Spaces:
Running
Running
File size: 13,957 Bytes
dd5ca7d a76f82e dd5ca7d 80ed07e a76f82e 80ed07e dd5ca7d 80ed07e dd5ca7d a76f82e dd5ca7d a76f82e dd5ca7d a76f82e dd5ca7d 7bda4fb a76f82e 7bda4fb a76f82e dd5ca7d a76f82e dd5ca7d a76f82e dd5ca7d a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e b278b60 a76f82e dd5ca7d a76f82e dd5ca7d a76f82e b278b60 dd5ca7d b7ef8c3 a76f82e b278b60 a76f82e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
#############################
# 1) Define the discriminant
#############################
# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the standard cubic discriminant
Delta_expr = (
( (b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym) )**2
+ ( c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2) )**3
)
# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps=20000):
"""
Numerically scan z in [z_min, z_max] looking for sign changes of
Delta(z) = 0. Returns all roots found via bisection.
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
# Scan for sign changes
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1*f2 < 0:
zl = z_grid[i]
zr = z_grid[i+1]
for _ in range(50):
mid = 0.5*(zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl = mid
f1 = fm
else:
zr = mid
f2 = fm
root_approx = 0.5*(zl + zr)
roots_found.append(root_approx)
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=51):
"""
For each beta, find both the largest and smallest z where discriminant=0.
Returns (betas, z_min_values, z_max_values).
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the additional curve with proper handling of divide by zero cases
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term)/z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
# Handle division by zero and invalid values
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
return np.where(mask, numerator/denominator, np.nan)
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the expression: ((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
"""
betas = np.array(betas)
denominator = 3*(4 - z_a)
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = (4*y + 12)*(4 - z_a) + 16*y*betas*(z_a - 1)
return numerator/denominator
def generate_z_vs_beta_plot(z_a, y, z_min, z_max):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
beta_steps = 101
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps=beta_steps)
low_y_curve = compute_low_y_curve(betas, z_a, y)
high_y_curve = compute_high_y_curve(betas, z_a, y)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=betas,
y=z_maxs,
mode="markers+lines",
name="Upper z*(β)",
marker=dict(size=5, color='blue'),
line=dict(color='blue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=z_mins,
mode="markers+lines",
name="Lower z*(β)",
marker=dict(size=5, color='lightblue'),
line=dict(color='lightblue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=low_y_curve,
mode="markers+lines",
name="Low y Expression",
marker=dict(size=5, color='red'),
line=dict(color='red'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=high_y_curve,
mode="markers+lines",
name="High y Expression",
marker=dict(size=5, color='green'),
line=dict(color='green'),
)
)
fig.update_layout(
title="Curves vs β: z*(β) boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_ims_vs_z_plot(beta, y, z_a, z_min, z_max):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
z_points = np.linspace(z_min, z_max, 1000)
ims = []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
ims = np.array(ims)
fig = go.Figure()
for i in range(3):
fig.add_trace(
go.Scatter(
x=z_points,
y=ims[:,i],
mode="lines",
name=f"Im{{s{i+1}}}",
line=dict(width=2),
)
)
fig.update_layout(
title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Im{s}",
hovermode="x unified",
)
return fig
def curve1(s, z, y):
"""First curve: z*s^2 + (z-y+1)*s + 1"""
return z*s**2 + (z-y+1)*s + 1
def curve2(s, y, beta, a):
"""Second curve: y*β*((a-1)*s)/(a*s+1)"""
return y*beta*((a-1)*s)/(a*s+1)
def find_intersections(z, y, beta, a, s_range):
"""Find intersections between the two curves with improved accuracy"""
def equation(s):
return curve1(s, z, y) - curve2(s, y, beta, a)
# Create a finer grid of initial guesses
s_guesses = np.linspace(s_range[0], s_range[1], 200)
intersections = []
# Parameters for accuracy
tolerance = 1e-10
# First pass: find all potential intersections
for s_guess in s_guesses:
try:
s_sol = fsolve(equation, s_guess, full_output=True, xtol=tolerance)
if s_sol[2] == 1: # Check if convergence was achieved
s_val = s_sol[0][0]
if (s_range[0] <= s_val <= s_range[1] and
not any(abs(s_val - s_prev) < tolerance for s_prev in intersections)):
if abs(equation(s_val)) < tolerance:
intersections.append(s_val)
except:
continue
# Sort intersections
intersections = np.sort(np.array(intersections))
# Ensure even number of intersections by checking for missed ones
if len(intersections) % 2 != 0:
refined_intersections = []
for i in range(len(intersections)-1):
mid_point = (intersections[i] + intersections[i+1])/2
try:
s_sol = fsolve(equation, mid_point, full_output=True, xtol=tolerance)
if s_sol[2] == 1:
s_val = s_sol[0][0]
if (intersections[i] < s_val < intersections[i+1] and
abs(equation(s_val)) < tolerance):
refined_intersections.append(s_val)
except:
continue
intersections = np.sort(np.append(intersections, refined_intersections))
return intersections
def generate_curves_plot(z, y, beta, a, s_range):
s = np.linspace(s_range[0], s_range[1], 2000)
# Compute curves
y1 = curve1(s, z, y)
y2 = curve2(s, y, beta, a)
# Find intersections with improved accuracy
intersections = find_intersections(z, y, beta, a, s_range)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=s, y=y1,
mode='lines',
name='z*s² + (z-y+1)*s + 1',
line=dict(color='blue', width=2)
)
)
fig.add_trace(
go.Scatter(
x=s, y=y2,
mode='lines',
name='y*β*((a-1)*s)/(a*s+1)',
line=dict(color='red', width=2)
)
)
if len(intersections) > 0:
fig.add_trace(
go.Scatter(
x=intersections,
y=curve1(intersections, z, y),
mode='markers',
name='Intersections',
marker=dict(
size=12,
color='green',
symbol='x',
line=dict(width=2)
)
)
)
fig.update_layout(
title=f"Curve Intersection Analysis (y={y:.4f}, β={beta:.4f}, a={a:.4f})",
xaxis_title="s",
yaxis_title="Value",
hovermode="closest",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig, intersections
# Streamlit UI
st.title("Cubic Root Analysis")
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Curve Intersections"])
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
if st.button("Compute z vs. β Curves"):
with col2:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Additional Expressions")
st.markdown("""
**Low y Expression (Red):**
```
((y - 2)*(-1 + sqrt(y*β*(a-1)))/a + y*β*((a-1)/a) - 1/a - 1) /
((-1 + sqrt(y*β*(a-1)))/a)^2 + (-1 + sqrt(y*β*(a-1)))/a)
```
**High y Expression (Green):**
```
((4y + 12)(4 - a) + 16y*β*(a - 1))/(3(4 - a))
```
where a = z_a
""")
with tab2:
st.header("Plot Imaginary Parts of Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
y_2 = st.number_input("y", value=1.0, key="y_2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
if st.button("Compute Im{s} vs. z"):
with col2:
fig = generate_ims_vs_z_plot(beta, y_2, z_a_2, z_min_2, z_max_2)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
with tab3:
st.header("Curve Intersection Analysis")
col1, col2 = st.columns([1, 2])
with col1:
z = st.slider("z", min_value=-10.0, max_value=10.0, value=1.0, step=0.1)
y_3 = st.slider("y", min_value=0.1, max_value=10.0, value=1.0, step=0.1, key="y_3")
beta_3 = st.slider("β", min_value=0.0, max_value=1.0, value=0.5, step=0.01, key="beta_3")
a = st.slider("a", min_value=0.1, max_value=10.0, value=1.0, step=0.1)
# Add range inputs for s
st.subheader("s Range")
s_min = st.number_input("s_min", value=-5.0)
s_max = st.number_input("s_max", value=5.0)
if st.button("Compute Intersections"):
with col2:
s_range = (s_min, s_max)
fig, intersections = generate_curves_plot(z, y_3, beta_3, a, s_range)
st.plotly_chart(fig, use_container_width=True)
if len(intersections) > 0:
st.subheader("Intersection Points")
for i, s_val in enumerate(intersections):
y_val = curve1(s_val, z, y_3)
st.write(f"Point {i+1}: s = {s_val:.6f}, y = {y_val:.6f}")
else:
st.write("No intersections found in the given range.") |