File size: 18,114 Bytes
dd5ca7d
 
 
 
a76f82e
dd5ca7d
80ed07e
 
2690664
 
 
80ed07e
 
dd5ca7d
 
 
 
 
 
 
 
 
80ed07e
dd5ca7d
 
 
 
 
2690664
 
dd5ca7d
 
 
 
 
 
2690664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
2690664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
 
7bda4fb
2690664
 
 
 
 
 
 
 
 
3a146be
 
2690664
 
 
7bda4fb
 
 
6333e73
 
 
 
 
 
 
 
 
 
7834b48
6333e73
dd5ca7d
99f6a90
f1f1cff
 
 
 
99f6a90
f1f1cff
99f6a90
 
 
 
f1f1cff
99f6a90
 
 
 
f1f1cff
 
99f6a90
 
 
f1f1cff
 
 
 
99f6a90
f1f1cff
 
2690664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f1cff
 
 
 
 
 
 
 
 
 
 
 
 
 
2690664
f1f1cff
2690664
 
 
 
 
dd5ca7d
 
2690664
 
 
 
 
 
 
 
 
 
 
dd5ca7d
2690664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76f82e
 
2690664
 
a76f82e
 
2690664
 
a76f82e
2690664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76f82e
2690664
a860d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6361a
 
 
 
 
 
 
dd5ca7d
 
 
 
a76f82e
dd5ca7d
 
ba9a480
 
 
 
 
 
 
 
 
b278b60
2690664
 
 
 
f1f1cff
 
 
 
 
 
 
ba9a480
 
f1f1cff
 
 
ba9a480
 
 
 
 
 
 
f1f1cff
 
ba9a480
 
 
 
f1f1cff
ba9a480
f1f1cff
ba9a480
f1f1cff
dd5ca7d
ef6361a
b7ef8c3
 
 
 
 
 
 
 
 
 
2690664
 
 
ef6361a
ba9a480
2690664
ef6361a
 
 
a76f82e
 
 
 
 
 
 
7ac6a51
 
a76f82e
7ac6a51
a76f82e
 
 
 
 
2690664
 
 
 
 
f1f1cff
2690664
 
 
ba9a480
 
 
2690664
ba9a480
 
 
 
 
 
 
 
f1f1cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve

# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
   page_title="Cubic Root Analysis",
   layout="wide",
   initial_sidebar_state="collapsed"
)

#############################
# 1) Define the discriminant
#############################

# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)

# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym  # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1

# Symbolic expression for the standard cubic discriminant
Delta_expr = (
   ( (b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym) )**2
   + ( c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2) )**3
)

# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")

@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
   """
   Numerically scan z in [z_min, z_max] looking for sign changes of
   Delta(z) = 0. Returns all roots found via bisection.
   """
   z_grid = np.linspace(z_min, z_max, steps)
   disc_vals = discriminant_func(z_grid, beta, z_a, y)
   
   roots_found = []
   
   # Scan for sign changes
   for i in range(len(z_grid) - 1):
       f1, f2 = disc_vals[i], disc_vals[i+1]
       if np.isnan(f1) or np.isnan(f2):
           continue
       
       if f1 == 0.0:
           roots_found.append(z_grid[i])
       elif f2 == 0.0:
           roots_found.append(z_grid[i+1])
       elif f1*f2 < 0:
           zl = z_grid[i]
           zr = z_grid[i+1]
           for _ in range(50):
               mid = 0.5*(zl + zr)
               fm = discriminant_func(mid, beta, z_a, y)
               if fm == 0:
                   zl = zr = mid
                   break
               if np.sign(fm) == np.sign(f1):
                   zl = mid
                   f1 = fm
               else:
                   zr = mid
                   f2 = fm
           root_approx = 0.5*(zl + zr)
           roots_found.append(root_approx)
   
   return np.array(roots_found)

@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
   """
   For each beta, find both the largest and smallest z where discriminant=0.
   Returns (betas, z_min_values, z_max_values).
   """
   betas = np.linspace(0, 1, beta_steps)
   z_min_values = []
   z_max_values = []
   
   for b in betas:
       roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
       if len(roots) == 0:
           z_min_values.append(np.nan)
           z_max_values.append(np.nan)
       else:
           z_min_values.append(np.min(roots))
           z_max_values.append(np.max(roots))
   
   return betas, np.array(z_min_values), np.array(z_max_values)

@st.cache_data
def compute_low_y_curve(betas, z_a, y):
   """
   Compute the additional curve with proper handling of divide by zero cases
   """
   betas = np.array(betas)
   with np.errstate(invalid='ignore', divide='ignore'):
       sqrt_term = y * betas * (z_a - 1)
       sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
       
       term = (-1 + sqrt_term)/z_a
       numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
       denominator = term**2 + term
       # Handle division by zero and invalid values
       mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
       return np.where(mask, numerator/denominator, np.nan)

@st.cache_data
def compute_high_y_curve(betas, z_a, y):
    """
    Compute the expression: (-4a(a-1)yβ - 2ay + 2a(2a-1))/(1-2a)
    """
    a = z_a  # for clarity in the formula
    betas = np.array(betas)
    denominator = 1 - 2*a
    
    if denominator == 0:
        return np.full_like(betas, np.nan)
        
    numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
    return numerator/denominator


def compute_custom_expression(betas, z_a, y, num_expr_str, denom_expr_str):
    """
    Compute a custom curve given numerator and denominator expressions 
    as strings that can depend on z_a, beta, and y.
    Allows 'a' as an alias for z_a.
    """
    # Define allowed symbols. Also allow 'a' as an alias for z_a.
    beta_sym, z_a_sym, y_sym, a_sym = sp.symbols("beta z_a y a", positive=True)
    local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "a": z_a_sym}
    
    try:
        num_expr = sp.sympify(num_expr_str, locals=local_dict)
        denom_expr = sp.sympify(denom_expr_str, locals=local_dict)
    except sp.SympifyError as e:
        st.error(f"Error parsing expressions: {e}")
        return np.full_like(betas, np.nan)
    
    num_func = sp.lambdify((beta_sym, z_a_sym, y_sym), num_expr, modules=["numpy"])
    denom_func = sp.lambdify((beta_sym, z_a_sym, y_sym), denom_expr, modules=["numpy"])
    
    with np.errstate(divide='ignore', invalid='ignore'):
        result = num_func(betas, z_a, y) / denom_func(betas, z_a, y)
    return result


def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
                            custom_num_expr=None, custom_denom_expr=None):
   if z_a <= 0 or y <= 0 or z_min >= z_max:
       st.error("Invalid input parameters.")
       return None
   
   betas = np.linspace(0, 1, beta_steps)
   
   betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
   low_y_curve = compute_low_y_curve(betas, z_a, y)
   high_y_curve = compute_high_y_curve(betas, z_a, y)
   
   fig = go.Figure()
   
   fig.add_trace(
       go.Scatter(
           x=betas,
           y=z_maxs,
           mode="markers+lines",
           name="Upper z*(β)",
           marker=dict(size=5, color='blue'),
           line=dict(color='blue'),
       )
   )
   
   fig.add_trace(
       go.Scatter(
           x=betas,
           y=z_mins,
           mode="markers+lines",
           name="Lower z*(β)",
           marker=dict(size=5, color='lightblue'),
           line=dict(color='lightblue'),
       )
   )
   
   fig.add_trace(
       go.Scatter(
           x=betas,
           y=low_y_curve,
           mode="markers+lines",
           name="Low y Expression",
           marker=dict(size=5, color='red'),
           line=dict(color='red'),
       )
   )
   
   fig.add_trace(
       go.Scatter(
           x=betas,
           y=high_y_curve,
           mode="markers+lines",
           name="High y Expression",
           marker=dict(size=5, color='green'),
           line=dict(color='green'),
       )
   )
   
   # Add custom expression if both numerator and denominator are provided
   if custom_num_expr and custom_denom_expr:
       custom_curve = compute_custom_expression(betas, z_a, y, custom_num_expr, custom_denom_expr)
       fig.add_trace(
           go.Scatter(
               x=betas,
               y=custom_curve,
               mode="markers+lines",
               name="Custom Expression",
               marker=dict(size=5, color='purple'),
               line=dict(color='purple'),
           )
       )
   
   fig.update_layout(
       title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
       xaxis_title="β",
       yaxis_title="Value",
       hovermode="x unified",
   )
   return fig

def compute_cubic_roots(z, beta, z_a, y):
   """
   Compute the roots of the cubic equation for given parameters.
   """
   a = z * z_a
   b = z * z_a + z + z_a - z_a*y
   c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
   d = 1
   
   coeffs = [a, b, c, d]
   roots = np.roots(coeffs)
   return roots

def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
   """Generate both Im(s) and Re(s) vs. z plots"""
   if z_a <= 0 or y <= 0 or z_min >= z_max:
       st.error("Invalid input parameters.")
       return None, None
   
   z_points = np.linspace(z_min, z_max, n_points)
   ims = []
   res = []
   
   for z in z_points:
       roots = compute_cubic_roots(z, beta, z_a, y)
       roots = sorted(roots, key=lambda x: abs(x.imag))
       ims.append([root.imag for root in roots])
       res.append([root.real for root in roots])
   
   ims = np.array(ims)
   res = np.array(res)
   
   # Create Im(s) plot
   fig_im = go.Figure()
   for i in range(3):
       fig_im.add_trace(
           go.Scatter(
               x=z_points,
               y=ims[:,i],
               mode="lines",
               name=f"Im{{s{i+1}}}",
               line=dict(width=2),
           )
       )
   fig_im.update_layout(
       title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
       xaxis_title="z",
       yaxis_title="Im{s}",
       hovermode="x unified",
   )
   
   # Create Re(s) plot
   fig_re = go.Figure()
   for i in range(3):
       fig_re.add_trace(
           go.Scatter(
               x=z_points,
               y=res[:,i],
               mode="lines",
               name=f"Re{{s{i+1}}}",
               line=dict(width=2),
           )
       )
   fig_re.update_layout(
       title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
       xaxis_title="z",
       yaxis_title="Re{s}",
       hovermode="x unified",
   )
   
   return fig_im, fig_re

def curve1(s, z, y):
   """First curve: z*s^2 + (z-y+1)*s + 1"""
   return z*s**2 + (z-y+1)*s + 1

def curve2(s, y, beta, a):
   """Second curve: y*β*((a-1)*s)/(a*s+1)"""
   return y*beta*((a-1)*s)/(a*s+1)

def find_intersections(z, y, beta, a, s_range, n_guesses, tolerance):
   """Find intersections between the two curves with improved accuracy"""
   def equation(s):
       return curve1(s, z, y) - curve2(s, y, beta, a)
   
   # Create a finer grid of initial guesses
   s_guesses = np.linspace(s_range[0], s_range[1], n_guesses)
   intersections = []
   
   # First pass: find all potential intersections
   for s_guess in s_guesses:
       try:
           s_sol = fsolve(equation, s_guess, full_output=True, xtol=tolerance)
           if s_sol[2] == 1:  # Check if convergence was achieved
               s_val = s_sol[0][0]
               if (s_range[0] <= s_val <= s_range[1] and 
                   not any(abs(s_val - s_prev) < tolerance for s_prev in intersections)):
                   if abs(equation(s_val)) < tolerance:
                       intersections.append(s_val)
       except:
           continue
   
   # Sort intersections
   intersections = np.sort(np.array(intersections))
   
   # Ensure even number of intersections by checking for missed ones
   if len(intersections) % 2 != 0:
       refined_intersections = []
       for i in range(len(intersections)-1):
           mid_point = (intersections[i] + intersections[i+1])/2
           try:
               s_sol = fsolve(equation, mid_point, full_output=True, xtol=tolerance)
               if s_sol[2] == 1:
                   s_val = s_sol[0][0]
                   if (intersections[i] < s_val < intersections[i+1] and 
                       abs(equation(s_val)) < tolerance):
                       refined_intersections.append(s_val)
           except:
               continue
       
       intersections = np.sort(np.append(intersections, refined_intersections))
   
   return intersections

def generate_curves_plot(z, y, beta, a, s_range, n_points, n_guesses, tolerance):
    s = np.linspace(s_range[0], s_range[1], n_points)
    
    # Compute curves
    y1 = curve1(s, z, y)
    y2 = curve2(s, y, beta, a)
    
    # Find intersections with improved accuracy
    intersections = find_intersections(z, y, beta, a, s_range, n_guesses, tolerance)
    
    fig = go.Figure()
    
    fig.add_trace(
        go.Scatter(
            x=s, y=y1,
            mode='lines',
            name='z*s² + (z-y+1)*s + 1',
            line=dict(color='blue', width=2)
        )
    )
    
    fig.add_trace(
        go.Scatter(
            x=s, y=y2,
            mode='lines',
            name='y*β*((a-1)*s)/(a*s+1)',
            line=dict(color='red', width=2)
        )
    )
    
    if len(intersections) > 0:
        fig.add_trace(
            go.Scatter(
                x=intersections,
                y=curve1(intersections, z, y),
                mode='markers',
                name='Intersections',
                marker=dict(
                    size=12,
                    color='green',
                    symbol='x',
                    line=dict(width=2)
                )
            )
        )
    
    fig.update_layout(
        title=f"Curve Intersection Analysis (y={y:.4f}, β={beta:.4f}, a={a:.4f})",
        xaxis_title="s",
        yaxis_title="Value",
        hovermode="closest",
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        )
    )
    
    return fig, intersections

# Streamlit UI
st.title("Cubic Root Analysis")

tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Curve Intersections"])

with tab1:
    st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
        y_1 = st.number_input("y", value=1.0, key="y_1")
        z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
        z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
        
        with st.expander("Resolution Settings"):
            beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50)
            z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000)
        
        st.subheader("Custom Expression")
        st.markdown("Enter a **numerator** and a **denominator** expression as functions of `z_a`, `beta`, and `y`.")
        default_num = "(y - 2)*((-1 + sqrt(y*beta*(z_a - 1)))/z_a) + y*beta*((z_a-1)/z_a) - 1/z_a - 1"
        default_denom = "((-1 + sqrt(y*beta*(z_a - 1)))/z_a)**2 + ((-1 + sqrt(y*beta*(z_a - 1)))/z_a)"
        custom_num_expr = st.text_input("Numerator Expression", value=default_num)
        custom_denom_expr = st.text_input("Denominator Expression", value=default_denom)
        
    if st.button("Compute z vs. β Curves"):
        with col2:
            fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1,
                                          beta_steps, z_steps,
                                          custom_num_expr, custom_denom_expr)
            if fig is not None:
                st.plotly_chart(fig, use_container_width=True)
                
                st.markdown("### Additional Expressions")
                st.markdown("""
                **Low y Expression (Red):**
                ```
                ((y - 2)*(-1 + sqrt(y*β*(z_a-1)))/z_a + y*β*((z_a-1)/z_a) - 1/z_a - 1) / 
                (((-1 + sqrt(y*β*(z_a-1)))/z_a)**2 + ((-1 + sqrt(y*β*(z_a-1)))/z_a))
                ```
                
                **High y Expression (Green):**
                ```
                (- 4 z_a*(z_a-1)*y*β - 2z_a*y + 2z_a*(2z_a-1))/(1-2z_a)
                ```
                where z_a is the input parameter.
                """)
                
with tab2:
    st.header("Plot Complex Roots vs. z")
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
        y_2 = st.number_input("y", value=1.0, key="y_2")
        z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
        z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
        z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
        
        with st.expander("Resolution Settings"):
            z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500)
        
    if st.button("Compute Complex Roots vs. z"):
        with col2:
            fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
            if fig_im is not None and fig_re is not None:
                st.plotly_chart(fig_im, use_container_width=True)
                st.plotly_chart(fig_re, use_container_width=True)

with tab3:
    st.header("Curve Intersection Analysis")
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        z = st.slider("z", min_value=-10.0, max_value=10000.0, value=1.0, step=0.1)
        y_3 = st.slider("y", min_value=0.1, max_value=1000.0, value=1.0, step=0.1, key="y_3")
        beta_3 = st.slider("β", min_value=0.0, max_value=1.0, value=0.5, step=0.01, key="beta_3")
        a = st.slider("a", min_value=0.1, max_value=1000.0, value=1.0, step=0.1)
        
        st.subheader("s Range")
        s_min = st.number_input("s_min", value=-5.0)
        s_max = st.number_input("s_max", value=5.0)
        
        with st.expander("Resolution Settings"):
            s_points = st.slider("s grid points", min_value=1000, max_value=10000, value=5000, step=500)
            intersection_guesses = st.slider("Intersection search points", min_value=200, max_value=2000, value=1000, step=100)
            intersection_tolerance = st.select_slider(
                "Intersection tolerance",
                options=[1e-6, 1e-8, 1e-10, 1e-12, 1e-14, 1e-16, 1e-18, 1e-20],
                value=1e-10
            )
        
    if st.button("Compute Intersections"):
        with col2:
            s_range = (s_min, s_max)
            fig, intersections = generate_curves_plot(z, y_3, beta_3, a, s_range, s_points, intersection_guesses, intersection_tolerance)
            st.plotly_chart(fig, use_container_width=True)
            
            if len(intersections) > 0:
                st.subheader("Intersection Points")
                for i, s_val in enumerate(intersections):
                    y_val = curve1(s_val, z, y_3)
                    st.write(f"Point {i+1}: s = {s_val:.6f}, y = {y_val:.6f}")
            else:
                st.write("No intersections found in the given range.")