Spaces:
Running
Running
File size: 24,123 Bytes
90b89d9 5e27608 90b89d9 2244d56 90b89d9 5e27608 90b89d9 5e27608 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 fefe0f9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 5e27608 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 2244d56 90b89d9 fefe0f9 90b89d9 2244d56 90b89d9 fefe0f9 90b89d9 fefe0f9 90b89d9 2244d56 90b89d9 fefe0f9 90b89d9 2244d56 90b89d9 fefe0f9 90b89d9 fefe0f9 2244d56 5e27608 2244d56 5e27608 90b89d9 2244d56 fefe0f9 90b89d9 2244d56 5e27608 2244d56 90b89d9 2244d56 90b89d9 2244d56 5e27608 90b89d9 fefe0f9 90b89d9 fefe0f9 90b89d9 fefe0f9 90b89d9 5e27608 90b89d9 fefe0f9 90b89d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <vector>
#include <complex>
#include <cmath>
#include <algorithm>
#include <random>
namespace py = pybind11;
// Apply the condition for y
double apply_y_condition(double y) {
return y > 1.0 ? y : 1.0 / y;
}
// Fast discriminant calculation
double discriminant_func(double z, double beta, double z_a, double y) {
double y_effective = apply_y_condition(y);
// Coefficients
double a = z * z_a;
double b = z * z_a + z + z_a - z_a * y_effective;
double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta);
double d = 1.0;
// Standard formula for cubic discriminant - optimized calculation
double p1 = b*c/(6.0*a*a);
double p2 = b*b*b/(27.0*a*a*a);
double p3 = d/(2.0*a);
double term1 = p1 - p2 - p3;
term1 *= term1;
double q1 = c/(3.0*a);
double q2 = b*b/(9.0*a*a);
double term2 = q1 - q2;
term2 = term2*term2*term2;
return term1 + term2;
}
// Function to compute the theoretical max value - optimized with fewer function calls
double compute_theoretical_max(double a, double y, double beta) {
// Exit early if parameters would cause division by zero or other issues
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) {
return 0.0;
}
// Precompute constants for the formula
double y_effective = apply_y_condition(y);
double beta_term = y_effective * beta * (a - 1);
double y_term = y_effective - 1.0;
auto f = [a, beta_term, y_term, y_effective](double k) -> double {
// Fast evaluation of the function
double ak_plus_1 = a * k + 1.0;
double numerator = beta_term * k + ak_plus_1 * (y_term * k - 1.0);
double denominator = ak_plus_1 * (k * k + k) * y_effective;
return numerator / denominator;
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial fast grid search with fewer points
const int num_grid_points = 50; // Reduced from 200
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1);
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = 1.618033988749895;
const double tolerance = 1e-6; // Increased from 1e-10 for speed
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
double fc = f(c_gs);
double fd = f(d_gs);
// Limited iterations for faster convergence
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) {
if (fc > fd) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
fd = fc;
fc = f(c_gs);
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
fc = fd;
fd = f(d_gs);
}
}
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value - optimized similarly
double compute_theoretical_min(double a, double y, double beta) {
// Exit early if parameters would cause division by zero or other issues
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) {
return 0.0;
}
// Precompute constants
double y_effective = apply_y_condition(y);
double beta_term = y_effective * beta * (a - 1);
double y_term = y_effective - 1.0;
auto f = [a, beta_term, y_term, y_effective](double t) -> double {
double at_plus_1 = a * t + 1.0;
double numerator = beta_term * t + at_plus_1 * (y_term * t - 1.0);
double denominator = at_plus_1 * (t * t + t) * y_effective;
return numerator / denominator;
};
// Initial bound check
if (a <= 0) return 0.0;
// Find midpoint of range as starting guess
double best_t = -0.5 / a;
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = 50; // Reduced from 200
double range = 0.998/a;
double start = -0.999/a;
for (int i = 1; i < num_grid_points; ++i) {
double t = start + range * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue;
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = start;
double b_gs = -0.001/a;
const double golden_ratio = 1.618033988749895;
const double tolerance = 1e-6; // Increased from 1e-10
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
double fc = f(c_gs);
double fd = f(d_gs);
// Limited iterations
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) {
if (fc < fd) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
fd = fc;
fc = f(c_gs);
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
fc = fd;
fd = f(d_gs);
}
}
return f((a_gs + b_gs) / 2.0);
}
// Fast eigendecomposition of a symmetric matrix using Jacobi method
void eigen_decomposition(const std::vector<std::vector<double>>& matrix,
std::vector<double>& eigenvalues) {
int n = matrix.size();
eigenvalues.resize(n);
// Copy matrix for computation
std::vector<std::vector<double>> a = matrix;
// Allocate temp arrays
std::vector<double> d(n);
std::vector<double> z(n, 0.0);
// Initialize eigenvalues with diagonal elements
for (int i = 0; i < n; i++) {
d[i] = a[i][i];
}
// Main algorithm: Jacobi rotations
const int MAX_ITER = 50; // Limit iterations for speed
for (int iter = 0; iter < MAX_ITER; iter++) {
// Sum off-diagonal elements
double sum = 0.0;
for (int i = 0; i < n-1; i++) {
for (int j = i+1; j < n; j++) {
sum += std::abs(a[i][j]);
}
}
// Check for convergence
if (sum < 1e-8) break;
for (int p = 0; p < n-1; p++) {
for (int q = p+1; q < n; q++) {
double theta, t, c, s;
// Skip very small elements
if (std::abs(a[p][q]) < 1e-10) continue;
// Compute rotation angle
theta = 0.5 * std::atan2(2*a[p][q], a[p][p] - a[q][q]);
c = std::cos(theta);
s = std::sin(theta);
t = std::tan(theta);
// Update diagonal elements
double h = t * a[p][q];
z[p] -= h;
z[q] += h;
d[p] -= h;
d[q] += h;
// Set off-diagonal element to zero
a[p][q] = 0.0;
// Update other elements
for (int i = 0; i < p; i++) {
double g = a[i][p], h = a[i][q];
a[i][p] = c*g - s*h;
a[i][q] = s*g + c*h;
}
for (int i = p+1; i < q; i++) {
double g = a[p][i], h = a[i][q];
a[p][i] = c*g - s*h;
a[i][q] = s*g + c*h;
}
for (int i = q+1; i < n; i++) {
double g = a[p][i], h = a[q][i];
a[p][i] = c*g - s*h;
a[q][i] = s*g + c*h;
}
}
}
// Update eigenvalues
for (int i = 0; i < n; i++) {
d[i] += z[i];
z[i] = 0.0;
}
}
// Return eigenvalues
eigenvalues = d;
}
// Optimized matrix multiplication: C = A * B
void matrix_multiply(const std::vector<std::vector<double>>& A,
const std::vector<std::vector<double>>& B,
std::vector<std::vector<double>>& C) {
int m = A.size();
int n = B[0].size();
int k = A[0].size();
C.resize(m, std::vector<double>(n, 0.0));
// Transpose B for better cache locality
std::vector<std::vector<double>> B_t(n, std::vector<double>(k, 0.0));
for (int i = 0; i < k; i++) {
for (int j = 0; j < n; j++) {
B_t[j][i] = B[i][j];
}
}
// Multiply with transposed B
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int l = 0; l < k; l++) {
sum += A[i][l] * B_t[j][l];
}
C[i][j] = sum;
}
}
}
// Highly optimized eigenvalue computation for a given beta
std::tuple<double, double> compute_eigenvalues_for_beta(double z_a, double y, double beta, int n, int seed) {
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X (with pre-allocation)
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = norm(gen);
}
}
// Compute X * X^T / n - optimized matrix multiplication
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j <= i; j++) { // Compute only lower triangle
double sum = 0.0;
for (int k = 0; k < n; k++) {
sum += X[i][k] * X[j][k];
}
sum /= n;
S_n[i][j] = sum;
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle
}
}
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Create T_sqrt diagonal matrix
std::vector<double> t_sqrt_diag(p);
for (int i = 0; i < p; i++) {
t_sqrt_diag[i] = std::sqrt(diags[i]);
}
// Compute B = T_sqrt * S_n * T_sqrt directly without full matrix multiplication
// (optimize for diagonal T_sqrt)
std::vector<std::vector<double>> B(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < p; j++) {
B[i][j] = S_n[i][j] * t_sqrt_diag[i] * t_sqrt_diag[j];
}
}
// Compute eigenvalues efficiently
std::vector<double> eigenvalues;
eigen_decomposition(B, eigenvalues);
// Sort eigenvalues
std::sort(eigenvalues.begin(), eigenvalues.end());
// Return min and max
return std::make_tuple(eigenvalues.front(), eigenvalues.back());
}
// Fast computation of eigenvalue support boundaries
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>, std::vector<double>>
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values,
int n_samples, int seeds) {
size_t num_betas = beta_values.size();
std::vector<double> min_eigenvalues(num_betas, 0.0);
std::vector<double> max_eigenvalues(num_betas, 0.0);
std::vector<double> theoretical_min_values(num_betas, 0.0);
std::vector<double> theoretical_max_values(num_betas, 0.0);
// Pre-compute theoretical values for all betas (can be done in parallel)
#pragma omp parallel for if(num_betas > 10)
for (size_t i = 0; i < num_betas; i++) {
double beta = beta_values[i];
theoretical_max_values[i] = compute_theoretical_max(z_a, y, beta);
theoretical_min_values[i] = compute_theoretical_min(z_a, y, beta);
}
// Compute eigenvalues for all betas (more expensive)
for (size_t i = 0; i < num_betas; i++) {
double beta = beta_values[i];
std::vector<double> min_vals;
std::vector<double> max_vals;
// Use just one seed for speed if the seeds parameter is small
int actual_seeds = (seeds <= 2) ? 1 : seeds;
for (int seed = 0; seed < actual_seeds; seed++) {
auto [min_eig, max_eig] = compute_eigenvalues_for_beta(z_a, y, beta, n_samples, seed);
min_vals.push_back(min_eig);
max_vals.push_back(max_eig);
}
// Average over seeds
double min_sum = 0.0, max_sum = 0.0;
for (double val : min_vals) min_sum += val;
for (double val : max_vals) max_sum += val;
min_eigenvalues[i] = min_sum / min_vals.size();
max_eigenvalues[i] = max_sum / max_vals.size();
}
return std::make_tuple(min_eigenvalues, max_eigenvalues, theoretical_min_values, theoretical_max_values);
}
// Very optimized version to find zeros of discriminant
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta,
double z_min, double z_max, int steps) {
std::vector<double> roots_found;
double y_effective = apply_y_condition(y);
// Adaptive step size for better accuracy in important regions
double step = (z_max - z_min) / (steps - 1);
// Evaluate discriminant at first point
double z_prev = z_min;
double f_prev = discriminant_func(z_prev, beta, z_a, y_effective);
// Scan through the range looking for sign changes
for (int i = 1; i < steps; ++i) {
double z_curr = z_min + i * step;
double f_curr = discriminant_func(z_curr, beta, z_a, y_effective);
if (std::isnan(f_prev) || std::isnan(f_curr)) {
z_prev = z_curr;
f_prev = f_curr;
continue;
}
// Check for exact zero
if (f_prev == 0.0) {
roots_found.push_back(z_prev);
}
else if (f_curr == 0.0) {
roots_found.push_back(z_curr);
}
// Check for sign change
else if (f_prev * f_curr < 0) {
// Binary search for more precise zero
double zl = z_prev;
double zr = z_curr;
double fl = f_prev;
double fr = f_curr;
// Fewer iterations, still good precision
for (int iter = 0; iter < 20; iter++) {
double zm = (zl + zr) / 2;
double fm = discriminant_func(zm, beta, z_a, y_effective);
if (fm == 0.0 || std::abs(zr - zl) < 1e-8) {
roots_found.push_back(zm);
break;
}
if ((fm < 0 && fl < 0) || (fm > 0 && fl > 0)) {
zl = zm;
fl = fm;
} else {
zr = zm;
fr = fm;
}
}
if (std::abs(zr - zl) >= 1e-8) {
// Add the midpoint if we didn't converge fully
roots_found.push_back((zl + zr) / 2);
}
}
z_prev = z_curr;
f_prev = f_curr;
}
return roots_found;
}
// Compute z bounds but with fewer steps for speed
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>>
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max,
int beta_steps, int z_steps) {
std::vector<double> betas(beta_steps);
std::vector<double> z_min_values(beta_steps);
std::vector<double> z_max_values(beta_steps);
// Use fewer z steps for faster computation
int actual_z_steps = std::min(z_steps, 10000);
double beta_step = 1.0 / (beta_steps - 1);
for (int i = 0; i < beta_steps; i++) {
betas[i] = i * beta_step;
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, actual_z_steps);
if (roots.empty()) {
z_min_values[i] = std::numeric_limits<double>::quiet_NaN();
z_max_values[i] = std::numeric_limits<double>::quiet_NaN();
} else {
// Find min and max roots
double min_root = *std::min_element(roots.begin(), roots.end());
double max_root = *std::max_element(roots.begin(), roots.end());
z_min_values[i] = min_root;
z_max_values[i] = max_root;
}
}
return std::make_tuple(betas, z_min_values, z_max_values);
}
// Fast implementations of curve computations
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
double a = z_a;
double denominator = 1.0 - 2.0 * a;
if (std::abs(denominator) < 1e-10) {
std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN());
return result;
}
// Precompute constants
double term1 = -2.0 * a * y_effective;
double term2 = -2.0 * a * (2.0 * a - 1.0);
double term3 = -4.0 * a * (a - 1.0) * y_effective;
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
double numerator = term3 * beta + term1 + term2;
result[i] = numerator / denominator;
}
return result;
}
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
// Precompute constants
double term1 = -2.0 * z_a * (1.0 - y_effective);
double term2 = -2.0 * z_a * z_a;
double term3 = z_a * y_effective * (z_a - 1.0);
double denominator = 2.0 + 2.0 * z_a;
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
result[i] = (term3 * beta + term1 + term2) / denominator;
}
return result;
}
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
// Since we've optimized compute_theoretical_max, just call it in a loop
#pragma omp parallel for if(n > 20)
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_max(z_a, y, betas[i]);
}
return result;
}
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
// Similarly for min
#pragma omp parallel for if(n > 20)
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_min(z_a, y, betas[i]);
}
return result;
}
// Generate eigenvalue distribution - faster implementation
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) {
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = norm(gen);
}
}
// Compute S_n = X * X^T / n efficiently
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j <= i; j++) { // Compute only lower triangle
double sum = 0.0;
for (int k = 0; k < n; k++) {
sum += X[i][k] * X[j][k];
}
sum /= n;
S_n[i][j] = sum;
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle
}
}
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Compute B_n = S_n * diag(T_n) efficiently
std::vector<std::vector<double>> B_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < p; j++) {
B_n[i][j] = S_n[i][j] * diags[j];
}
}
// Compute eigenvalues efficiently
std::vector<double> eigenvalues;
eigen_decomposition(B_n, eigenvalues);
// Sort eigenvalues
std::sort(eigenvalues.begin(), eigenvalues.end());
return eigenvalues;
}
// Python module definition
PYBIND11_MODULE(cubic_cpp, m) {
m.doc() = "C++ accelerated functions for cubic root analysis";
m.def("discriminant_func", &discriminant_func,
"Calculate cubic discriminant",
py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y"));
m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero,
"Find zeros of discriminant",
py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"),
py::arg("z_max"), py::arg("steps"));
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
"Compute support boundaries by sweeping beta",
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"),
py::arg("beta_steps"), py::arg("z_steps"));
m.def("compute_theoretical_max", &compute_theoretical_max,
"Compute theoretical maximum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_theoretical_min", &compute_theoretical_min,
"Compute theoretical minimum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
"Compute empirical and theoretical eigenvalue support boundaries",
py::arg("z_a"), py::arg("y"), py::arg("beta_values"),
py::arg("n_samples"), py::arg("seeds"));
m.def("compute_high_y_curve", &compute_high_y_curve,
"Compute high y expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
"Compute alternate low expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_max_k_expression", &compute_max_k_expression,
"Compute max k expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_min_t_expression", &compute_min_t_expression,
"Compute min t expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_derivatives", &compute_derivatives,
"Compute first and second derivatives",
py::arg("curve"), py::arg("betas"));
m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution,
"Generate eigenvalue distribution for a specific beta",
py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed"));
} |