"
output_path = os.path.join(audio_dir, filename)
# Save audio file
with open(output_path, "wb") as f:
f.write(audio_file.getvalue())
return output_path
except Exception as e:
logger.error(f"Audio processing error: {str(e)}")
return None
def mp4_to_gif(mp4_path, output_path, fps=15):
"""Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
try:
# Use ffmpeg for conversion with optimized settings
command = [
"ffmpeg",
"-i", mp4_path,
"-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop", "0",
output_path
]
# Run the conversion
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"FFmpeg conversion error: {result.stderr}")
return None
return output_path
except Exception as e:
logger.error(f"GIF conversion error: {str(e)}")
return None
def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None):
temp_dir = None
progress_placeholder = st.empty()
status_placeholder = st.empty()
log_placeholder = st.empty()
video_data = None # Initialize video data variable
try:
if not python_code or not format_type:
raise ValueError("Missing required parameters")
# Create temporary directory
temp_dir = tempfile.mkdtemp(prefix="manim_render_")
# Extract the scene class name from the code
scene_class = extract_scene_class_name(python_code)
logger.info(f"Detected scene class: {scene_class}")
# If audio is provided, we need to modify the code to include it
if audio_path:
# Check if the code already has a with_sound decorator
if "with_sound" not in python_code:
# Add the necessary import
if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
# Add sound to the scene
scene_def_pattern = f"class {scene_class}\\(.*?\\):"
scene_def_match = re.search(scene_def_pattern, python_code)
if scene_def_match:
scene_def = scene_def_match.group(0)
scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
python_code = python_code.replace(scene_def, scene_def_with_sound)
else:
logger.warning("Could not find scene definition to add audio")
# Write the code to a file
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w", encoding="utf-8") as f:
f.write(python_code)
# Map quality preset to Manim quality flag
quality_map = {
"480p": "-ql", # Low quality
"720p": "-qm", # Medium quality
"1080p": "-qh", # High quality
"4K": "-qk", # 4K quality
"8K": "-qp" # 8K quality (production quality)
}
quality_flag = quality_map.get(quality_preset, "-qm")
# Handle special formats
if format_type == "png_sequence":
# For PNG sequence, we need additional flags
format_arg = "--format=png"
extra_args = ["--save_pngs"]
elif format_type == "svg":
# For SVG, we need a different format
format_arg = "--format=svg"
extra_args = []
else:
# Standard video formats
format_arg = f"--format={format_type}"
extra_args = []
# Show status and create progress bar
status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
progress_bar = progress_placeholder.progress(0)
# Build command
command = [
"manim",
scene_file,
scene_class,
quality_flag,
format_arg
]
command.extend(extra_args)
logger.info(f"Running command: {' '.join(command)}")
# Execute the command
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True
)
# Track output
full_output = []
output_file_path = None
mp4_output_path = None # Track MP4 output for GIF fallback
while True:
line = process.stdout.readline()
if not line and process.poll() is not None:
break
full_output.append(line)
log_placeholder.code("".join(full_output[-10:]))
# Update progress bar based on output
if "%" in line:
try:
percent = float(line.split("%")[0].strip().split()[-1])
progress_bar.progress(min(0.99, percent / 100))
except:
pass
# Try to capture the output file path from Manim's output
if "File ready at" in line:
try:
# Combine next few lines to get the full path
path_parts = []
path_parts.append(line.split("File ready at")[-1].strip())
# Read up to 5 more lines to get the complete path
for _ in range(5):
additional_line = process.stdout.readline()
if additional_line:
full_output.append(additional_line)
path_parts.append(additional_line.strip())
if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
break
# Join all parts and clean up
potential_path = ''.join(path_parts).replace("'", "").strip()
# Look for path pattern surrounded by quotes
path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
if path_match:
output_file_path = path_match.group(2)
logger.info(f"Found output path in logs: {output_file_path}")
# Track MP4 file for potential GIF fallback
if output_file_path.endswith('.mp4'):
mp4_output_path = output_file_path
except Exception as e:
logger.error(f"Error parsing output path: {str(e)}")
# Wait for the process to complete
process.wait()
progress_bar.progress(1.0)
# IMPORTANT: Wait a moment for file system to catch up
time.sleep(3)
# Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
# Generate a GIF using FFmpeg
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(mp4_output_path, gif_output_path)
if gif_path and os.path.exists(gif_path):
output_file_path = gif_path
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# For PNG sequence, we need to collect the PNGs
if format_type == "png_sequence":
# Find the PNG directory
png_dirs = []
search_dirs = [
os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
"/tmp/media/images",
]
for search_dir in search_dirs:
if os.path.exists(search_dir):
for root, dirs, _ in os.walk(search_dir):
for d in dirs:
if os.path.exists(os.path.join(root, d)):
png_dirs.append(os.path.join(root, d))
if png_dirs:
# Get the newest directory
newest_dir = max(png_dirs, key=os.path.getctime)
# Create a zip file with all PNGs
png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
if png_files:
zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for png in png_files:
png_path = os.path.join(newest_dir, png)
zipf.write(png_path, os.path.basename(png_path))
with open(zip_path, 'rb') as f:
video_data = f.read()
logger.info(f"Created PNG sequence zip: {zip_path}")
else:
logger.error("No PNG files found in directory")
else:
logger.error("No PNG directories found")
elif output_file_path and os.path.exists(output_file_path):
# For other formats, read the output file directly
with open(output_file_path, 'rb') as f:
video_data = f.read()
logger.info(f"Read output file from path: {output_file_path}")
else:
# If we didn't find the output path, search for files
search_paths = [
os.path.join(os.getcwd(), "media", "videos"),
os.path.join(os.getcwd(), "media", "videos", "scene"),
os.path.join(os.getcwd(), "media", "videos", scene_class),
"/tmp/media/videos",
temp_dir,
os.path.join(temp_dir, "media", "videos"),
]
# Add quality-specific paths
for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
# For SVG format
if format_type == "svg":
search_paths.extend([
os.path.join(os.getcwd(), "media", "designs"),
os.path.join(os.getcwd(), "media", "designs", scene_class),
])
# Find all output files in the search paths
output_files = []
for search_path in search_paths:
if os.path.exists(search_path):
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith(f".{format_type}") and "partial" not in file:
file_path = os.path.join(root, file)
if os.path.exists(file_path):
output_files.append(file_path)
logger.info(f"Found output file: {file_path}")
if output_files:
# Get the newest file
latest_file = max(output_files, key=os.path.getctime)
with open(latest_file, 'rb') as f:
video_data = f.read()
logger.info(f"Read output from file search: {latest_file}")
# If the format is GIF but we got an MP4, try to convert it
if format_type == "gif" and latest_file.endswith('.mp4'):
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(latest_file, gif_output_path)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# If we got output data, return it
if video_data:
file_size_mb = len(video_data) / (1024 * 1024)
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
return video_data, f"β Animation generated successfully! ({file_size_mb:.1f} MB)"
else:
output_str = ''.join(full_output)
logger.error(f"No output files found. Full output: {output_str}")
# Check if we have an MP4 but need a GIF (special handling for GIF issues)
if format_type == "gif":
# Try one more aggressive search for any MP4 file
mp4_files = []
for search_path in [os.getcwd(), temp_dir, "/tmp"]:
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith('.mp4') and scene_class.lower() in file.lower():
mp4_path = os.path.join(root, file)
if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
mp4_files.append(mp4_path)
if mp4_files:
newest_mp4 = max(mp4_files, key=os.path.getctime)
logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
# Convert to GIF
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(newest_mp4, gif_output_path)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
file_size_mb = len(video_data) / (1024 * 1024)
return video_data, f"β Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
return None, f"β Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
except Exception as e:
logger.error(f"Error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
if progress_placeholder:
progress_placeholder.empty()
if status_placeholder:
status_placeholder.error(f"Rendering Error: {str(e)}")
if log_placeholder:
log_placeholder.empty()
return None, f"β Error: {str(e)}"
finally:
# CRITICAL: Only cleanup after we've captured the output data
if temp_dir and os.path.exists(temp_dir) and video_data is not None:
try:
shutil.rmtree(temp_dir)
logger.info(f"Cleaned up temp dir: {temp_dir}")
except Exception as e:
logger.error(f"Failed to clean temp dir: {str(e)}")
def detect_input_calls(code):
"""Detect input() calls in Python code to prepare for handling"""
input_calls = []
lines = code.split('\n')
for i, line in enumerate(lines):
if 'input(' in line and not line.strip().startswith('#'):
# Try to extract the prompt if available
prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
input_calls.append({"line": i+1, "prompt": prompt})
return input_calls
def run_python_script(code, inputs=None, timeout=60):
"""Execute a Python script and capture output, handling input calls"""
result = {
"stdout": "",
"stderr": "",
"exception": None,
"plots": [],
"dataframes": [],
"execution_time": 0
}
# Replace input() calls with predefined values if provided
if inputs and len(inputs) > 0:
# Modify the code to use predefined inputs instead of waiting for user input
modified_code = """
# Input values provided by the user
__INPUT_VALUES = {}
__INPUT_INDEX = 0
# Override the built-in input function
def input(prompt=''):
global __INPUT_INDEX
print(prompt, end='')
if __INPUT_INDEX < len(__INPUT_VALUES):
value = __INPUT_VALUES[__INPUT_INDEX]
__INPUT_INDEX += 1
print(value) # Echo the input
return value
else:
print("\\n[WARNING] No more predefined inputs available, using empty string")
return ""
""".format(inputs)
code = modified_code + code
# Create a tempdir for script execution
with tempfile.TemporaryDirectory() as temp_dir:
# Path for saving plots
plot_dir = os.path.join(temp_dir, 'plots')
os.makedirs(plot_dir, exist_ok=True)
# Files for capturing stdout and stderr
stdout_file = os.path.join(temp_dir, 'stdout.txt')
stderr_file = os.path.join(temp_dir, 'stderr.txt')
# Add plot saving code
if 'matplotlib' in code or 'plt' in code:
if 'import matplotlib.pyplot as plt' not in code and 'from matplotlib import pyplot as plt' not in code:
code = "import matplotlib.pyplot as plt\n" + code
# Add code to save plots
save_plots_code = """
# Save all figures
import matplotlib.pyplot as plt
import os
__figures = plt.get_fignums()
for __i, __num in enumerate(__figures):
__fig = plt.figure(__num)
__fig.savefig(os.path.join('{}', f'plot_{{__i}}.png'))
""".format(plot_dir.replace('\\', '\\\\'))
code += "\n" + save_plots_code
# Add dataframe display code if pandas is used
if 'pandas' in code or 'pd.' in code or 'DataFrame' in code:
if 'import pandas as pd' not in code and 'from pandas import' not in code:
code = "import pandas as pd\n" + code
# Add code to save dataframe info
dataframes_code = """
# Capture DataFrames
import pandas as pd
import json
import io
import os
__globals_dict = globals()
__dataframes = []
for __var_name, __var_val in __globals_dict.items():
if isinstance(__var_val, pd.DataFrame) and not __var_name.startswith('__'):
try:
# Save basic info
__df_info = {
"name": __var_name,
"shape": __var_val.shape,
"columns": list(__var_val.columns),
"preview_html": __var_val.head().to_html()
}
with open(os.path.join('{}', f'df_{{__var_name}}.json'), 'w') as __f:
json.dump(__df_info, __f)
except:
pass
""".format(temp_dir.replace('\\', '\\\\'))
code += "\n" + dataframes_code
# Create the script file
script_path = os.path.join(temp_dir, 'script.py')
with open(script_path, 'w') as f:
f.write(code)
# Execute with timeout
start_time = time.time()
try:
# Run the script with stdout and stderr redirection
with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
process = subprocess.Popen(
[sys.executable, script_path],
stdout=stdout_f,
stderr=stderr_f,
cwd=temp_dir
)
try:
process.wait(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
return result
# Read the output
with open(stdout_file, 'r') as f:
result["stdout"] = f.read()
with open(stderr_file, 'r') as f:
result["stderr"] = f.read()
# Collect plots
if os.path.exists(plot_dir):
plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
for plot_file in plot_files:
with open(os.path.join(plot_dir, plot_file), 'rb') as f:
result["plots"].append(f.read())
# Collect dataframes
df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
for df_file in df_files:
with open(os.path.join(temp_dir, df_file), 'r') as f:
result["dataframes"].append(json.load(f))
# Calculate execution time
result["execution_time"] = time.time() - start_time
except Exception as e:
result["exception"] = str(e)
result["stderr"] += f"\nError executing script: {str(e)}"
return result
def display_python_script_results(result):
"""Display the results from the Python script execution"""
if not result:
st.error("No results to display.")
return
# Display execution time
st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
# Display any errors
if result["exception"]:
st.error(f"Exception occurred: {result['exception']}")
if result["stderr"]:
st.error("Errors:")
st.code(result["stderr"], language="bash")
# Display plots if any
if result["plots"]:
st.markdown("### Plots")
cols = st.columns(min(3, len(result["plots"])))
for i, plot_data in enumerate(result["plots"]):
cols[i % len(cols)].image(plot_data, use_column_width=True)
# Display dataframes if any
if result["dataframes"]:
st.markdown("### DataFrames")
for df_info in result["dataframes"]:
with st.expander(f"{df_info['name']} - {df_info['shape'][0]} rows Γ {df_info['shape'][1]} columns"):
st.markdown(df_info["preview_html"], unsafe_allow_html=True)
# Display standard output
if result["stdout"]:
st.markdown("### Standard Output")
st.code(result["stdout"], language="bash")
def parse_animation_steps(python_code):
"""Parse Manim code to extract animation steps for timeline editor"""
animation_steps = []
# Look for self.play calls in the code
play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
# Extract animation objects from play calls
for i, play_call in enumerate(play_calls):
# Parse the arguments to self.play()
animations = [arg.strip() for arg in play_call.split(',')]
# Get wait time after this animation if available
wait_time = 1.0 # Default wait time
if i < len(wait_calls):
wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
if wait_match:
wait_time = float(wait_match.group(1))
# Add to animation steps
animation_steps.append({
"id": i+1,
"type": "play",
"animations": animations,
"duration": wait_time,
"start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
"code": f"self.play({play_call})"
})
return animation_steps
def generate_code_from_timeline(animation_steps, original_code):
"""Generate Manim code from the timeline data"""
# Extract the class definition and setup
class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
if not class_match:
return original_code # Can't find proper structure to modify
setup_code = class_match.group(1)
# Build the new construct method
new_code = [setup_code]
indent = " " # Standard Manim indentation
# Add each animation step in order
for step in sorted(animation_steps, key=lambda x: x["id"]):
new_code.append(f"{indent}{step['code']}")
if "duration" in step and step["duration"] > 0:
new_code.append(f"{indent}self.wait({step['duration']})")
# Add any code that might come after animations
end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
if end_match:
new_code.append(end_match.group(1))
# Combine the code parts with proper indentation
return "\n".join(new_code)
def create_timeline_editor(code):
"""Create an interactive timeline editor for animation sequences"""
st.markdown("### ποΈ Animation Timeline Editor")
if not code:
st.warning("Add animation code first to use the timeline editor.")
return code
# Parse animation steps from the code
animation_steps = parse_animation_steps(code)
if not animation_steps:
st.warning("No animation steps detected in your code.")
return code
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(animation_steps)
# Create an interactive Gantt chart with plotly
st.markdown("#### Animation Timeline")
st.markdown("Drag timeline elements to reorder or resize to change duration")
# Create the Gantt chart
fig = px.timeline(
df,
x_start="start_time",
x_end=df["start_time"] + df["duration"],
y="id",
color="type",
hover_name="animations",
labels={"id": "Step", "start_time": "Time (seconds)"}
)
# Make it interactive
fig.update_layout(
height=400,
xaxis=dict(
title="Time (seconds)",
rangeslider_visible=True
)
)
# Add buttons and interactivity
timeline_chart = st.plotly_chart(fig, use_container_width=True)
# Control panel
st.markdown("#### Timeline Controls")
controls_col1, controls_col2, controls_col3 = st.columns(3)
with controls_col1:
selected_step = st.selectbox(
"Select Step to Edit:",
options=list(range(1, len(animation_steps) + 1)),
format_func=lambda x: f"Step {x}"
)
with controls_col2:
new_duration = st.number_input(
"Duration (seconds):",
min_value=0.1,
max_value=10.0,
value=float(df[df["id"] == selected_step]["duration"].values[0]),
step=0.1
)
with controls_col3:
step_action = st.selectbox(
"Action:",
options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
)
apply_btn = st.button("Apply Change", key="apply_timeline_change")
# Handle timeline modifications
if apply_btn:
modified = False
if step_action == "Update Duration":
# Update the duration of the selected step
idx = df[df["id"] == selected_step].index[0]
df.at[idx, "duration"] = new_duration
modified = True
elif step_action == "Move Up" and selected_step > 1:
# Swap with the step above
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step - 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
modified = True
elif step_action == "Move Down" and selected_step < len(animation_steps):
# Swap with the step below
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step + 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
modified = True
elif step_action == "Delete Step":
# Remove the selected step
df = df[df["id"] != selected_step]
# Reindex remaining steps
new_ids = list(range(1, len(df) + 1))
df["id"] = new_ids
modified = True
if modified:
# Recalculate start times
df = df.sort_values("id")
cumulative_time = 0
for idx, row in df.iterrows():
df.at[idx, "start_time"] = cumulative_time
cumulative_time += row["duration"]
# Regenerate animation code
animation_steps = df.to_dict('records')
new_code = generate_code_from_timeline(animation_steps, code)
st.success("Timeline updated! Code has been regenerated.")
return new_code
# Visual keyframe editor
st.markdown("#### Visual Keyframe Editor")
st.markdown("Add keyframes for smooth property transitions")
keyframe_obj = st.selectbox(
"Select object to animate:",
options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects
)
keyframe_prop = st.selectbox(
"Select property:",
options=["position", "scale", "rotation", "opacity", "color"]
)
# Keyframe timeline visualization
keyframe_times = [0, 1, 2, 3, 4] # Placeholder
keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder
keyframe_df = pd.DataFrame({
"time": keyframe_times,
"value": keyframe_values
})
keyframe_fig = px.line(
keyframe_df,
x="time",
y="value",
markers=True,
title=f"{keyframe_prop.capitalize()} Keyframes"
)
keyframe_fig.update_layout(
xaxis_title="Time (seconds)",
yaxis_title="Value",
height=250
)
st.plotly_chart(keyframe_fig, use_container_width=True)
keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
with keyframe_col1:
keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
with keyframe_col2:
keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with keyframe_col3:
add_keyframe = st.button("Add Keyframe")
# Return the original code or modified code
return code
def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
"""Export animation to various educational formats"""
try:
if format_type == "powerpoint":
# Make sure python-pptx is installed
try:
import pptx
from pptx.util import Inches
except ImportError:
logger.error("python-pptx not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
import pptx
from pptx.util import Inches
# Create PowerPoint presentation
prs = pptx.Presentation()
# Title slide
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
title_slide.shapes.title.text = animation_title
title_slide.placeholders[1].text = "Created with Manim Animation Studio"
# Video slide
video_slide = prs.slides.add_slide(prs.slide_layouts[5])
video_slide.shapes.title.text = "Animation"
# Save video to temp file
video_path = os.path.join(temp_dir, "animation.mp4")
with open(video_path, "wb") as f:
f.write(video_data)
# Add video to slide
try:
left = Inches(1)
top = Inches(1.5)
width = Inches(8)
height = Inches(4.5)
video_slide.shapes.add_movie(video_path, left, top, width, height)
except Exception as e:
logger.error(f"Error adding video to PowerPoint: {str(e)}")
# Fallback to adding a picture with link
img_path = os.path.join(temp_dir, "thumbnail.png")
# Generate thumbnail with ffmpeg
subprocess.run([
"ffmpeg", "-i", video_path, "-ss", "00:00:01.000",
"-vframes", "1", img_path
], check=True)
if os.path.exists(img_path):
pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
# Explanation slide
if explanation_text:
text_slide = prs.slides.add_slide(prs.slide_layouts[1])
text_slide.shapes.title.text = "Explanation"
text_slide.placeholders[1].text = explanation_text
# Save presentation
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
prs.save(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "powerpoint"
elif format_type == "html":
# Create interactive HTML animation
html_template = """
{title}
{title}
Explanation
{explanation_html}
"""
# Convert video data to base64
video_base64 = base64.b64encode(video_data).decode('utf-8')
# Convert markdown explanation to HTML
explanation_html = markdown.markdown(explanation_text) if explanation_text else "
No explanation provided.
"
# Format the HTML template
html_content = html_template.format(
title=animation_title,
video_base64=video_base64,
explanation_html=explanation_html
)
# Save to file
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
with open(output_path, "w", encoding="utf-8") as f:
f.write(html_content)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "html"
elif format_type == "sequence":
# Generate animation sequence with explanatory text
# Make sure FPDF is installed
try:
from fpdf import FPDF
except ImportError:
logger.error("fpdf not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
from fpdf import FPDF
# Save video temporarily
temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
with open(temp_video_path, "wb") as f:
f.write(video_data)
# Create frames directory
frames_dir = os.path.join(temp_dir, "frames")
os.makedirs(frames_dir, exist_ok=True)
# Extract frames using ffmpeg (assuming it's installed)
frame_count = 5 # Number of key frames to extract
try:
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
"-vsync", "0",
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
except Exception as e:
logger.error(f"Error extracting frames: {str(e)}")
# Try a simpler approach
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-r", "1", # 1 frame per second
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
# Parse explanation text into segments (assuming sections divided by ##)
explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
# Create a PDF with frames and explanations
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
# Title page
pdf.add_page()
pdf.set_font("Arial", "B", 20)
pdf.cell(190, 10, animation_title, ln=True, align="C")
pdf.ln(10)
pdf.set_font("Arial", "", 12)
pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
# Add each frame with explanation
frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
for i, frame_file in enumerate(frame_files):
pdf.add_page()
# Add frame image
frame_path = os.path.join(frames_dir, frame_file)
pdf.image(frame_path, x=10, y=10, w=190)
# Add explanation text
pdf.ln(140) # Move below the image
pdf.set_font("Arial", "B", 12)
pdf.cell(190, 10, f"Step {i+1}", ln=True)
pdf.set_font("Arial", "", 10)
# Use the corresponding explanation segment if available
explanation = explanation_segments[min(i, len(explanation_segments)-1)]
pdf.multi_cell(190, 5, explanation.strip())
# Save PDF
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
pdf.output(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "pdf"
return None, None
except Exception as e:
logger.error(f"Educational export error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None, None
def main():
# Initialize session state variables if they don't exist
if 'init' not in st.session_state:
st.session_state.init = True
st.session_state.video_data = None
st.session_state.status = None
st.session_state.ai_models = None
st.session_state.generated_code = ""
st.session_state.code = ""
st.session_state.temp_code = ""
st.session_state.editor_key = str(uuid.uuid4())
st.session_state.packages_checked = False # Track if packages were already checked
st.session_state.latex_formula = ""
st.session_state.audio_path = None
st.session_state.image_paths = []
st.session_state.custom_library_result = ""
st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
st.session_state.python_result = None
st.session_state.active_tab = 0 # Track currently active tab
st.session_state.settings = {
"quality": "720p",
"format_type": "mp4",
"animation_speed": "Normal"
}
st.session_state.password_entered = False # Track password authentication
st.session_state.custom_model = "gpt-4o" # Default model
st.session_state.first_load_complete = False # Prevent refreshes on first load
st.session_state.pending_tab_switch = None # Track pending tab switches
# Page configuration with improved layout
st.set_page_config(
page_title="Manim Animation Studio",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved UI
st.markdown("""
""", unsafe_allow_html=True)
# Header
st.markdown("""
π¬ Manim Animation Studio
Create mathematical animations with Manim
""", unsafe_allow_html=True)
# Check for packages ONLY ONCE per session
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked = True
else:
st.error("Failed to install required packages. Please try again.")
st.stop()
# Create main tabs
tab_names = ["β¨ Editor", "π€ AI Assistant", "π LaTeX Formulas", "π¨ Assets", "ποΈ Timeline", "π Educational Export", "π Python Runner"]
tabs = st.tabs(tab_names)
# Sidebar for rendering settings and custom libraries
with st.sidebar:
# Rendering settings section
st.markdown("## βοΈ Rendering Settings")
col1, col2 = st.columns(2)
with col1:
quality = st.selectbox(
"π― Quality",
options=list(QUALITY_PRESETS.keys()),
index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
key="quality_select"
)
with col2:
format_type_display = st.selectbox(
"π¦ Format",
options=list(EXPORT_FORMATS.keys()),
index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"])
if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
key="format_select_display"
)
# Convert display name to actual format value
format_type = EXPORT_FORMATS[format_type_display]
animation_speed = st.selectbox(
"β‘ Speed",
options=list(ANIMATION_SPEEDS.keys()),
index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
key="speed_select"
)
# Apply the settings without requiring a button
st.session_state.settings = {
"quality": quality,
"format_type": format_type,
"animation_speed": animation_speed
}
# Custom libraries section
st.markdown("## π Custom Libraries")
st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
custom_libraries = st.text_area(
"Libraries to install",
placeholder="e.g., scipy, networkx, matplotlib",
key="custom_libraries"
)
if st.button("Install Libraries", key="install_libraries_btn"):
success, result = install_custom_packages(custom_libraries)
st.session_state.custom_library_result = result
if success:
st.success("Installation complete!")
else:
st.error("Installation failed for some packages.")
if st.session_state.custom_library_result:
with st.expander("Installation Results"):
st.code(st.session_state.custom_library_result)
# EDITOR TAB
with tabs[0]:
col1, col2 = st.columns([3, 2])
with col1:
st.markdown("### π Animation Editor")
# Toggle between upload and type
editor_mode = st.radio(
"Choose how to input your code:",
["Type Code", "Upload File"],
key="editor_mode"
)
if editor_mode == "Upload File":
uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
if uploaded_file:
code_content = uploaded_file.getvalue().decode("utf-8")
if code_content.strip(): # Only update if file has content
st.session_state.code = code_content
st.session_state.temp_code = code_content
# Code editor
if ACE_EDITOR_AVAILABLE:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st_ace(
value=current_code,
language="python",
theme="monokai",
min_lines=20,
key=f"ace_editor_{st.session_state.editor_key}"
)
else:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st.text_area(
"Manim Python Code",
value=current_code,
height=400,
key=f"code_textarea_{st.session_state.editor_key}"
)
# Update code in session state if it changed
if st.session_state.temp_code != st.session_state.code:
st.session_state.code = st.session_state.temp_code
# Generate button (use a form to prevent page reloads)
generate_btn = st.button("π Generate Animation", use_container_width=True, key="generate_btn")
if generate_btn:
if not st.session_state.code:
st.error("Please enter some code before generating animation")
else:
# Extract scene class name
scene_class = extract_scene_class_name(st.session_state.code)
# If no valid scene class found, add a basic one
if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
default_scene = """
class MyScene(Scene):
def construct(self):
text = Text("Default Scene")
self.play(Write(text))
self.wait(2)
"""
st.session_state.code += default_scene
st.session_state.temp_code = st.session_state.code
st.warning("No scene class found. Added a default scene.")
with st.spinner("Generating animation..."):
video_data, status = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
st.session_state.audio_path
)
st.session_state.video_data = video_data
st.session_state.status = status
with col2:
st.markdown("### π₯οΈ Preview & Output")
# Preview container
if st.session_state.code:
with st.container():
st.markdown("
", unsafe_allow_html=True)
# Generated output display
if st.session_state.video_data:
# Different handling based on format type
format_type = st.session_state.settings["format_type"]
if format_type == "png_sequence":
st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
# Add download button for ZIP
st.download_button(
label="β¬οΈ Download PNG Sequence (ZIP)",
data=st.session_state.video_data,
file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip",
use_container_width=True
)
elif format_type == "svg":
# Display SVG preview
try:
svg_data = st.session_state.video_data.decode('utf-8')
components.html(svg_data, height=400)
except Exception as e:
st.error(f"Error displaying SVG: {str(e)}")
# Download button for SVG
st.download_button(
label="β¬οΈ Download SVG",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
mime="image/svg+xml",
use_container_width=True
)
else:
# Standard video display for MP4, GIF, WebM
try:
st.video(st.session_state.video_data, format=format_type)
except Exception as e:
st.error(f"Error displaying video: {str(e)}")
# Fallback for GIF if st.video fails
if format_type == "gif":
st.markdown("GIF preview:")
gif_b64 = base64.b64encode(st.session_state.video_data).decode()
st.markdown(f'', unsafe_allow_html=True)
# Add download button
st.download_button(
label=f"β¬οΈ Download {format_type.upper()}",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
use_container_width=True
)
if st.session_state.status:
if "Error" in st.session_state.status:
st.error(st.session_state.status)
# Show troubleshooting tips
with st.expander("π Troubleshooting Tips"):
st.markdown("""
### Common Issues:
1. **Syntax Errors**: Check your Python code for any syntax issues
2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
3. **High Resolution Issues**: Try a lower quality preset for complex animations
4. **Memory Issues**: For 4K animations, reduce complexity or try again
5. **Format Issues**: Some formats require specific Manim configurations
6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
### Example Code:
```python
from manim import *
class MyScene(Scene):
def construct(self):
circle = Circle(color=RED)
self.play(Create(circle))
self.wait(1)
```
""")
else:
st.success(st.session_state.status)
# AI ASSISTANT TAB
with tabs[1]:
st.markdown("### π€ AI Animation Assistant")
# Check password before allowing access
if check_password():
# Debug section
with st.expander("π§ Debug Connection"):
st.markdown("Test the AI model connection directly")
if st.button("Test API Connection", key="test_api_btn"):
with st.spinner("Testing API connection..."):
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets")
st.stop()
# Import required modules
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Define endpoint
endpoint = "https://models.inference.ai.azure.com"
model_name = "gpt-4o"
# Create client directly following example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Test with a simple prompt
response = client.complete(
messages=[
UserMessage("Hello, this is a connection test."),
],
max_tokens=1000000,
model=model_name
)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"β Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"client": client,
"model_name": model_name,
"endpoint": endpoint,
"last_loaded": datetime.now().isoformat()
}
else:
st.error("β API returned an empty response")
except ImportError as ie:
st.error(f"Module import error: {str(ie)}")
st.info("Try installing required packages: azure-ai-inference and azure-core")
except Exception as e:
st.error(f"β API test failed: {str(e)}")
import traceback
st.code(traceback.format_exc())
# Model selection
st.markdown("#### Model Selection")
# Predefined Azure models
popular_models = [
"DeepSeek-V3-0324",
"DeepSeek-R1",
"Meta-Llama-3.1-405B-Instruct",
"Llama-3.2-90B-Vision-Instruct",
"Llama-3.3-70B-Instruct"
"Llama-4-Scout-17B-16E-Instruct",
"Llama-4-Maverick-17B-128E-Instruct-FP8",
"gpt-4o",
"o3-mini",
"o1",
"o1-mini",
"o1-preview",
"Phi-4-multimodal-instruct",
"Mistral-large-2407",
"Codestral-2501",
]
selected_model = st.selectbox(
"Select a model:",
options=popular_models,
index=0
)
st.session_state.custom_model = selected_model
st.info(f"Currently selected model: {st.session_state.custom_model}")
# Update model if it changed
if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
if st.session_state.ai_models['model_name'] != st.session_state.custom_model:
st.session_state.ai_models['model_name'] = st.session_state.custom_model
st.success(f"Model updated to {st.session_state.custom_model}")
# AI code generation
if st.session_state.ai_models and "client" in st.session_state.ai_models:
st.markdown("
", unsafe_allow_html=True)
st.markdown("#### Generate Animation from Description")
st.write("Describe the animation you want to create, or provide partial code to complete.")
# Predefined animation ideas dropdown
animation_ideas = [
"Select an idea...",
"Create a 3D animation showing a sphere morphing into a torus",
"Show a visual proof of the Pythagorean theorem",
"Visualize a Fourier transform converting a signal from time domain to frequency domain",
"Create an animation explaining neural network forward propagation",
"Illustrate the concept of integration with area under a curve"
]
selected_idea = st.selectbox(
"Try one of these ideas",
options=animation_ideas
)
prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
code_input = st.text_area(
"Your Prompt or Code",
value=prompt_value,
placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
height=150
)
if st.button("Generate Animation Code", key="gen_ai_code"):
if code_input:
with st.spinner("AI is generating your animation code..."):
try:
# Direct implementation of code generation
client = st.session_state.ai_models["client"]
model_name = st.session_state.ai_models["model_name"]
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_input}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
# Make API call directly
from azure.ai.inference.models import UserMessage
response = client.complete(
messages=[
UserMessage(prompt),
],
max_tokens=1000,
model=model_name
)
# Process the response
if response and response.choices and len(response.choices) > 0:
completed_code = response.choices[0].message.content
# Extract code from markdown if present
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
# Store the generated code
st.session_state.generated_code = completed_code
else:
st.error("Failed to generate code. API returned an empty response.")
except Exception as e:
st.error(f"Error generating code: {str(e)}")
import traceback
st.code(traceback.format_exc())
else:
st.warning("Please enter a description or prompt first")
st.markdown("
", unsafe_allow_html=True)
# AI generated code display and actions
if "generated_code" in st.session_state and st.session_state.generated_code:
st.markdown("
", unsafe_allow_html=True)
st.markdown("#### Generated Animation Code")
st.code(st.session_state.generated_code, language="python")
col_ai1, col_ai2 = st.columns(2)
with col_ai1:
if st.button("Use This Code", key="use_gen_code"):
st.session_state.code = st.session_state.generated_code
st.session_state.temp_code = st.session_state.generated_code
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_ai2:
if st.button("Render Preview", key="render_preview"):
with st.spinner("Rendering preview..."):
video_data, status = generate_manim_video(
st.session_state.generated_code,
"mp4",
"480p", # Use lowest quality for preview
ANIMATION_SPEEDS["Normal"]
)
if video_data:
st.video(video_data)
st.download_button(
label="Download Preview",
data=video_data,
file_name=f"manim_preview_{int(time.time())}.mp4",
mime="video/mp4"
)
else:
st.error(f"Failed to generate preview: {status}")
st.markdown("
", unsafe_allow_html=True)
else:
st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
else:
st.info("Please enter the correct password to access AI features")
# LATEX FORMULAS TAB
with tabs[2]:
st.markdown("### π LaTeX Formula Builder")
col_latex1, col_latex2 = st.columns([3, 2])
with col_latex1:
# LaTeX formula input
st.markdown("#### Enter LaTeX Formula")
latex_input = st.text_area(
"LaTeX Formula",
value=st.session_state.latex_formula,
height=100,
placeholder=r"e^{i\pi} + 1 = 0",
key="latex_input"
)
# Update session state
st.session_state.latex_formula = latex_input
# Common LaTeX formulas library
st.markdown("#### Formula Library")
# Categorized formulas
latex_categories = {
"Basic Math": [
{"name": "Fractions", "latex": r"\frac{a}{b}"},
{"name": "Square Root", "latex": r"\sqrt{x}"},
{"name": "Nth Root", "latex": r"\sqrt[n]{x}"},
{"name": "Powers", "latex": r"x^{n}"},
{"name": "Subscript", "latex": r"x_{i}"},
],
"Algebra": [
{"name": "Quadratic Formula", "latex": r"x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}"},
{"name": "Binomial Coefficient", "latex": r"\binom{n}{k}"},
{"name": "Sum", "latex": r"\sum_{i=1}^{n} i = \frac{n(n+1)}{2}"},
{"name": "Product", "latex": r"\prod_{i=1}^{n} i = n!"},
],
"Calculus": [
{"name": "Derivative", "latex": r"\frac{d}{dx}f(x)"},
{"name": "Partial Derivative", "latex": r"\frac{\partial f}{\partial x}"},
{"name": "Integral", "latex": r"\int_{a}^{b} f(x) \, dx"},
{"name": "Double Integral", "latex": r"\iint_{D} f(x,y) \, dx \, dy"},
{"name": "Limit", "latex": r"\lim_{x \to \infty} f(x)"},
],
"Linear Algebra": [
{"name": "Matrix", "latex": r"\begin{pmatrix} a & b \\ c & d \end{pmatrix}"},
{"name": "Determinant", "latex": r"\begin{vmatrix} a & b \\ c & d \end{vmatrix}"},
{"name": "Vector", "latex": r"\vec{v} = (v_1, v_2, v_3)"},
{"name": "Dot Product", "latex": r"\vec{a} \cdot \vec{b} = |a||b|\cos\theta"},
],
"Famous Equations": [
{"name": "Euler's Identity", "latex": r"e^{i\pi} + 1 = 0"},
{"name": "Einstein's Mass-Energy", "latex": r"E = mc^2"},
{"name": "SchrΓΆdinger Equation", "latex": r"i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi"},
{"name": "Maxwell's Equations", "latex": r"\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}"},
]
}
# Create tabs for formula categories
formula_tabs = st.tabs(list(latex_categories.keys()))
for i, (category, formulas) in enumerate(latex_categories.items()):
with formula_tabs[i]:
for formula in formulas:
if st.button(formula["name"], key=f"latex_{formula['name']}"):
# Insert formula into the text area
st.session_state.latex_formula = formula["latex"]
# Refresh without full page rerun
st.rerun()
# LaTeX code snippet
st.markdown("#### Manim Code Snippet")
if latex_input:
manim_latex_code = f"""
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.code(manim_latex_code, language="python")
if st.button("Insert into Editor", key="insert_latex_btn"):
if st.session_state.code:
# Find the construct method and insert after it
if "def construct(self):" in st.session_state.code:
lines = st.session_state.code.split("\n")
construct_index = -1
for i, line in enumerate(lines):
if "def construct(self):" in line:
construct_index = i
break
if construct_index >= 0:
# Find the first line with non-whitespace content after construct
for i in range(construct_index + 1, len(lines)):
if lines[i].strip() and not lines[i].strip().startswith("#"):
# Insert before this line
indent = re.match(r"(\s*)", lines[i]).group(1)
indented_code = "\n".join([indent + line for line in manim_latex_code.strip().split("\n")])
lines.insert(i, indented_code)
break
else:
# If we didn't find content, append to the end with default indentation
lines.append(" " + "\n ".join(manim_latex_code.strip().split("\n")))
st.session_state.code = "\n".join(lines)
st.session_state.temp_code = st.session_state.code
st.success("LaTeX formula inserted into the editor!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
else:
st.warning("Could not find 'construct' method in your code. Please add a scene class first.")
else:
# Create a new basic scene with the LaTeX formula
basic_scene = f"""from manim import *
class LatexScene(Scene):
def construct(self):
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.session_state.code = basic_scene
st.session_state.temp_code = basic_scene
st.success("Created new scene with your LaTeX formula!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_latex2:
# LaTeX preview
st.markdown("#### Formula Preview")
latex_preview_html = render_latex_preview(latex_input)
components.html(latex_preview_html, height=300)
# LaTeX tips
with st.expander("LaTeX Tips & Tricks"):
st.markdown("""
### LaTeX Tips
- Use `\\frac{a}{b}` for fractions
- Use `\\sum_{i=1}^{n}` for summation
- Use `\\int_{a}^{b}` for integration
- Use `\\{` and `\\}` for curly braces
- Enclose equations in `$...$` or `\\[...\\]`
### Manim LaTeX
In Manim, use `MathTex` for inline math and `Tex` for text with LaTeX:
```python
formula = MathTex(r"\\sum_{i=1}^{n} i = \\frac{n(n+1)}{2}")
text = Tex(r"This is a binomial coefficient: $\\binom{n}{k}$")
```
The `r` before the string creates a raw string, which is recommended to avoid escaping backslashes.
""")
# ASSETS TAB
with tabs[3]:
st.markdown("### π¨ Asset Management")
asset_col1, asset_col2 = st.columns([1, 1])
with asset_col1:
# Image uploader section
st.markdown("#### πΈ Image Assets")
st.markdown("Upload images to use in your animations:")
# Allow multiple image uploads
uploaded_images = st.file_uploader(
"Upload Images",
type=["jpg", "png", "jpeg", "svg"],
accept_multiple_files=True,
key="image_uploader_tab"
)
if uploaded_images:
# Create a unique image directory if it doesn't exist
image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
os.makedirs(image_dir, exist_ok=True)
# Process each uploaded image
for uploaded_image in uploaded_images:
# Generate a unique filename and save the image
file_extension = uploaded_image.name.split(".")[-1]
unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
image_path = os.path.join(image_dir, unique_filename)
with open(image_path, "wb") as f:
f.write(uploaded_image.getvalue())
# Store the path in session state
if "image_paths" not in st.session_state:
st.session_state.image_paths = []
# Check if this image was already added
image_already_added = False
for img in st.session_state.image_paths:
if img["name"] == uploaded_image.name:
image_already_added = True
break
if not image_already_added:
st.session_state.image_paths.append({
"name": uploaded_image.name,
"path": image_path
})
# Display uploaded images in a grid
st.markdown("##### Uploaded Images:")
image_cols = st.columns(3)
for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
with image_cols[i % 3]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=150)
# Show code snippet for this specific image
if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
image_code = f"""
# Load and display image
image = ImageMobject(r"{img_info['path']}")
image.scale(2) # Adjust size as needed
self.play(FadeIn(image))
self.wait(1)
"""
if not st.session_state.code:
base_code = """from manim import *
class ImageScene(Scene):
def construct(self):
"""
st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ")
else:
st.session_state.code += "\n" + image_code
st.session_state.temp_code = st.session_state.code
st.success(f"Added {img_info['name']} to your code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error loading image {img_info['name']}: {e}")
# Display previously uploaded images
if st.session_state.image_paths:
with st.expander("Previously Uploaded Images"):
# Group images by 3 in each row
for i in range(0, len(st.session_state.image_paths), 3):
prev_cols = st.columns(3)
for j in range(3):
if i+j < len(st.session_state.image_paths):
img_info = st.session_state.image_paths[i+j]
with prev_cols[j]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=100)
st.markdown(f"
", unsafe_allow_html=True)
with asset_col2:
# Audio uploader section
st.markdown("#### π΅ Audio Assets")
st.markdown("Upload audio files for background or narration:")
uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
if uploaded_audio:
# Create a unique audio directory if it doesn't exist
audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename and save the audio
file_extension = uploaded_audio.name.split(".")[-1]
unique_filename = f"audio_{int(time.time())}.{file_extension}"
audio_path = os.path.join(audio_dir, unique_filename)
with open(audio_path, "wb") as f:
f.write(uploaded_audio.getvalue())
# Store the path in session state
st.session_state.audio_path = audio_path
# Display audio player
st.audio(uploaded_audio)
st.markdown(f"""
Audio: {uploaded_audio.name}
Path: {audio_path}
""", unsafe_allow_html=True)
# Two options for audio usage
st.markdown("#### Add Audio to Your Animation")
option = st.radio(
"Choose how to use audio:",
["Background Audio", "Generate Audio from Text"]
)
if option == "Background Audio":
st.markdown("##### Code to add background audio:")
# For with_sound decorator
audio_code1 = f"""
# Add this import at the top of your file
from manim.scene.scene_file_writer import SceneFileWriter
# Add this decorator before your scene class
@with_sound("{audio_path}")
class YourScene(Scene):
def construct(self):
# Your animation code here
"""
st.code(audio_code1, language="python")
if st.button("Use This Audio in Animation", key="use_audio_btn"):
st.success("Audio set for next render!")
elif option == "Generate Audio from Text":
# Text-to-speech input
tts_text = st.text_area(
"Enter text for narration",
placeholder="Type the narration text here...",
height=100
)
if st.button("Create Narration", key="create_narration_btn"):
try:
# Use basic TTS (placeholder for actual implementation)
st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
st.session_state.audio_path = audio_path
st.success("Audio set for next render!")
except Exception as e:
st.error(f"Error creating narration: {str(e)}")
# TIMELINE EDITOR TAB
with tabs[4]:
# New code for reordering animation steps
updated_code = create_timeline_editor(st.session_state.code)
# If code was modified by the timeline editor, update the session state
if updated_code != st.session_state.code:
st.session_state.code = updated_code
st.session_state.temp_code = updated_code
# EDUCATIONAL EXPORT TAB
with tabs[5]:
st.markdown("### π Educational Export Options")
# Check if we have an animation to export
if not st.session_state.video_data:
st.warning("Generate an animation first before using educational export features.")
else:
st.markdown("Create various educational assets from your animation:")
# Animation title and explanation
animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
st.markdown("#### Explanation Text")
st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
explanation_text = st.text_area(
"Explanation (markdown supported)",
height=150,
placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
)
# Export format selection
edu_format = st.selectbox(
"Export Format",
options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
)
# Format-specific options
if edu_format == "PowerPoint Presentation":
st.info("Creates a PowerPoint file with your animation and explanation text.")
elif edu_format == "Interactive HTML":
st.info("Creates an interactive HTML webpage with playback controls and explanation.")
include_controls = st.checkbox("Include interactive controls", value=True)
elif edu_format == "Explanation Sequence PDF":
st.info("Creates a PDF with key frames and step-by-step explanations.")
frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
# Export button
if st.button("Export Educational Material", key="export_edu_btn"):
with st.spinner(f"Creating {edu_format}..."):
# Map selected format to internal format type
format_map = {
"PowerPoint Presentation": "powerpoint",
"Interactive HTML": "html",
"Explanation Sequence PDF": "sequence"
}
# Create a temporary directory for export
temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
# Process the export
exported_data, file_type = export_to_educational_format(
st.session_state.video_data,
format_map[edu_format],
animation_title,
explanation_text,
temp_export_dir
)
if exported_data:
# File extension mapping
ext_map = {
"powerpoint": "pptx",
"html": "html",
"pdf": "pdf"
}
# Download button
ext = ext_map.get(file_type, "zip")
filename = f"{animation_title.replace(' ', '_')}.{ext}"
st.success(f"{edu_format} created successfully!")
st.download_button(
label=f"β¬οΈ Download {edu_format}",
data=exported_data,
file_name=filename,
mime=f"application/{ext}",
use_container_width=True
)
# For HTML, also offer to open in browser
if file_type == "html":
html_path = os.path.join(temp_export_dir, filename)
st.markdown(f"[π Open in browser](file://{html_path})", unsafe_allow_html=True)
else:
st.error(f"Failed to create {edu_format}. Check logs for details.")
# Show usage examples and tips
with st.expander("Usage Tips"):
st.markdown("""
### Educational Export Tips
**PowerPoint Presentations**
- Great for lectures and classroom presentations
- Animation will autoplay when clicked
- Add detailed explanations in notes section
**Interactive HTML**
- Perfect for websites and online learning platforms
- Students can control playback speed and navigation
- Mobile-friendly for learning on any device
**Explanation Sequence**
- Ideal for printed materials and study guides
- Use ## headers to mark different explanation sections
- Each section will be paired with a key frame
""")
# PYTHON RUNNER TAB
with tabs[6]:
st.markdown("### π Python Script Runner")
st.markdown("Execute Python scripts and visualize the results directly.")
# Predefined example scripts
example_scripts = {
"Select an example...": "",
"Basic Matplotlib Plot": """import matplotlib.pyplot as plt
import numpy as np
# Create data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
""",
"User Input Example": """# This example demonstrates how to handle user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
# Let's get some numbers and calculate the average
num_count = int(input("How many numbers would you like to average? "))
total = 0
for i in range(num_count):
num = float(input(f"Enter number {i+1}: "))
total += num
average = total / num_count
print(f"The average of your {num_count} numbers is: {average}")
""",
"Pandas DataFrame": """import pandas as pd
import numpy as np
# Create a sample dataframe
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
'Age': [25, 30, 35, 40, 45],
'Salary': [50000, 60000, 70000, 80000, 90000],
'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
}
df = pd.DataFrame(data)
# Display the dataframe
print("Sample DataFrame:")
print(df)
# Basic statistics
print("\\nSummary Statistics:")
print(df.describe())
# Filtering
print("\\nEmployees older than 30:")
print(df[df['Age'] > 30])
""",
"Seaborn Visualization": """import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# Set the style
sns.set_style("whitegrid")
# Create sample data
np.random.seed(42)
data = np.random.randn(100, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
# Create a paired plot
sns.pairplot(df, hue='category', palette='viridis')
# Create another plot
plt.figure(figsize=(10, 6))
sns.violinplot(x='category', y='A', data=df, palette='magma')
plt.title('Distribution of A by Category')
""",
"NumPy Computation": """import numpy as np
# Create arrays
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([5, 4, 3, 2, 1])
print("Array 1:", arr1)
print("Array 2:", arr2)
# Basic operations
print("\\nBasic Operations:")
print("Addition:", arr1 + arr2)
print("Multiplication:", arr1 * arr2)
print("Division:", arr1 / arr2)
# Statistics
print("\\nStatistics:")
print("Mean of arr1:", np.mean(arr1))
print("Standard deviation of arr2:", np.std(arr2))
print("Correlation coefficient:", np.corrcoef(arr1, arr2)[0, 1])
# Create a 2D array
matrix = np.random.rand(3, 3)
print("\\nRandom 3x3 Matrix:")
print(matrix)
print("Determinant:", np.linalg.det(matrix))
print("Inverse:")
print(np.linalg.inv(matrix))
""",
"SciPy Example": """import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
# Define a function to find the root of
def f(x):
return x**3 - 2*x**2 - 5*x + 6
# Find the roots
roots = optimize.root_scalar(f, bracket=[-5, 5], method='brentq')
print(f"Root found: {roots.root}")
# Plot the function
x = np.linspace(-5, 5, 1000)
y = f(x)
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-')
plt.axhline(y=0, color='k', linestyle='-', alpha=0.3)
plt.axvline(x=roots.root, color='r', linestyle='--', label=f'Root: {roots.root:.2f}')
plt.grid(True)
plt.title('Finding roots of a cubic function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
# Optimization example
def g(x):
return (x - 2) ** 2 + 1
result = optimize.minimize(g, x0=0)
print(f"Minimum found at x = {result.x[0]}, with value {result.fun}")
# Plot the optimization
x = np.linspace(-1, 5, 1000)
y = g(x)
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'g-')
plt.plot(result.x, result.fun, 'ro', label=f'Minimum: ({result.x[0]:.2f}, {result.fun:.2f})')
plt.grid(True)
plt.title('Function Optimization')
plt.xlabel('x')
plt.ylabel('g(x)')
plt.legend()
"""
}
# Select example script
selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
# Python code editor
if selected_example != "Select an example..." and selected_example in example_scripts:
python_code = example_scripts[selected_example]
else:
python_code = st.session_state.python_script
if ACE_EDITOR_AVAILABLE:
python_code = st_ace(
value=python_code,
language="python",
theme="monokai",
min_lines=15,
key=f"python_editor_{st.session_state.editor_key}"
)
else:
python_code = st.text_area(
"Python Code",
value=python_code,
height=400,
key=f"python_textarea_{st.session_state.editor_key}"
)
# Store script in session state (without clearing existing code)
st.session_state.python_script = python_code
# Check for input() calls
input_calls = detect_input_calls(python_code)
user_inputs = []
if input_calls:
st.markdown("### Input Values")
st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
for i, input_call in enumerate(input_calls):
user_input = st.text_input(
f"{input_call['prompt']} (Line {input_call['line']})",
key=f"input_{i}"
)
user_inputs.append(user_input)
# Options and execution
col1, col2 = st.columns([2, 1])
with col1:
timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
with col2:
run_btn = st.button("βΆοΈ Run Script", use_container_width=True)
if run_btn:
with st.spinner("Executing Python script..."):
result = run_python_script(python_code, inputs=user_inputs, timeout=timeout_seconds)
st.session_state.python_result = result
# Display results
if st.session_state.python_result:
display_python_script_results(st.session_state.python_result)
# Option to insert plots into Manim animation
if st.session_state.python_result["plots"]:
with st.expander("Add Plots to Manim Animation"):
st.markdown("Select a plot to include in your Manim animation:")
plot_cols = st.columns(min(3, len(st.session_state.python_result["plots"])))
for i, plot_data in enumerate(st.session_state.python_result["plots"]):
# Create a unique temporary file for each plot
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
tmp.write(plot_data)
plot_path = tmp.name
# Display the plot with selection button
with plot_cols[i % len(plot_cols)]:
st.image(plot_data, use_column_width=True)
if st.button(f"Use Plot {i+1}", key=f"use_plot_{i}"):
# Create code to include this plot in Manim
plot_code = f"""
# Import the plot image
plot_image = ImageMobject(r"{plot_path}")
plot_image.scale(2) # Adjust size as needed
self.play(FadeIn(plot_image))
self.wait(1)
"""
# Insert into editor code
if st.session_state.code:
st.session_state.code += "\n" + plot_code
st.session_state.temp_code = st.session_state.code
st.success(f"Plot {i+1} added to your animation code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
else:
basic_scene = f"""from manim import *
class PlotScene(Scene):
def construct(self):
{plot_code}
"""
st.session_state.code = basic_scene
st.session_state.temp_code = basic_scene
st.success(f"Created new scene with Plot {i+1}!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Provide option to save the script
if st.button("π Save This Script", key="save_script_btn"):
# Generate a unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
script_filename = f"script_{timestamp}.py"
# Offer download button for the script
st.download_button(
label="β¬οΈ Download Script",
data=python_code,
file_name=script_filename,
mime="text/plain"
)
# Show advanced examples and tips
with st.expander("Python Script Runner Tips"):
st.markdown("""
### Python Script Runner Tips
**What can I run?**
- Any Python code that doesn't require direct UI interaction
- Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
- Data processing and visualization code
- Scripts that ask for user input (now supported!)
**What can't I run?**
- Streamlit, Gradio, Dash, or other web UIs
- Long-running operations (timeout will occur)
- Code that requires file access outside the temporary environment
**Working with visualizations:**
- All Matplotlib/Seaborn plots will be automatically captured
- Pandas DataFrames are detected and displayed as tables
- Use `print()` to show text output
**Handling user input:**
- The app detects input() calls and automatically creates text fields
- Input values you provide will be passed to the script when it runs
- Type conversion (like int(), float()) is preserved
**Adding to animations:**
- Charts and plots can be directly added to your Manim animations
- Generated images will be properly scaled for your animation
- Perfect for educational content combining data and animations
""")
# Help section
with st.sidebar.expander("βΉοΈ Help & Info"):
st.markdown("""
### About Manim Animation Studio
This app allows you to create mathematical animations using Manim,
an animation engine for explanatory math videos.
### Example Code
```python
from manim import *
class SimpleExample(Scene):
def construct(self):
circle = Circle(color=BLUE)
self.play(Create(circle))
square = Square(color=RED).next_to(circle, RIGHT)
self.play(Create(square))
text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
self.play(Write(text))
self.wait(2)
```
""")
# Handle tab switching with session state to prevent refresh loop
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch = None
# Set tabs active state
for i, tab in enumerate(tabs):
if i == st.session_state.active_tab:
tab.active = True
# Mark first load as complete to prevent unnecessary refreshes
if not st.session_state.first_load_complete:
st.session_state.first_load_complete = True
if __name__ == "__main__":
main()