File size: 9,559 Bytes
dd5ca7d
 
 
 
 
80ed07e
 
b7ef8c3
 
 
80ed07e
 
dd5ca7d
 
 
 
 
 
 
 
 
80ed07e
dd5ca7d
 
 
 
 
b7ef8c3
 
dd5ca7d
 
 
 
 
 
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
7bda4fb
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bda4fb
 
 
b7ef8c3
 
 
 
 
 
69d5d64
 
 
b7ef8c3
69d5d64
 
dd5ca7d
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
 
 
 
 
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
b7ef8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go

# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
    page_title="Cubic Root Analysis",
    layout="wide",
    initial_sidebar_state="collapsed"
)

#############################
# 1) Define the discriminant
#############################

# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)

# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym  # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1

# Symbolic expression for the standard cubic discriminant
Delta_expr = (
    ( (b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym) )**2
    + ( c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2) )**3
)

# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")

@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps=20000):
    """
    Numerically scan z in [z_min, z_max] looking for sign changes of
    Delta(z) = 0. Returns all roots found via bisection.
    """
    z_grid = np.linspace(z_min, z_max, steps)
    disc_vals = discriminant_func(z_grid, beta, z_a, y)
    
    roots_found = []
    
    # Scan for sign changes
    for i in range(len(z_grid) - 1):
        f1, f2 = disc_vals[i], disc_vals[i+1]
        if np.isnan(f1) or np.isnan(f2):
            continue
        
        if f1 == 0.0:
            roots_found.append(z_grid[i])
        elif f2 == 0.0:
            roots_found.append(z_grid[i+1])
        elif f1*f2 < 0:
            zl = z_grid[i]
            zr = z_grid[i+1]
            for _ in range(50):
                mid = 0.5*(zl + zr)
                fm = discriminant_func(mid, beta, z_a, y)
                if fm == 0:
                    zl = zr = mid
                    break
                if np.sign(fm) == np.sign(f1):
                    zl = mid
                    f1 = fm
                else:
                    zr = mid
                    f2 = fm
            root_approx = 0.5*(zl + zr)
            roots_found.append(root_approx)
    
    return np.array(roots_found)

@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=51):
    """
    For each beta, find both the largest and smallest z where discriminant=0.
    Returns (betas, z_min_values, z_max_values).
    """
    betas = np.linspace(0, 1, beta_steps)
    z_min_values = []
    z_max_values = []
    
    for b in betas:
        roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max)
        if len(roots) == 0:
            z_min_values.append(np.nan)
            z_max_values.append(np.nan)
        else:
            z_min_values.append(np.min(roots))
            z_max_values.append(np.max(roots))
    
    return betas, np.array(z_min_values), np.array(z_max_values)

@st.cache_data
def compute_low_y_curve(betas, z_a, y):
    """
    Compute the additional curve with proper handling of divide by zero cases
    """
    betas = np.array(betas)
    with np.errstate(invalid='ignore', divide='ignore'):
        sqrt_term = y * betas * (z_a - 1)
        sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
        
        term = (-1 + sqrt_term)/z_a
        numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
        denominator = term**2 + term
        
        # Handle division by zero and invalid values
        result = np.zeros_like(betas)
        mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
        result[mask] = numerator[mask] / denominator[mask]
        result[~mask] = np.nan
        
        return result

@st.cache_data
def compute_high_y_curve(betas, z_a, y):
    """
    Compute the expression: ((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
    """
    a = z_a  # for clarity in the formula
    betas = np.array(betas)
    
    denominator = 3*(4 - a)
    if denominator == 0:
        return np.full_like(betas, np.nan)
        
    numerator = (4*y + 12)*(4 - a) + 16*y*betas*(a - 1)
    return numerator/denominator

def generate_z_vs_beta_plot(z_a, y, z_min, z_max):
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None
    
    beta_steps = 101
    betas = np.linspace(0, 1, beta_steps)
    
    betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=beta_steps)
    low_y_curve = compute_low_y_curve(betas, z_a, y)
    high_y_curve = compute_high_y_curve(betas, z_a, y)
    
    fig = go.Figure()
    
    # Upper and lower z*(β) boundaries
    fig.add_trace(
        go.Scatter(
            x=betas,
            y=z_maxs,
            mode="markers+lines",
            name="Upper z*(β)",
            marker=dict(size=5, color='blue'),
            line=dict(color='blue'),
        )
    )
    
    fig.add_trace(
        go.Scatter(
            x=betas,
            y=z_mins,
            mode="markers+lines",
            name="Lower z*(β)",
            marker=dict(size=5, color='lightblue'),
            line=dict(color='lightblue'),
        )
    )
    
    # Asymptotic expressions
    fig.add_trace(
        go.Scatter(
            x=betas,
            y=low_y_curve,
            mode="markers+lines",
            name="Low y Expression",
            marker=dict(size=5, color='red'),
            line=dict(color='red'),
        )
    )
    
    fig.add_trace(
        go.Scatter(
            x=betas,
            y=high_y_curve,
            mode="markers+lines",
            name="High y Expression",
            marker=dict(size=5, color='green'),
            line=dict(color='green'),
        )
    )
    
    fig.update_layout(
        title="Curves vs β: z*(β) boundaries and Asymptotic Expressions",
        xaxis_title="β",
        yaxis_title="Value",
        hovermode="x unified",
    )
    return fig

@st.cache_data
def compute_cubic_roots(z, beta, z_a, y):
    """
    Compute the roots of the cubic equation for given parameters.
    Returns array of complex roots.
    """
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y  # Fixed coefficient b
    c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
    d = 1
    
    coeffs = [a, b, c, d]
    roots = np.roots(coeffs)
    return roots

def generate_ims_vs_z_plot(beta, y, z_a, z_min, z_max):
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None
    
    z_points = np.linspace(z_min, z_max, 1000)
    ims = []
    
    for z in z_points:
        roots = compute_cubic_roots(z, beta, z_a, y)
        roots = sorted(roots, key=lambda x: abs(x.imag))
        ims.append([root.imag for root in roots])
    
    ims = np.array(ims)
    
    fig = go.Figure()
    
    for i in range(3):
        fig.add_trace(
            go.Scatter(
                x=z_points,
                y=ims[:,i],
                mode="lines",
                name=f"Im{{s{i+1}}}",
                line=dict(width=2),
            )
        )
    
    fig.update_layout(
        title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
        xaxis_title="z",
        yaxis_title="Im{s}",
        hovermode="x unified",
    )
    return fig

# Streamlit UI
st.title("Cubic Root Analysis")

tab1, tab2 = st.tabs(["z*(β) Curves", "Im{s} vs. z"])

with tab1:
    st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
        y_1 = st.number_input("y", value=1.0, key="y_1")
        z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
        z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
        
        if st.button("Compute z vs. β Curves"):
            with col2:
                fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1)
                if fig is not None:
                    st.plotly_chart(fig, use_container_width=True)
                    
                    st.markdown("### Additional Expressions")
                    st.markdown("""
                    **Low y Expression (Red):**
                    ```
                    ((y - 2)*(-1 + sqrt(y*β*(a-1)))/a + y*β*((a-1)/a) - 1/a - 1) / 
                    ((-1 + sqrt(y*β*(a-1)))/a)^2 + (-1 + sqrt(y*β*(a-1)))/a)
                    ```
                    
                    **High y Expression (Green):**
                    ```
                    ((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
                    ```
                    where a = z_a
                    """)

with tab2:
    st.header("Plot Imaginary Parts of Roots vs. z")
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
        y_2 = st.number_input("y", value=1.0, key="y_2")
        z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
        z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
        z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
        
        if st.button("Compute Im{s} vs. z"):
            with col2:
                fig = generate_ims_vs_z_plot(beta, y_2, z_a_2, z_min_2, z_max_2)
                if fig is not None:
                    st.plotly_chart(fig, use_container_width=True)