Spaces:
Running
Running
File size: 9,559 Bytes
dd5ca7d 80ed07e b7ef8c3 80ed07e dd5ca7d 80ed07e dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 dd5ca7d 7bda4fb b7ef8c3 7bda4fb b7ef8c3 69d5d64 b7ef8c3 69d5d64 dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 dd5ca7d b7ef8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
#############################
# 1) Define the discriminant
#############################
# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the standard cubic discriminant
Delta_expr = (
( (b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym) )**2
+ ( c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2) )**3
)
# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps=20000):
"""
Numerically scan z in [z_min, z_max] looking for sign changes of
Delta(z) = 0. Returns all roots found via bisection.
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
# Scan for sign changes
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1*f2 < 0:
zl = z_grid[i]
zr = z_grid[i+1]
for _ in range(50):
mid = 0.5*(zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl = mid
f1 = fm
else:
zr = mid
f2 = fm
root_approx = 0.5*(zl + zr)
roots_found.append(root_approx)
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=51):
"""
For each beta, find both the largest and smallest z where discriminant=0.
Returns (betas, z_min_values, z_max_values).
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the additional curve with proper handling of divide by zero cases
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term)/z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
# Handle division by zero and invalid values
result = np.zeros_like(betas)
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
result[mask] = numerator[mask] / denominator[mask]
result[~mask] = np.nan
return result
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the expression: ((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
"""
a = z_a # for clarity in the formula
betas = np.array(betas)
denominator = 3*(4 - a)
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = (4*y + 12)*(4 - a) + 16*y*betas*(a - 1)
return numerator/denominator
def generate_z_vs_beta_plot(z_a, y, z_min, z_max):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
beta_steps = 101
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=beta_steps)
low_y_curve = compute_low_y_curve(betas, z_a, y)
high_y_curve = compute_high_y_curve(betas, z_a, y)
fig = go.Figure()
# Upper and lower z*(β) boundaries
fig.add_trace(
go.Scatter(
x=betas,
y=z_maxs,
mode="markers+lines",
name="Upper z*(β)",
marker=dict(size=5, color='blue'),
line=dict(color='blue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=z_mins,
mode="markers+lines",
name="Lower z*(β)",
marker=dict(size=5, color='lightblue'),
line=dict(color='lightblue'),
)
)
# Asymptotic expressions
fig.add_trace(
go.Scatter(
x=betas,
y=low_y_curve,
mode="markers+lines",
name="Low y Expression",
marker=dict(size=5, color='red'),
line=dict(color='red'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=high_y_curve,
mode="markers+lines",
name="High y Expression",
marker=dict(size=5, color='green'),
line=dict(color='green'),
)
)
fig.update_layout(
title="Curves vs β: z*(β) boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
)
return fig
@st.cache_data
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
Returns array of complex roots.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y # Fixed coefficient b
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_ims_vs_z_plot(beta, y, z_a, z_min, z_max):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
z_points = np.linspace(z_min, z_max, 1000)
ims = []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
ims = np.array(ims)
fig = go.Figure()
for i in range(3):
fig.add_trace(
go.Scatter(
x=z_points,
y=ims[:,i],
mode="lines",
name=f"Im{{s{i+1}}}",
line=dict(width=2),
)
)
fig.update_layout(
title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Im{s}",
hovermode="x unified",
)
return fig
# Streamlit UI
st.title("Cubic Root Analysis")
tab1, tab2 = st.tabs(["z*(β) Curves", "Im{s} vs. z"])
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
if st.button("Compute z vs. β Curves"):
with col2:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Additional Expressions")
st.markdown("""
**Low y Expression (Red):**
```
((y - 2)*(-1 + sqrt(y*β*(a-1)))/a + y*β*((a-1)/a) - 1/a - 1) /
((-1 + sqrt(y*β*(a-1)))/a)^2 + (-1 + sqrt(y*β*(a-1)))/a)
```
**High y Expression (Green):**
```
((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
```
where a = z_a
""")
with tab2:
st.header("Plot Imaginary Parts of Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
y_2 = st.number_input("y", value=1.0, key="y_2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
if st.button("Compute Im{s} vs. z"):
with col2:
fig = generate_ims_vs_z_plot(beta, y_2, z_a_2, z_min_2, z_max_2)
if fig is not None:
st.plotly_chart(fig, use_container_width=True) |