File size: 27,781 Bytes
dd5ca7d
1126f78
 
3940b3d
 
f84f14b
 
1126f78
 
13b3948
1aa7fa4
aeff02a
80ed07e
aeff02a
1126f78
aeff02a
 
80ed07e
1aa7fa4
aeff02a
1126f78
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126f78
a2a65af
 
 
 
1126f78
cb0df60
 
 
 
aeff02a
 
cb0df60
aeff02a
 
 
3940b3d
aeff02a
 
 
3940b3d
cb0df60
aeff02a
 
 
 
 
 
 
 
3940b3d
aeff02a
 
 
 
 
 
 
3940b3d
aeff02a
 
 
 
3940b3d
aeff02a
 
 
3940b3d
aeff02a
 
 
359367f
aeff02a
 
 
 
 
359367f
aeff02a
 
 
359367f
aeff02a
 
 
 
 
 
 
 
 
359367f
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359367f
aeff02a
 
 
2567621
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567621
aeff02a
 
359367f
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84f14b
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
aeff02a
 
 
 
f84f14b
 
 
 
 
 
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359367f
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
 
 
359367f
aeff02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from PIL import Image
import time
import io

# Set page config with wider layout
st.set_page_config(
    page_title="Eigenvalue Analysis Dashboard",
    page_icon="📊",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        color: #1E88E5;
        text-align: center;
        margin-bottom: 1rem;
        padding-bottom: 1rem;
        border-bottom: 2px solid #f0f0f0;
    }
    .dashboard-container {
        background-color: #f9f9f9;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        margin-bottom: 1.5rem;
    }
    .panel-header {
        font-size: 1.3rem;
        font-weight: bold;
        margin-bottom: 1rem;
        color: #424242;
        border-left: 4px solid #1E88E5;
        padding-left: 10px;
    }
    .stats-card {
        background-color: white;
        padding: 1rem;
        border-radius: 8px;
        box-shadow: 0 1px 3px rgba(0,0,0,0.1);
        text-align: center;
    }
    .stats-value {
        font-size: 1.8rem;
        font-weight: bold;
        color: #1E88E5;
    }
    .stats-label {
        font-size: 0.9rem;
        color: #616161;
        margin-top: 0.3rem;
    }
</style>
""", unsafe_allow_html=True)

# Dashboard Header
st.markdown('<h1 class="main-header">Eigenvalue Analysis Dashboard</h1>', unsafe_allow_html=True)

# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)

# Compile the C++ code at runtime
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")

# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])

with left_column:
    st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
    st.markdown('<div class="panel-header">Control Panel</div>', unsafe_allow_html=True)
    
    # Check if cpp file exists and compile if necessary
    if not os.path.exists(cpp_file):
        st.error(f"C++ source file not found at: {cpp_file}")
        st.stop()
    
    # Compile the C++ code with the right OpenCV libraries
    if not os.path.exists(executable) or st.button("Recompile C++ Code"):
        with st.spinner("Compiling C++ code..."):
            compile_commands = [
                f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
                f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
                f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
            ]
            
            compiled = False
            for cmd in compile_commands:
                compile_result = subprocess.run(
                    cmd, 
                    shell=True,
                    capture_output=True,
                    text=True
                )
                
                if compile_result.returncode == 0:
                    compiled = True
                    break
            
            if not compiled:
                st.error("All compilation attempts failed. Please check the system requirements.")
                st.stop()
            
            # Make sure the executable is executable
            os.chmod(executable, 0o755)
            st.success("C++ code compiled successfully")
    
    # Parameter inputs with defaults and validation
    st.markdown("### Matrix Parameters")
    n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5, help="Number of samples")
    p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, help="Dimensionality")
    a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, help="Parameter a > 1")
    
    # Automatically calculate y = p/n (as requested)
    y = p/n
    st.info(f"Value for y = p/n: {y:.4f}")
    
    st.markdown("### Calculation Controls")
    fineness = st.slider(
        "Beta points", 
        min_value=20, 
        max_value=500, 
        value=100, 
        step=10,
        help="Number of points to calculate along the β axis (0 to 1)"
    )
    
    with st.expander("Advanced Settings"):
        # Add controls for theoretical calculation precision
        theory_grid_points = st.slider(
            "Theoretical grid points", 
            min_value=100, 
            max_value=1000, 
            value=200, 
            step=50,
            help="Number of points in initial grid search for theoretical calculations"
        )
        
        theory_tolerance = st.number_input(
            "Theoretical tolerance", 
            min_value=1e-12, 
            max_value=1e-6, 
            value=1e-10, 
            format="%.1e",
            help="Convergence tolerance for golden section search"
        )
    
    # Generate button
    generate_button = st.button("Generate Analysis", type="primary", use_container_width=True)
    st.markdown('</div>', unsafe_allow_html=True)
    
    # About section
    with st.expander("About Eigenvalue Analysis"):
        st.markdown("""
        ## Theory
        
        This application visualizes the relationship between empirical and theoretical eigenvalues for matrices with specific properties.
        
        The analysis examines:
        
        - **Empirical Max/Min Eigenvalues**: The maximum and minimum eigenvalues calculated from the generated matrices
        - **Theoretical Max/Min Functions**: The theoretical bounds derived from mathematical analysis
        
        ### Key Parameters
        
        - **n**: Sample size
        - **p**: Dimension
        - **a**: Value > 1 that affects the distribution of eigenvalues
        - **y**: Value calculated as p/n that affects scaling
        
        ### Calculation Controls
        
        - **Beta points**: Number of points calculated along the β range (0 to 1)
        - **Theoretical grid points**: Number of points in initial grid search for finding theoretical max/min
        - **Theoretical tolerance**: Convergence tolerance for golden section search algorithm
        
        ### Mathematical Formulas
        
        Max Function: 
        max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]
        
        Min Function: 
        min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]
        """)

with right_column:
    # Main visualization area
    st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
    st.markdown('<div class="panel-header">Eigenvalue Analysis Visualization</div>', unsafe_allow_html=True)
    
    # Container for the analysis results
    results_container = st.container()
    
    # Process when generate button is clicked
    if generate_button:
        with results_container:
            # Show progress
            progress_container = st.container()
            with progress_container:
                progress_bar = st.progress(0)
                status_text = st.empty()
            
            try:
                # Run the C++ executable with the parameters in JSON output mode
                data_file = os.path.join(output_dir, "eigenvalue_data.json")
                
                # Delete previous output if exists
                if os.path.exists(data_file):
                    os.remove(data_file)
                
                # Execute the C++ program
                cmd = [
                    executable, 
                    str(n), 
                    str(p), 
                    str(a), 
                    str(y), 
                    str(fineness), 
                    str(theory_grid_points),
                    str(theory_tolerance),
                    data_file
                ]
                
                process = subprocess.Popen(
                    cmd, 
                    stdout=subprocess.PIPE,
                    stderr=subprocess.PIPE,
                    text=True
                )
                
                # Show output in a status area
                status_text.text("Starting calculations...")
                
                last_progress = 0
                while process.poll() is None:
                    output = process.stdout.readline()
                    if output:
                        if output.startswith("PROGRESS:"):
                            try:
                                # Update progress bar
                                progress_value = float(output.split(":")[1].strip())
                                progress_bar.progress(progress_value)
                                last_progress = progress_value
                                status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
                            except:
                                pass
                        else:
                            status_text.text(output.strip())
                    time.sleep(0.1)
                
                return_code = process.poll()
                
                if return_code != 0:
                    error = process.stderr.read()
                    st.error(f"Error executing the analysis: {error}")
                else:
                    progress_bar.progress(1.0)
                    status_text.text("Calculations complete! Generating visualization...")
                    
                    # Load the results from the JSON file
                    with open(data_file, 'r') as f:
                        data = json.load(f)
                    
                    # Extract data
                    beta_values = np.array(data['beta_values'])
                    max_eigenvalues = np.array(data['max_eigenvalues'])
                    min_eigenvalues = np.array(data['min_eigenvalues'])
                    theoretical_max = np.array(data['theoretical_max'])
                    theoretical_min = np.array(data['theoretical_min'])
                    
                    # Create an interactive plot using Plotly
                    fig = go.Figure()
                    
                    # Add traces for each line
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=max_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Max Eigenvalue',
                        line=dict(color='rgb(220, 60, 60)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(220, 60, 60)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=min_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Min Eigenvalue',
                        line=dict(color='rgb(60, 60, 220)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(60, 60, 220)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_max,
                        mode='lines+markers',
                        name='Theoretical Max Function',
                        line=dict(color='rgb(30, 180, 30)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(30, 180, 30)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_min,
                        mode='lines+markers',
                        name='Theoretical Min Function',
                        line=dict(color='rgb(180, 30, 180)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(180, 30, 180)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                    ))
                    
                    # Configure layout for better appearance
                    fig.update_layout(
                        title={
                            'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
                            'font': {'size': 24, 'color': '#1E88E5'},
                            'y': 0.95,
                            'x': 0.5,
                            'xanchor': 'center',
                            'yanchor': 'top'
                        },
                        xaxis={
                            'title': 'β Parameter',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        yaxis={
                            'title': 'Eigenvalues',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        plot_bgcolor='rgba(240, 240, 240, 0.8)',
                        paper_bgcolor='rgba(249, 249, 249, 0.8)',
                        hovermode='closest',
                        legend={
                            'font': {'size': 14},
                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                            'bordercolor': 'rgba(200, 200, 200, 0.5)',
                            'borderwidth': 1
                        },
                        margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                        height=600,
                        annotations=[
                            {
                                'text': f"Max Function: max{{k ∈ (0,∞)}} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]",
                                'xref': 'paper', 'yref': 'paper',
                                'x': 0.02, 'y': 0.02,
                                'showarrow': False,
                                'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
                                'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                'bordercolor': 'rgb(30, 180, 30)',
                                'borderwidth': 1,
                                'borderpad': 4
                            },
                            {
                                'text': f"Min Function: min{{t ∈ (-1/a,0)}} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]",
                                'xref': 'paper', 'yref': 'paper',
                                'x': 0.55, 'y': 0.02,
                                'showarrow': False,
                                'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
                                'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                'bordercolor': 'rgb(180, 30, 180)',
                                'borderwidth': 1,
                                'borderpad': 4
                            }
                        ]
                    )
                    
                    # Add custom modebar buttons
                    fig.update_layout(
                        modebar_add=[
                            'drawline', 'drawopenpath', 'drawclosedpath',
                            'drawcircle', 'drawrect', 'eraseshape'
                        ],
                        modebar_remove=['lasso2d', 'select2d'],
                        dragmode='zoom'
                    )
                    
                    # Clear progress container
                    progress_container.empty()
                    
                    # Display the interactive plot in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    
                    # Generate static image for download
                    output_file = os.path.join(output_dir, "eigenvalue_analysis.png")
                    fig.write_image(output_file, scale=2)
                    
                    # Provide download button
                    col1, col2, col3 = st.columns([1, 2, 1])
                    with col2:
                        with open(output_file, "rb") as file:
                            btn = st.download_button(
                                label="Download Plot",
                                data=file,
                                file_name=f"eigenvalue_analysis_n{n}_p{p}_a{a}_y{y:.4f}.png",
                                mime="image/png",
                                use_container_width=True
                            )
                    
                    # Add statistics section with cards
                    st.markdown("### Results Summary")
                    
                    # Calculate key statistics
                    emp_max = max(max_eigenvalues)
                    emp_min = min(min_eigenvalues)
                    theo_max = max(theoretical_max)
                    theo_min = min(theoretical_min)
                    max_diff = abs(emp_max - theo_max)
                    min_diff = abs(emp_min - theo_min)
                    
                    # Display statistics in a card layout
                    col1, col2, col3, col4 = st.columns(4)
                    
                    with col1:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{emp_max:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Empirical Maximum</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    with col2:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{emp_min:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Empirical Minimum</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    with col3:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{theo_max:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Theoretical Maximum</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    with col4:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{theo_min:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Theoretical Minimum</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    st.markdown("<br>", unsafe_allow_html=True)
                    
                    col1, col2 = st.columns(2)
                    with col1:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{max_diff:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Max Difference</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    with col2:
                        st.markdown('<div class="stats-card">', unsafe_allow_html=True)
                        st.markdown(f'<div class="stats-value">{min_diff:.4f}</div>', unsafe_allow_html=True)
                        st.markdown('<div class="stats-label">Min Difference</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    # Add calculation settings
                    with st.expander("Calculation Details"):
                        st.markdown(f"""
                        - **Matrix Dimensions**: {n} × {p}
                        - **Parameter a**: {a}
                        - **Parameter y (p/n)**: {y:.4f}
                        - **Beta points**: {fineness}
                        - **Theoretical grid points**: {theory_grid_points}
                        - **Theoretical tolerance**: {theory_tolerance:.1e}
                        """)
            
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
    
    else:
        # Try to load existing data if available
        data_file = os.path.join(output_dir, "eigenvalue_data.json")
        if os.path.exists(data_file):
            try:
                with open(data_file, 'r') as f:
                    data = json.load(f)
                
                # Extract data
                beta_values = np.array(data['beta_values'])
                max_eigenvalues = np.array(data['max_eigenvalues'])
                min_eigenvalues = np.array(data['min_eigenvalues'])
                theoretical_max = np.array(data['theoretical_max'])
                theoretical_min = np.array(data['theoretical_min'])
                
                # Create an interactive plot using Plotly
                fig = go.Figure()
                
                # Add traces for each line
                fig.add_trace(go.Scatter(
                    x=beta_values, 
                    y=max_eigenvalues,
                    mode='lines+markers',
                    name='Empirical Max Eigenvalue',
                    line=dict(color='rgb(220, 60, 60)', width=3),
                    marker=dict(
                        symbol='circle',
                        size=8,
                        color='rgb(220, 60, 60)',
                        line=dict(color='white', width=1)
                    ),
                    hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                ))
                
                fig.add_trace(go.Scatter(
                    x=beta_values, 
                    y=min_eigenvalues,
                    mode='lines+markers',
                    name='Empirical Min Eigenvalue',
                    line=dict(color='rgb(60, 60, 220)', width=3),
                    marker=dict(
                        symbol='circle',
                        size=8,
                        color='rgb(60, 60, 220)',
                        line=dict(color='white', width=1)
                    ),
                    hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                ))
                
                fig.add_trace(go.Scatter(
                    x=beta_values, 
                    y=theoretical_max,
                    mode='lines+markers',
                    name='Theoretical Max Function',
                    line=dict(color='rgb(30, 180, 30)', width=3),
                    marker=dict(
                        symbol='diamond',
                        size=8,
                        color='rgb(30, 180, 30)',
                        line=dict(color='white', width=1)
                    ),
                    hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                ))
                
                fig.add_trace(go.Scatter(
                    x=beta_values, 
                    y=theoretical_min,
                    mode='lines+markers',
                    name='Theoretical Min Function',
                    line=dict(color='rgb(180, 30, 180)', width=3),
                    marker=dict(
                        symbol='diamond',
                        size=8,
                        color='rgb(180, 30, 180)',
                        line=dict(color='white', width=1)
                    ),
                    hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                ))
                
                # Configure layout for better appearance
                fig.update_layout(
                    title={
                        'text': f'Eigenvalue Analysis (Previous Result)',
                        'font': {'size': 24, 'color': '#1E88E5'},
                        'y': 0.95,
                        'x': 0.5,
                        'xanchor': 'center',
                        'yanchor': 'top'
                    },
                    xaxis={
                        'title': 'β Parameter',
                        'titlefont': {'size': 18, 'color': '#424242'},
                        'tickfont': {'size': 14},
                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                        'showgrid': True
                    },
                    yaxis={
                        'title': 'Eigenvalues',
                        'titlefont': {'size': 18, 'color': '#424242'},
                        'tickfont': {'size': 14},
                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                        'showgrid': True
                    },
                    plot_bgcolor='rgba(240, 240, 240, 0.8)',
                    paper_bgcolor='rgba(249, 249, 249, 0.8)',
                    hovermode='closest',
                    legend={
                        'font': {'size': 14},
                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                        'bordercolor': 'rgba(200, 200, 200, 0.5)',
                        'borderwidth': 1
                    },
                    margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                    height=600
                )
                
                # Display the interactive plot in Streamlit
                st.plotly_chart(fig, use_container_width=True)
                st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
                
            except Exception as e:
                st.info("👈 Set parameters and click 'Generate Analysis' to create a visualization.")
        else:
            # Show placeholder
            st.info("👈 Set parameters and click 'Generate Analysis' to create a visualization.")
    
    st.markdown('</div>', unsafe_allow_html=True)