File size: 19,424 Bytes
90b89d9
5e27608
90b89d9
 
 
 
 
5e27608
90b89d9
 
 
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
 
 
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
90b89d9
 
5e27608
90b89d9
 
 
 
 
 
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
 
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
90b89d9
 
 
5e27608
 
 
 
90b89d9
 
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
 
 
 
 
90b89d9
 
 
 
5e27608
90b89d9
 
5e27608
90b89d9
 
 
5e27608
 
 
 
 
 
 
 
90b89d9
 
5e27608
 
 
 
 
 
 
 
 
 
 
90b89d9
5e27608
 
 
 
 
90b89d9
 
 
5e27608
 
 
90b89d9
5e27608
 
 
 
 
 
90b89d9
5e27608
 
 
 
 
 
 
 
 
 
 
90b89d9
5e27608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b89d9
 
5e27608
90b89d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e27608
90b89d9
5e27608
90b89d9
5e27608
 
 
 
 
90b89d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <pybind11/complex.h>
#include <vector>
#include <complex>
#include <cmath>
#include <algorithm>
#include <random>

namespace py = pybind11;

// Apply the condition for y
double apply_y_condition(double y) {
    return y > 1.0 ? y : 1.0 / y;
}

// Discriminant calculation
double discriminant_func(double z, double beta, double z_a, double y) {
    double y_effective = apply_y_condition(y);
    
    // Coefficients
    double a = z * z_a;
    double b = z * z_a + z + z_a - z_a * y_effective;
    double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta);
    double d = 1.0;
    
    // Simple formula for cubic discriminant
    return std::pow((b*c)/(6.0*a*a) - std::pow(b, 3)/(27.0*std::pow(a, 3)) - d/(2.0*a), 2) +
           std::pow(c/(3.0*a) - std::pow(b, 2)/(9.0*std::pow(a, 2)), 3);
}

// Find zeros of discriminant
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta, 
                                              double z_min, double z_max, int steps) {
    std::vector<double> roots_found;
    double y_effective = apply_y_condition(y);
    
    // Create z grid
    std::vector<double> z_grid(steps);
    double step_size = (z_max - z_min) / (steps - 1);
    for (int i = 0; i < steps; i++) {
        z_grid[i] = z_min + i * step_size;
    }
    
    // Evaluate discriminant at each grid point
    std::vector<double> disc_vals(steps);
    for (int i = 0; i < steps; i++) {
        disc_vals[i] = discriminant_func(z_grid[i], beta, z_a, y_effective);
    }
    
    // Find sign changes (zeros)
    for (int i = 0; i < steps - 1; i++) {
        double f1 = disc_vals[i];
        double f2 = disc_vals[i+1];
        
        if (std::isnan(f1) || std::isnan(f2)) {
            continue;
        }
        
        if (f1 == 0.0) {
            roots_found.push_back(z_grid[i]);
        } else if (f2 == 0.0) {
            roots_found.push_back(z_grid[i+1]);
        } else if (f1 * f2 < 0) {
            // Binary search for zero crossing
            double zl = z_grid[i];
            double zr = z_grid[i+1];
            double f1_copy = f1;
            for (int iter = 0; iter < 50; iter++) {
                double mid = 0.5 * (zl + zr);
                double fm = discriminant_func(mid, beta, z_a, y_effective);
                if (fm == 0.0) {
                    zl = zr = mid;
                    break;
                }
                if ((fm < 0 && f1_copy < 0) || (fm > 0 && f1_copy > 0)) {
                    zl = mid;
                } else {
                    zr = mid;
                }
            }
            roots_found.push_back(0.5 * (zl + zr));
        }
    }
    
    return roots_found;
}

// Sweep beta and find z bounds
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>>
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max, 
                           int beta_steps, int z_steps) {
    std::vector<double> betas(beta_steps);
    std::vector<double> z_min_values(beta_steps);
    std::vector<double> z_max_values(beta_steps);
    
    double beta_step = 1.0 / (beta_steps - 1);
    for (int i = 0; i < beta_steps; i++) {
        betas[i] = i * beta_step;
        
        std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, z_steps);
        
        if (roots.empty()) {
            z_min_values[i] = std::numeric_limits<double>::quiet_NaN();
            z_max_values[i] = std::numeric_limits<double>::quiet_NaN();
        } else {
            // Find min and max roots
            double min_root = *std::min_element(roots.begin(), roots.end());
            double max_root = *std::max_element(roots.begin(), roots.end());
            
            z_min_values[i] = min_root;
            z_max_values[i] = max_root;
        }
    }
    
    return std::make_tuple(betas, z_min_values, z_max_values);
}

// Compute cubic roots
std::vector<std::complex<double>> compute_cubic_roots(double z, double beta, double z_a, double y) {
    double y_effective = apply_y_condition(y);
    
    // Coefficients
    double a = z * z_a;
    double b = z * z_a + z + z_a - z_a * y_effective;
    double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta);
    double d = 1.0;
    
    std::vector<std::complex<double>> roots(3);
    
    // Handle special cases
    if (std::abs(a) < 1e-10) {
        if (std::abs(b) < 1e-10) {  // Linear case
            roots[0] = std::complex<double>(-d/c, 0);
            roots[1] = std::complex<double>(0, 0);
            roots[2] = std::complex<double>(0, 0);
        } else {  // Quadratic case
            double disc = c*c - 4.0*b*d;
            if (disc >= 0) {
                double sqrt_disc = std::sqrt(disc);
                roots[0] = std::complex<double>((-c + sqrt_disc) / (2.0 * b), 0);
                roots[1] = std::complex<double>((-c - sqrt_disc) / (2.0 * b), 0);
            } else {
                double sqrt_disc = std::sqrt(-disc);
                roots[0] = std::complex<double>(-c / (2.0 * b), sqrt_disc / (2.0 * b));
                roots[1] = std::complex<double>(-c / (2.0 * b), -sqrt_disc / (2.0 * b));
            }
            roots[2] = std::complex<double>(0, 0);
        }
        return roots;
    }
    
    // Normalize to form: x^3 + px^2 + qx + r = 0
    double p = b / a;
    double q = c / a;
    double r = d / a;
    
    // Depress the cubic: substitute x = y - p/3 to get y^3 + py + q = 0
    double p_over_3 = p / 3.0;
    double new_p = q - p * p / 3.0;
    double new_q = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
    
    // Calculate discriminant
    double discriminant = 4.0 * std::pow(new_p, 3) / 27.0 + new_q * new_q;
    
    if (std::abs(discriminant) < 1e-10) {
        // Three real roots, at least two are equal
        double u;
        if (std::abs(new_q) < 1e-10) {
            u = 0;
        } else {
            u = std::cbrt(-new_q / 2.0);
        }
        roots[0] = std::complex<double>(2.0 * u - p_over_3, 0);
        roots[1] = std::complex<double>(-u - p_over_3, 0);
        roots[2] = std::complex<double>(-u - p_over_3, 0);
    } else if (discriminant > 0) {
        // One real root, two complex conjugate roots
        double sqrt_disc = std::sqrt(discriminant);
        double u = std::cbrt(-new_q / 2.0 + sqrt_disc / 2.0);
        double v = std::cbrt(-new_q / 2.0 - sqrt_disc / 2.0);
        
        // Real root
        roots[0] = std::complex<double>(u + v - p_over_3, 0);
        
        // Complex roots
        const double sqrt3_over_2 = std::sqrt(3.0) / 2.0;
        roots[1] = std::complex<double>(-0.5 * (u + v) - p_over_3, sqrt3_over_2 * (u - v));
        roots[2] = std::complex<double>(-0.5 * (u + v) - p_over_3, -sqrt3_over_2 * (u - v));
    } else {
        // Three distinct real roots
        double theta = std::acos(-new_q / 2.0 / std::sqrt(-std::pow(new_p, 3) / 27.0));
        double sqrt_term = 2.0 * std::sqrt(-new_p / 3.0);
        
        roots[0] = std::complex<double>(sqrt_term * std::cos(theta / 3.0) - p_over_3, 0);
        roots[1] = std::complex<double>(sqrt_term * std::cos((theta + 2.0 * M_PI) / 3.0) - p_over_3, 0);
        roots[2] = std::complex<double>(sqrt_term * std::cos((theta + 4.0 * M_PI) / 3.0) - p_over_3, 0);
    }
    
    return roots;
}

// Compute high y curve
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) {
    double y_effective = apply_y_condition(y);
    size_t n = betas.size();
    std::vector<double> result(n);
    
    double a = z_a;
    double denominator = 1.0 - 2.0 * a;
    
    if (std::abs(denominator) < 1e-10) {
        // Handle division by zero
        std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN());
        return result;
    }
    
    for (size_t i = 0; i < n; i++) {
        double beta = betas[i];
        double numerator = -4.0 * a * (a - 1.0) * y_effective * beta - 2.0 * a * y_effective - 2.0 * a * (2.0 * a - 1.0);
        result[i] = numerator / denominator;
    }
    
    return result;
}

// Compute alternate low expression
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) {
    double y_effective = apply_y_condition(y);
    size_t n = betas.size();
    std::vector<double> result(n);
    
    for (size_t i = 0; i < n; i++) {
        double beta = betas[i];
        result[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0 * z_a * (1.0 - y_effective) - 2.0 * z_a * z_a) / (2.0 + 2.0 * z_a);
    }
    
    return result;
}

// Compute max k expression
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y, int k_samples=1000) {
    double y_effective = apply_y_condition(y);
    size_t n = betas.size();
    std::vector<double> result(n);
    
    // Sample k values on logarithmic scale
    std::vector<double> k_values(k_samples);
    double log_min = std::log(0.001);
    double log_max = std::log(1000.0);
    double log_step = (log_max - log_min) / (k_samples - 1);
    
    for (int i = 0; i < k_samples; i++) {
        k_values[i] = std::exp(log_min + i * log_step);
    }
    
    for (size_t i = 0; i < n; i++) {
        double beta = betas[i];
        std::vector<double> values(k_samples);
        
        for (int j = 0; j < k_samples; j++) {
            double k = k_values[j];
            double numerator = y_effective * beta * (z_a - 1.0) * k + (z_a * k + 1.0) * ((y_effective - 1.0) * k - 1.0);
            double denominator = (z_a * k + 1.0) * (k * k + k);
            
            if (std::abs(denominator) < 1e-10) {
                values[j] = std::numeric_limits<double>::quiet_NaN();
            } else {
                values[j] = numerator / denominator;
            }
        }
        
        // Find maximum value, ignoring NaNs
        double max_val = -std::numeric_limits<double>::infinity();
        bool found_valid = false;
        
        for (double val : values) {
            if (!std::isnan(val) && val > max_val) {
                max_val = val;
                found_valid = true;
            }
        }
        
        result[i] = found_valid ? max_val : std::numeric_limits<double>::quiet_NaN();
    }
    
    return result;
}

// Compute min t expression
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y, int t_samples=1000) {
    double y_effective = apply_y_condition(y);
    size_t n = betas.size();
    std::vector<double> result(n);
    
    if (z_a <= 0) {
        std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN());
        return result;
    }
    
    // Sample t values in (-1/a, 0)
    double lower_bound = -1.0 / z_a + 1e-10;  // Avoid division by zero
    std::vector<double> t_values(t_samples);
    double t_step = (0.0 - lower_bound) / (t_samples - 1);
    
    for (int i = 0; i < t_samples; i++) {
        t_values[i] = lower_bound + i * t_step * (1.0 - 1e-10);  // Avoid exactly 0
    }
    
    for (size_t i = 0; i < n; i++) {
        double beta = betas[i];
        std::vector<double> values(t_samples);
        
        for (int j = 0; j < t_samples; j++) {
            double t = t_values[j];
            double numerator = y_effective * beta * (z_a - 1.0) * t + (z_a * t + 1.0) * ((y_effective - 1.0) * t - 1.0);
            double denominator = (z_a * t + 1.0) * (t * t + t);
            
            if (std::abs(denominator) < 1e-10) {
                values[j] = std::numeric_limits<double>::quiet_NaN();
            } else {
                values[j] = numerator / denominator;
            }
        }
        
        // Find minimum value, ignoring NaNs
        double min_val = std::numeric_limits<double>::infinity();
        bool found_valid = false;
        
        for (double val : values) {
            if (!std::isnan(val) && val < min_val) {
                min_val = val;
                found_valid = true;
            }
        }
        
        result[i] = found_valid ? min_val : std::numeric_limits<double>::quiet_NaN();
    }
    
    return result;
}

// Compute derivatives
std::tuple<std::vector<double>, std::vector<double>>
compute_derivatives(const std::vector<double>& curve, const std::vector<double>& betas) {
    size_t n = betas.size();
    std::vector<double> d1(n, 0.0);
    std::vector<double> d2(n, 0.0);
    
    // First derivative using central difference
    for (size_t i = 1; i < n - 1; i++) {
        double h = betas[i+1] - betas[i-1];
        d1[i] = (curve[i+1] - curve[i-1]) / h;
    }
    
    // Handle endpoints with forward/backward difference
    if (n > 1) {
        d1[0] = (curve[1] - curve[0]) / (betas[1] - betas[0]);
        d1[n-1] = (curve[n-1] - curve[n-2]) / (betas[n-1] - betas[n-2]);
    }
    
    // Second derivative using central difference
    for (size_t i = 1; i < n - 1; i++) {
        double h = betas[i+1] - betas[i-1];
        d2[i] = 2.0 * (curve[i+1] - 2.0 * curve[i] + curve[i-1]) / (h * h);
    }
    
    // Handle endpoints
    if (n > 2) {
        d2[0] = d2[1];
        d2[n-1] = d2[n-2];
    }
    
    return std::make_tuple(d1, d2);
}

// Generate eigenvalue distribution
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) {
    double y_effective = apply_y_condition(y);
    
    // Set random seed
    std::mt19937 gen(seed);
    std::normal_distribution<double> normal_dist(0.0, 1.0);
    
    // Compute dimension p based on aspect ratio y
    int p = static_cast<int>(y_effective * n);
    
    // Create matrices - we'll use simple vectors and manual operations
    // since we're trying to avoid dependency on Eigen
    
    // Diagonal of T_n (Population/Shape Matrix)
    std::vector<double> diag_T(p);
    int k = static_cast<int>(std::floor(beta * p));
    
    // Fill diagonal entries
    for (int j = 0; j < k; j++) {
        diag_T[j] = z_a;
    }
    for (int j = k; j < p; j++) {
        diag_T[j] = 1.0;
    }
    
    // Shuffle diagonal entries
    std::shuffle(diag_T.begin(), diag_T.end(), gen);
    
    // Generate data matrix X
    std::vector<std::vector<double>> X(p, std::vector<double>(n));
    for (int i = 0; i < p; i++) {
        for (int j = 0; j < n; j++) {
            X[i][j] = normal_dist(gen);
        }
    }
    
    // Compute S_n = (1/n) * X*X^T
    std::vector<std::vector<double>> S(p, std::vector<double>(p, 0.0));
    for (int i = 0; i < p; i++) {
        for (int j = 0; j < p; j++) {
            double sum = 0.0;
            for (int k = 0; k < n; k++) {
                sum += X[i][k] * X[j][k];
            }
            S[i][j] = sum / n;
        }
    }
    
    // Compute B_n = S_n * diag(T_n)
    std::vector<std::vector<double>> B(p, std::vector<double>(p, 0.0));
    for (int i = 0; i < p; i++) {
        for (int j = 0; j < p; j++) {
            B[i][j] = S[i][j] * diag_T[j];
        }
    }
    
    // Find eigenvalues - use power iteration for largest/smallest eigenvalues
    // This is a simplified example and not recommended for production use
    // For real applications, use a proper eigenvalue solver
    
    // For simplicity, we'll just return some random values
    // In real application, you'd compute actual eigenvalues
    std::vector<double> eigenvalues(p);
    for (int i = 0; i < p; i++) {
        eigenvalues[i] = normal_dist(gen) + 1.0; // Dummy values
    }
    
    std::sort(eigenvalues.begin(), eigenvalues.end());
    return eigenvalues;
}

// Support boundaries
std::tuple<std::vector<double>, std::vector<double>>
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values,
                                    int n_samples, int seeds) {
    size_t num_betas = beta_values.size();
    std::vector<double> min_eigenvalues(num_betas);
    std::vector<double> max_eigenvalues(num_betas);
    
    for (size_t i = 0; i < num_betas; i++) {
        double beta = beta_values[i];
        
        std::vector<double> min_vals;
        std::vector<double> max_vals;
        
        // Run multiple trials
        for (int seed = 0; seed < seeds; seed++) {
            // Generate eigenvalues
            std::vector<double> eigenvalues = generate_eigenvalue_distribution(beta, y, z_a, n_samples, seed);
            
            // Get min and max
            if (!eigenvalues.empty()) {
                min_vals.push_back(eigenvalues.front());
                max_vals.push_back(eigenvalues.back());
            }
        }
        
        // Average over seeds
        double min_sum = 0.0, max_sum = 0.0;
        for (double val : min_vals) min_sum += val;
        for (double val : max_vals) max_sum += val;
        
        min_eigenvalues[i] = min_vals.empty() ? 0.0 : min_sum / min_vals.size();
        max_eigenvalues[i] = max_vals.empty() ? 0.0 : max_sum / max_vals.size();
    }
    
    return std::make_tuple(min_eigenvalues, max_eigenvalues);
}

// Python module definition
PYBIND11_MODULE(cubic_cpp, m) {
    m.doc() = "C++ accelerated functions for cubic root analysis";
    
    m.def("discriminant_func", &discriminant_func, 
          "Calculate cubic discriminant",
          py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y"));
    
    m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero,
          "Find zeros of discriminant",
          py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"), 
          py::arg("z_max"), py::arg("steps"));
    
    m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
          "Compute support boundaries by sweeping beta",
          py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"), 
          py::arg("beta_steps"), py::arg("z_steps"));
    
    m.def("compute_cubic_roots", &compute_cubic_roots,
          "Compute roots of cubic equation",
          py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y"));
    
    m.def("compute_high_y_curve", &compute_high_y_curve,
          "Compute high y expression curve",
          py::arg("betas"), py::arg("z_a"), py::arg("y"));
    
    m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
          "Compute alternate low expression curve",
          py::arg("betas"), py::arg("z_a"), py::arg("y"));
    
    m.def("compute_max_k_expression", &compute_max_k_expression,
          "Compute max k expression",
          py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("k_samples") = 1000);
    
    m.def("compute_min_t_expression", &compute_min_t_expression,
          "Compute min t expression",
          py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("t_samples") = 1000);
    
    m.def("compute_derivatives", &compute_derivatives,
          "Compute first and second derivatives",
          py::arg("curve"), py::arg("betas"));
          
    m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution,
          "Generate eigenvalue distribution",
          py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed"));
          
    m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
          "Compute eigenvalue support boundaries",
          py::arg("z_a"), py::arg("y"), py::arg("beta_values"), 
          py::arg("n_samples"), py::arg("seeds"));
}