Spaces:
Sleeping
Sleeping
File size: 19,051 Bytes
dd5ca7d 1126f78 3940b3d 1126f78 13b3948 1aa7fa4 aeff02a 80ed07e aeff02a 1126f78 aeff02a 80ed07e 1aa7fa4 aeff02a 1126f78 aeff02a 1126f78 a2a65af 1126f78 cb0df60 aeff02a cb0df60 aeff02a 3940b3d aeff02a 3940b3d cb0df60 aeff02a 3940b3d aeff02a 3940b3d aeff02a 3940b3d aeff02a 3940b3d aeff02a 359367f aeff02a 359367f aeff02a 359367f aeff02a 359367f aeff02a 359367f aeff02a 2567621 aeff02a 2567621 aeff02a 359367f aeff02a 359367f aeff02a 359367f aeff02a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import streamlit as st
import subprocess
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import time
import io
# Set page config with wider layout
st.set_page_config(
page_title="Eigenvalue Analysis Dashboard",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #1E88E5;
text-align: center;
margin-bottom: 1rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f0f0;
}
.dashboard-container {
background-color: #f9f9f9;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 1.5rem;
}
.panel-header {
font-size: 1.3rem;
font-weight: bold;
margin-bottom: 1rem;
color: #424242;
border-left: 4px solid #1E88E5;
padding-left: 10px;
}
.stats-card {
background-color: white;
padding: 1rem;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
text-align: center;
}
.stats-value {
font-size: 1.8rem;
font-weight: bold;
color: #1E88E5;
}
.stats-label {
font-size: 0.9rem;
color: #616161;
margin-top: 0.3rem;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Eigenvalue Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Compile the C++ code at runtime
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Control Panel</div>', unsafe_allow_html=True)
# Check if cpp file exists and compile if necessary
if not os.path.exists(cpp_file):
st.error(f"C++ source file not found at: {cpp_file}")
st.stop()
# Compile the C++ code with the right OpenCV libraries
if not os.path.exists(executable) or st.button("Recompile C++ Code"):
with st.spinner("Compiling C++ code..."):
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
for cmd in compile_commands:
compile_result = subprocess.run(
cmd,
shell=True,
capture_output=True,
text=True
)
if compile_result.returncode == 0:
compiled = True
break
if not compiled:
st.error("All compilation attempts failed. Please check the system requirements.")
st.stop()
# Make sure the executable is executable
os.chmod(executable, 0o755)
st.success("C++ code compiled successfully")
# Parameter inputs with defaults and validation
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5, help="Number of samples")
p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, help="Dimensionality")
a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, help="Parameter a > 1")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the β axis (0 to 1)"
)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search"
)
# Generate button
generate_button = st.button("Generate Analysis", type="primary", use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
# About section
with st.expander("About Eigenvalue Analysis"):
st.markdown("""
## Theory
This application visualizes the relationship between empirical and theoretical eigenvalues for matrices with specific properties.
The analysis examines:
- **Empirical Max/Min Eigenvalues**: The maximum and minimum eigenvalues calculated from the generated matrices
- **Theoretical Max/Min Functions**: The theoretical bounds derived from mathematical analysis
### Key Parameters
- **n**: Sample size
- **p**: Dimension
- **a**: Value > 1 that affects the distribution of eigenvalues
- **y**: Value calculated as p/n that affects scaling
### Calculation Controls
- **Beta points**: Number of points calculated along the β range (0 to 1)
- **Theoretical grid points**: Number of points in initial grid search for finding theoretical max/min
- **Theoretical tolerance**: Convergence tolerance for golden section search algorithm
### Mathematical Formulas
Max Function:
max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]
Min Function:
min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]
""")
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Visualization</div>', unsafe_allow_html=True)
# Container for the analysis results
results_container = st.container()
# Process when generate button is clicked
if generate_button:
with results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Run the C++ executable with the parameters in JSON output mode
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Execute the C++ program
cmd = [
executable,
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Show output in a status area
status_text.text("Starting calculations...")
last_progress = 0
while process.poll() is None:
output = process.stdout.readline()
if output:
if output.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(output.split(":")[1].strip())
progress_bar.progress(progress_value)
last_progress = progress_value
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
else:
status_text.text(output.strip())
time.sleep(0.1)
return_code = process.poll()
if return_code != 0:
error = process.stderr.read()
st.error(f"Error executing the analysis: {error}")
else:
progress_bar.progress(1.0)
status_text.text("Calculations complete! Generating visualization...")
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
beta_values = np.array(data['beta_values'])
max_eigenvalues = np.array(data['max_eigenvalues'])
min_eigenvalues = np.array(data['min_eigenvalues'])
theoretical_max = np.array(data['theoretical_max'])
theoretical_min = np.array(data['theoretical_min'])
# Create the plot
fig, ax = plt.subplots(figsize=(12, 8), dpi=100)
# Set the background color
fig.patch.set_facecolor('#f9f9f9')
ax.set_facecolor('#f0f0f0')
# Plot the data with improved styling
ax.plot(beta_values, max_eigenvalues, 'r-', linewidth=2.5,
label='Empirical Max Eigenvalue', marker='o', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, min_eigenvalues, 'b-', linewidth=2.5,
label='Empirical Min Eigenvalue', marker='o', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, theoretical_max, 'g-', linewidth=2.5,
label='Theoretical Max Function', marker='D', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, theoretical_min, 'm-', linewidth=2.5,
label='Theoretical Min Function', marker='D', markevery=len(beta_values)//20, markersize=6)
# Add grid
ax.grid(True, linestyle='--', alpha=0.7)
# Set labels and title with better formatting
ax.set_xlabel('β Parameter', fontsize=14, fontweight='bold')
ax.set_ylabel('Eigenvalues', fontsize=14, fontweight='bold')
ax.set_title(f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
fontsize=16, fontweight='bold', pad=15)
# Add legend with improved styling
legend = ax.legend(loc='best', fontsize=12, framealpha=0.9,
fancybox=True, shadow=True, borderpad=1)
# Add formulas as text with better styling
formula_text1 = r"Max Function: $\max_{k \in (0,\infty)} \frac{y\beta(a-1)k + (ak+1)((y-1)k-1)}{(ak+1)(k^2+k)}$"
formula_text2 = r"Min Function: $\min_{t \in (-1/a,0)} \frac{y\beta(a-1)t + (at+1)((y-1)t-1)}{(at+1)(t^2+t)}$"
plt.figtext(0.02, 0.02, formula_text1, fontsize=10, color='green',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='green', boxstyle='round,pad=0.5'))
plt.figtext(0.55, 0.02, formula_text2, fontsize=10, color='purple',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='purple', boxstyle='round,pad=0.5'))
# Adjust layout
plt.tight_layout(rect=[0, 0.05, 1, 0.95])
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
# Save to file
output_file = os.path.join(output_dir, "eigenvalue_analysis.png")
plt.savefig(output_file, format='png', dpi=100)
plt.close()
# Clear progress container
progress_container.empty()
# Display the image in Streamlit (with fixed deprecated parameter)
st.image(buf, use_container_width=True)
# Provide download button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
with open(output_file, "rb") as file:
btn = st.download_button(
label="Download Plot",
data=file,
file_name=f"eigenvalue_analysis_n{n}_p{p}_a{a}_y{y:.4f}.png",
mime="image/png",
use_container_width=True
)
# Add statistics section with cards
st.markdown("### Results Summary")
# Calculate key statistics
emp_max = max(max_eigenvalues)
emp_min = min(min_eigenvalues)
theo_max = max(theoretical_max)
theo_min = min(theoretical_min)
max_diff = abs(emp_max - theo_max)
min_diff = abs(emp_min - theo_min)
# Display statistics in a card layout
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{emp_max:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Empirical Maximum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{emp_min:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Empirical Minimum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col3:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{theo_max:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Theoretical Maximum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col4:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{theo_min:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Theoretical Minimum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("<br>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{max_diff:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Max Difference</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{min_diff:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Min Difference</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Add calculation settings
with st.expander("Calculation Details"):
st.markdown(f"""
- **Matrix Dimensions**: {n} × {p}
- **Parameter a**: {a}
- **Parameter y (p/n)**: {y:.4f}
- **Beta points**: {fineness}
- **Theoretical grid points**: {theory_grid_points}
- **Theoretical tolerance**: {theory_tolerance:.1e}
""")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
# Check for existing results
example_file = os.path.join(output_dir, "eigenvalue_analysis.png")
if os.path.exists(example_file):
# Show the most recent plot by default
st.image(example_file, use_container_width=True)
st.info("This is the most recent analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
else:
# Show placeholder
st.info("👈 Set parameters and click 'Generate Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True) |