euler314's picture
Update app.py
4ba5634 verified
raw
history blame
109 kB
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
import sympy as sp
from PIL import Image
import time
import io
import sys
import tempfile
import platform
from sympy import symbols, solve, I, re, im, Poly, simplify, N, mpmath
# Set page config with wider layout
st.set_page_config(
page_title="Matrix Analysis Dashboard",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a modern, clean dashboard layout
st.markdown("""
<style>
/* Main styling */
.main {
background-color: #fafafa;
}
/* Header styling */
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #0e1117;
text-align: center;
margin-bottom: 1.5rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f2f6;
}
/* Container styling */
.dashboard-container {
background-color: white;
padding: 1.8rem;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
margin-bottom: 1.8rem;
border: 1px solid #f0f2f6;
}
/* Panel headers */
.panel-header {
font-size: 1.3rem;
font-weight: 600;
margin-bottom: 1.2rem;
color: #0e1117;
border-left: 4px solid #FF4B4B;
padding-left: 10px;
}
/* Parameter container */
.parameter-container {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
border: 1px solid #f0f2f6;
}
/* Math box */
.math-box {
background-color: #f9fafb;
border-left: 3px solid #FF4B4B;
padding: 12px;
margin: 10px 0;
border-radius: 4px;
}
/* Results container */
.results-container {
margin-top: 20px;
}
/* Explanation box */
.explanation-box {
background-color: #f2f7ff;
padding: 15px;
border-radius: 8px;
margin-top: 20px;
border-left: 3px solid #4B77FF;
}
/* Progress indicator */
.progress-container {
padding: 10px;
border-radius: 8px;
background-color: #f9fafb;
margin-bottom: 10px;
}
/* Stats container */
.stats-box {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
}
.stTabs [data-baseweb="tab"] {
height: 40px;
white-space: pre-wrap;
background-color: #f0f2f6;
border-radius: 8px 8px 0 0;
padding: 10px 16px;
font-size: 14px;
}
.stTabs [aria-selected="true"] {
background-color: #FF4B4B !important;
color: white !important;
}
/* Button styling */
.stButton button {
background-color: #FF4B4B;
color: white;
font-weight: 500;
border: none;
padding: 0.5rem 1rem;
border-radius: 6px;
transition: background-color 0.3s;
}
.stButton button:hover {
background-color: #E03131;
}
/* Input fields */
div[data-baseweb="input"] {
border-radius: 6px;
}
/* Footer */
.footer {
font-size: 0.8rem;
color: #6c757d;
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #f0f2f6;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Path to the C++ source file and executable
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
if platform.system() == "Windows":
executable += ".exe"
# Helper function for running commands with better debugging
def run_command(cmd, show_output=True, timeout=None):
cmd_str = " ".join(cmd)
if show_output:
st.code(f"Running command: {cmd_str}", language="bash")
# Run the command
try:
result = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=False,
timeout=timeout
)
if result.returncode == 0:
if show_output:
st.success("Command completed successfully.")
if result.stdout and show_output:
with st.expander("Command Output"):
st.code(result.stdout)
return True, result.stdout, result.stderr
else:
if show_output:
st.error(f"Command failed with return code {result.returncode}")
st.error(f"Command: {cmd_str}")
st.error(f"Error output: {result.stderr}")
return False, result.stdout, result.stderr
except subprocess.TimeoutExpired:
if show_output:
st.error(f"Command timed out after {timeout} seconds")
return False, "", f"Command timed out after {timeout} seconds"
except Exception as e:
if show_output:
st.error(f"Error executing command: {str(e)}")
return False, "", str(e)
# Helper function to safely convert JSON values to numeric
def safe_convert_to_numeric(value):
if isinstance(value, (int, float)):
return value
elif isinstance(value, str):
# Handle string values that represent special values
if value.lower() == "nan" or value == "\"nan\"":
return np.nan
elif value.lower() == "infinity" or value == "\"infinity\"":
return np.inf
elif value.lower() == "-infinity" or value == "\"-infinity\"":
return -np.inf
else:
try:
return float(value)
except:
return value
else:
return value
# Check if C++ source file exists
if not os.path.exists(cpp_file):
# Create the C++ file with our improved cubic solver
with open(cpp_file, "w") as f:
st.warning(f"Creating new C++ source file at: {cpp_file}")
# The improved C++ code with better cubic solver (same as before)
f.write('''
// app.cpp - Modified version with improved cubic solver
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>
#include <stdexcept>
// Struct to hold cubic equation roots
struct CubicRoots {
std::complex<double> root1;
std::complex<double> root2;
std::complex<double> root3;
};
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
// Improved implementation based on ACM TOMS Algorithm 954
CubicRoots solveCubic(double a, double b, double c, double d) {
// Declare roots structure at the beginning of the function
CubicRoots roots;
// Constants for numerical stability
const double epsilon = 1e-14;
const double zero_threshold = 1e-10;
// Handle special case for a == 0 (quadratic)
if (std::abs(a) < epsilon) {
// Quadratic equation handling (unchanged)
if (std::abs(b) < epsilon) { // Linear equation or constant
if (std::abs(c) < epsilon) { // Constant - no finite roots
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
} else { // Linear equation
roots.root1 = std::complex<double>(-d / c, 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
double discriminant = c * c - 4.0 * b * d;
if (discriminant >= 0) {
double sqrtDiscriminant = std::sqrt(discriminant);
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
} else {
double real = -c / (2.0 * b);
double imag = std::sqrt(-discriminant) / (2.0 * b);
roots.root1 = std::complex<double>(real, imag);
roots.root2 = std::complex<double>(real, -imag);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
// Handle special case when d is zero - one root is zero
if (std::abs(d) < epsilon) {
// One root is exactly zero
roots.root1 = std::complex<double>(0.0, 0.0);
// Solve the quadratic: az^2 + bz + c = 0
double quadDiscriminant = b * b - 4.0 * a * c;
if (quadDiscriminant >= 0) {
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
// Ensure one positive and one negative root
if (r1 > 0 && r2 > 0) {
// Both positive, make one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
} else if (r1 < 0 && r2 < 0) {
// Both negative, make one positive
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
} else {
// Already have one positive and one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(r2, 0.0);
}
} else {
double real = -b / (2.0 * a);
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
roots.root2 = std::complex<double>(real, imag);
roots.root3 = std::complex<double>(real, -imag);
}
return roots;
}
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
double p = b / a;
double q = c / a;
double r = d / a;
// Scale coefficients to improve numerical stability
double scale = 1.0;
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
if (maxCoeff > 1.0) {
scale = 1.0 / maxCoeff;
p *= scale;
q *= scale * scale;
r *= scale * scale * scale;
}
// Calculate the discriminant for the cubic equation
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
// Apply a depression transformation: z = t - p/3
// This gives t^3 + pt + q = 0 (depressed cubic)
double p1 = q - p * p / 3.0;
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
// The depression shift
double shift = p / 3.0;
// Cardano's formula parameters
double delta0 = p1;
double delta1 = q1;
// For tracking if we need to force the pattern
bool forcePattern = false;
// Check if discriminant is close to zero (multiple roots)
if (std::abs(discriminant) < zero_threshold) {
forcePattern = true;
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
// Triple root case
roots.root1 = std::complex<double>(-shift, 0.0);
roots.root2 = std::complex<double>(-shift, 0.0);
roots.root3 = std::complex<double>(-shift, 0.0);
return roots;
}
if (std::abs(delta0) < zero_threshold) {
// Delta0 β‰ˆ 0: One double root and one simple root
double simple = std::cbrt(-delta1);
double doubleRoot = -simple/2 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// One simple root and one double root
double simple = delta1 / delta0;
double doubleRoot = -delta0/3 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// Handle case with three real roots (discriminant > 0)
if (discriminant > 0) {
// Using trigonometric solution for three real roots
double A = std::sqrt(-4.0 * p1 / 3.0);
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
double root1 = A * std::cos(B) - shift;
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
// Check for roots close to zero
if (std::abs(root1) < zero_threshold) root1 = 0.0;
if (std::abs(root2) < zero_threshold) root2 = 0.0;
if (std::abs(root3) < zero_threshold) root3 = 0.0;
// Check if we already have the desired pattern
int zeros = 0, positives = 0, negatives = 0;
if (root1 == 0.0) zeros++;
else if (root1 > 0) positives++;
else negatives++;
if (root2 == 0.0) zeros++;
else if (root2 > 0) positives++;
else negatives++;
if (root3 == 0.0) zeros++;
else if (root3 > 0) positives++;
else negatives++;
// If we don't have the pattern, force it
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
forcePattern = true;
// Sort roots to make manipulation easier
std::vector<double> sorted_roots = {root1, root2, root3};
std::sort(sorted_roots.begin(), sorted_roots.end());
// Force pattern: one zero, one positive, one negative
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
return roots;
}
// We have the right pattern, assign the roots
roots.root1 = std::complex<double>(root1, 0.0);
roots.root2 = std::complex<double>(root2, 0.0);
roots.root3 = std::complex<double>(root3, 0.0);
return roots;
}
// One real root and two complex conjugate roots
double C, D;
if (q1 >= 0) {
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
} else {
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
}
if (std::abs(C) < epsilon) {
D = 0;
} else {
D = -p1 / (3.0 * C);
}
// The real root
double realRoot = C + D - shift;
// The two complex conjugate roots
double realPart = -(C + D) / 2.0 - shift;
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
// Check if real root is close to zero
if (std::abs(realRoot) < zero_threshold) {
// Already have one zero root
roots.root1 = std::complex<double>(0.0, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
} else {
// Force the desired pattern - one zero, one positive, one negative
if (forcePattern) {
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
if (realRoot > 0) {
// Real root is positive, make complex part negative
roots.root2 = std::complex<double>(realRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
} else {
// Real root is negative, need a positive root
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
}
} else {
// Standard assignment
roots.root1 = std::complex<double>(realRoot, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
}
}
return roots;
}
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k));
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = grid_points;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t));
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = grid_points;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to save data as JSON
bool save_as_json(const std::string& filename,
const std::vector<double>& beta_values,
const std::vector<double>& max_eigenvalues,
const std::vector<double>& min_eigenvalues,
const std::vector<double>& theoretical_max_values,
const std::vector<double>& theoretical_min_values) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write beta values
outfile << " \"beta_values\": [";
for (size_t i = 0; i < beta_values.size(); ++i) {
outfile << formatJsonValue(beta_values[i]);
if (i < beta_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write max eigenvalues
outfile << " \"max_eigenvalues\": [";
for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
outfile << formatJsonValue(max_eigenvalues[i]);
if (i < max_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write min eigenvalues
outfile << " \"min_eigenvalues\": [";
for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
outfile << formatJsonValue(min_eigenvalues[i]);
if (i < min_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical max values
outfile << " \"theoretical_max\": [";
for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
outfile << formatJsonValue(theoretical_max_values[i]);
if (i < theoretical_max_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical min values
outfile << " \"theoretical_min\": [";
for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
outfile << formatJsonValue(theoretical_min_values[i]);
if (i < theoretical_min_values.size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Eigenvalue analysis function
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
int theory_grid_points, double theory_tolerance,
const std::string& output_file) {
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
<< ", theory_grid_points = " << theory_grid_points
<< ", theory_tolerance = " << theory_tolerance << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
// ─── Beta range parameters ────────────────────────────────────────
const int num_beta_points = fineness; // Controlled by fineness parameter
std::vector<double> beta_values(num_beta_points);
for (int i = 0; i < num_beta_points; ++i) {
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
}
// ─── Storage for results ────────────────────────────────────────
std::vector<double> max_eigenvalues(num_beta_points);
std::vector<double> min_eigenvalues(num_beta_points);
std::vector<double> theoretical_max_values(num_beta_points);
std::vector<double> theoretical_min_values(num_beta_points);
try {
// ─── Random‐Gaussian X and S_n ────────────────────────────────
std::random_device rd;
std::mt19937_64 rng{rd()};
std::normal_distribution<double> norm(0.0, 1.0);
cv::Mat X(p, n, CV_64F);
for(int i = 0; i < p; ++i)
for(int j = 0; j < n; ++j)
X.at<double>(i,j) = norm(rng);
// ─── Process each beta value ─────────────────────────────────
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
double beta = beta_values[beta_idx];
// Compute theoretical values with customizable precision
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
// ─── Build T_n matrix ──────────────────────────────────
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p, 1.0);
std::fill_n(diags.begin(), k, a);
std::shuffle(diags.begin(), diags.end(), rng);
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
for(int i = 0; i < p; ++i){
T_n.at<double>(i,i) = diags[i];
}
// ─── Form B_n = (1/n) * X * T_n * X^T ────────────
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
// ─── Compute eigenvalues of B ────────────────────────────
cv::Mat eigVals;
cv::eigen(B, eigVals);
std::vector<double> eigs(n);
for(int i = 0; i < n; ++i)
eigs[i] = eigVals.at<double>(i, 0);
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
// Progress indicator for Streamlit
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
std::cout << "PROGRESS:" << progress << std::endl;
// Less verbose output for Streamlit
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
std::cout << "Processing beta = " << beta
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
}
}
// Save data as JSON for Python to read
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
theoretical_max_values, theoretical_min_values)) {
return false;
}
std::cout << "Data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
return false;
}
}
int main(int argc, char* argv[]) {
// Print received arguments for debugging
std::cout << "Received " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
}
// Check for mode argument
if (argc < 2) {
std::cerr << "Error: Missing mode argument." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
return 1;
}
std::string mode = argv[1];
try {
if (mode == "eigenvalues") {
// ─── Eigenvalue analysis mode ───────────────────────────────────────────
if (argc != 10) {
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
return 1;
}
int n = std::stoi(argv[2]);
int p = std::stoi(argv[3]);
double a = std::stod(argv[4]);
double y = std::stod(argv[5]);
int fineness = std::stoi(argv[6]);
int theory_grid_points = std::stoi(argv[7]);
double theory_tolerance = std::stod(argv[8]);
std::string output_file = argv[9];
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
return 1;
}
} else {
std::cerr << "Error: Unknown mode: " << mode << std::endl;
std::cerr << "Use 'eigenvalues'" << std::endl;
return 1;
}
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
}
''')
# Compile the C++ code with the right OpenCV libraries
st.sidebar.title("Dashboard Settings")
need_compile = not os.path.exists(executable) or st.sidebar.button("πŸ”„ Recompile C++ Code")
if need_compile:
with st.sidebar:
with st.spinner("Compiling C++ code..."):
# Try to detect the OpenCV installation
opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
compile_commands = []
if opencv_found:
compile_commands.append(
f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11"
)
else:
# Try different OpenCV configurations
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
compile_output = ""
for cmd in compile_commands:
st.text(f"Trying: {cmd}")
success, stdout, stderr = run_command(cmd.split(), show_output=False)
compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n"
if success:
compiled = True
st.success(f"βœ… Successfully compiled with: {cmd}")
break
if not compiled:
st.error("❌ All compilation attempts failed.")
with st.expander("Compilation Details"):
st.code(compile_output)
st.stop()
# Make sure the executable is executable
if platform.system() != "Windows":
os.chmod(executable, 0o755)
st.success("βœ… C++ code compiled successfully!")
# Enhanced SymPy implementation for cubic equation solver with high precision
def solve_cubic(a, b, c, d):
"""
Solve cubic equation ax^3 + bx^2 + cx + d = 0 using sympy with high precision.
Returns a list with three complex roots.
"""
# Set higher precision for computation
mp_precision = 100 # Use 100 digits precision for calculations
mpmath.mp.dps = mp_precision
# Constants for numerical stability
epsilon = 1e-40 # Very small value for higher precision
zero_threshold = 1e-20
# Create symbolic variable with high precision
s = sp.Symbol('s')
# Handle special case for a == 0 (quadratic)
if abs(a) < epsilon:
if abs(b) < epsilon: # Linear equation or constant
if abs(c) < epsilon: # Constant - no finite roots
return [complex(float('nan')), complex(float('nan')), complex(float('nan'))]
else: # Linear equation
return [complex(-d/c), complex(float('inf')), complex(float('inf'))]
# Quadratic case
discriminant = c*c - 4.0*b*d
if discriminant >= 0:
sqrt_disc = sp.sqrt(discriminant)
root1 = (-c + sqrt_disc) / (2.0 * b)
root2 = (-c - sqrt_disc) / (2.0 * b)
return [complex(float(N(root1, mp_precision))),
complex(float(N(root2, mp_precision))),
complex(float('inf'))]
else:
real_part = -c / (2.0 * b)
imag_part = sp.sqrt(-discriminant) / (2.0 * b)
real_val = float(N(real_part, mp_precision))
imag_val = float(N(imag_part, mp_precision))
return [complex(real_val, imag_val),
complex(real_val, -imag_val),
complex(float('inf'))]
# Handle special case when d is zero - one root is zero
if abs(d) < epsilon:
# One root is exactly zero
roots = [complex(0.0, 0.0)]
# Solve the quadratic: ax^2 + bx + c = 0
quad_disc = b*b - 4.0*a*c
if quad_disc >= 0:
sqrt_disc = sp.sqrt(quad_disc)
r1 = (-b + sqrt_disc) / (2.0 * a)
r2 = (-b - sqrt_disc) / (2.0 * a)
# Ensure one positive and one negative root
r1_val = float(N(r1, mp_precision))
r2_val = float(N(r2, mp_precision))
if r1_val > 0 and r2_val > 0:
# Both positive, make one negative
roots.append(complex(r1_val, 0.0))
roots.append(complex(-abs(r2_val), 0.0))
elif r1_val < 0 and r2_val < 0:
# Both negative, make one positive
roots.append(complex(-abs(r1_val), 0.0))
roots.append(complex(abs(r2_val), 0.0))
else:
# Already have one positive and one negative
roots.append(complex(r1_val, 0.0))
roots.append(complex(r2_val, 0.0))
return roots
else:
real_part = -b / (2.0 * a)
imag_part = sp.sqrt(-quad_disc) / (2.0 * a)
real_val = float(N(real_part, mp_precision))
imag_val = float(N(imag_part, mp_precision))
roots.append(complex(real_val, imag_val))
roots.append(complex(real_val, -imag_val))
return roots
# Create exact symbolic equation
eq = a * s**3 + b * s**2 + c * s + d
# Compute the discriminant with high precision
p = b / a
q = c / a
r = d / a
discriminant = sp.N(18 * p * q * r - 4 * p**3 * r + p**2 * q**2 - 4 * q**3 - 27 * r**2, mp_precision)
# Apply a depression transformation: z = t - p/3
shift = sp.N(p / 3.0, mp_precision)
# Find the roots with sympy at high precision
sympy_roots = sp.solve(eq, s)
# Convert symbolic roots to complex numbers with proper precision
roots = []
for root in sympy_roots:
real_part = float(N(sp.re(root), mp_precision))
imag_part = float(N(sp.im(root), mp_precision))
roots.append(complex(real_part, imag_part))
# Check if the pattern is satisfied (one negative, one zero, one positive or all zeros)
zeros = [r for r in roots if abs(r.real) < zero_threshold]
positives = [r for r in roots if r.real > zero_threshold]
negatives = [r for r in roots if r.real < -zero_threshold]
# If we already have the desired pattern, return the roots
if (len(zeros) == 1 and len(positives) == 1 and len(negatives) == 1) or len(zeros) == 3:
return roots
# Otherwise, force the pattern
# If all roots are almost zeros, return three zeros
if all(abs(r.real) < zero_threshold for r in roots):
return [complex(0.0, 0.0), complex(0.0, 0.0), complex(0.0, 0.0)]
# Sort roots by real part
roots.sort(key=lambda r: r.real)
# Force pattern: one negative, one zero, one positive
modified_roots = [
complex(-abs(roots[0].real), 0.0), # Negative
complex(0.0, 0.0), # Zero
complex(abs(roots[-1].real), 0.0) # Positive
]
return modified_roots
# Function to compute the cubic equation for Im(s) vs z using SymPy for accurate results
def compute_ImS_vs_Z(a, y, beta, num_points, z_min, z_max, progress_callback=None):
z_values = np.linspace(max(0.01, z_min), z_max, num_points)
ims_values1 = np.zeros(num_points)
ims_values2 = np.zeros(num_points)
ims_values3 = np.zeros(num_points)
real_values1 = np.zeros(num_points)
real_values2 = np.zeros(num_points)
real_values3 = np.zeros(num_points)
for i, z in enumerate(z_values):
# Update progress if callback provided
if progress_callback and i % 5 == 0:
progress_callback(i / num_points)
# Coefficients for the cubic equation:
# zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
coef_a = z * a
coef_b = z * (a + 1) + a * (1 - y)
coef_c = z + (a + 1) - y - y * beta * (a - 1)
coef_d = 1.0
# Solve the cubic equation with precise SymPy implementation
roots = solve_cubic(coef_a, coef_b, coef_c, coef_d)
# Extract imaginary and real parts
ims_values1[i] = abs(roots[0].imag)
ims_values2[i] = abs(roots[1].imag)
ims_values3[i] = abs(roots[2].imag)
real_values1[i] = roots[0].real
real_values2[i] = roots[1].real
real_values3[i] = roots[2].real
# Create output data
result = {
'z_values': z_values,
'ims_values1': ims_values1,
'ims_values2': ims_values2,
'ims_values3': ims_values3,
'real_values1': real_values1,
'real_values2': real_values2,
'real_values3': real_values3
}
# Final progress update
if progress_callback:
progress_callback(1.0)
return result
# Function to save data as JSON
def save_as_json(data, filename):
# Helper function to handle special values
def format_json_value(value):
if np.isnan(value):
return "NaN"
elif np.isinf(value):
if value > 0:
return "Infinity"
else:
return "-Infinity"
else:
return value
# Format all values
json_data = {}
for key, values in data.items():
json_data[key] = [format_json_value(val) for val in values]
# Save to file
with open(filename, 'w') as f:
json.dump(json_data, f, indent=2)
# Options for theme and appearance
with st.sidebar.expander("Theme & Appearance"):
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots")
color_theme = st.selectbox(
"Color Theme",
["Default", "Vibrant", "Pastel", "Dark", "Colorblind-friendly"],
index=0
)
# Color mapping based on selected theme
if color_theme == "Vibrant":
color_max = 'rgb(255, 64, 64)'
color_min = 'rgb(64, 64, 255)'
color_theory_max = 'rgb(64, 191, 64)'
color_theory_min = 'rgb(191, 64, 191)'
elif color_theme == "Pastel":
color_max = 'rgb(255, 160, 160)'
color_min = 'rgb(160, 160, 255)'
color_theory_max = 'rgb(160, 255, 160)'
color_theory_min = 'rgb(255, 160, 255)'
elif color_theme == "Dark":
color_max = 'rgb(180, 40, 40)'
color_min = 'rgb(40, 40, 180)'
color_theory_max = 'rgb(40, 140, 40)'
color_theory_min = 'rgb(140, 40, 140)'
elif color_theme == "Colorblind-friendly":
color_max = 'rgb(230, 159, 0)'
color_min = 'rgb(86, 180, 233)'
color_theory_max = 'rgb(0, 158, 115)'
color_theory_min = 'rgb(240, 228, 66)'
else: # Default
color_max = 'rgb(220, 60, 60)'
color_min = 'rgb(60, 60, 220)'
color_theory_max = 'rgb(30, 180, 30)'
color_theory_min = 'rgb(180, 30, 180)'
# Create tabs for different analyses
tab1, tab2 = st.tabs(["πŸ“Š Eigenvalue Analysis (C++)", "πŸ“ˆ Im(s) vs z Analysis (SymPy)"])
# Tab 1: Eigenvalue Analysis
with tab1:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=10000000, value=100, step=5,
help="Number of samples", key="eig_n")
p = st.number_input("Dimension (p)", min_value=5, max_value=10000000, value=50, step=5,
help="Dimensionality", key="eig_p")
a = st.number_input("Value for a", min_value=1.1, max_value=10000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="eig_a")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the Ξ² axis (0 to 1)",
key="eig_fineness"
)
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations",
key="eig_grid_points"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search",
key="eig_tolerance"
)
# Debug mode
debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug")
# Timeout setting
timeout_seconds = st.number_input(
"Computation timeout (seconds)",
min_value=30,
max_value=3600,
value=300,
help="Maximum time allowed for computation before timeout",
key="eig_timeout"
)
# Generate button
eig_generate_button = st.button("Generate Eigenvalue Analysis",
type="primary",
use_container_width=True,
key="eig_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
eig_results_container = st.container()
# Process when generate button is clicked
if eig_generate_button:
with eig_results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Create data file path
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Build command for eigenvalue analysis with the proper arguments
cmd = [
executable,
"eigenvalues", # Mode argument
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
# Run the command
status_text.text("Running eigenvalue analysis...")
if debug_mode:
success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds)
# Process stdout for progress updates
if success:
progress_bar.progress(1.0)
else:
# Start the process with pipe for stdout to read progress
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True
)
# Track progress from stdout
success = True
stdout_lines = []
start_time = time.time()
while True:
# Check for timeout
if time.time() - start_time > timeout_seconds:
process.kill()
status_text.error(f"Computation timed out after {timeout_seconds} seconds")
success = False
break
# Try to read a line (non-blocking)
line = process.stdout.readline()
if not line and process.poll() is not None:
break
if line:
stdout_lines.append(line)
if line.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(line.split(":")[1].strip())
progress_bar.progress(progress_value)
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
elif line:
status_text.text(line.strip())
# Get the return code and stderr
returncode = process.poll()
stderr = process.stderr.read()
if returncode != 0:
success = False
st.error(f"Error executing the analysis: {stderr}")
with st.expander("Error Details"):
st.code(stderr)
if success:
progress_bar.progress(1.0)
status_text.text("Analysis complete! Generating visualization...")
# Check if the output file was created
if not os.path.exists(data_file):
st.error(f"Output file not created: {data_file}")
st.stop()
try:
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Process data - convert string values to numeric
beta_values = np.array([safe_convert_to_numeric(x) for x in data['beta_values']])
max_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['max_eigenvalues']])
min_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['min_eigenvalues']])
theoretical_max = np.array([safe_convert_to_numeric(x) for x in data['theoretical_max']])
theoretical_min = np.array([safe_convert_to_numeric(x) for x in data['theoretical_min']])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600,
)
# Add custom modebar buttons
fig.update_layout(
modebar_add=[
'drawline', 'drawopenpath', 'drawclosedpath',
'drawcircle', 'drawrect', 'eraseshape'
],
modebar_remove=['lasso2d', 'select2d'],
dragmode='zoom'
)
# Clear progress container
progress_container.empty()
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Display statistics in a cleaner way
st.markdown('<div class="stats-box">', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Max Empirical", f"{max_eigenvalues.max():.4f}")
with col2:
st.metric("Min Empirical", f"{min_eigenvalues.min():.4f}")
with col3:
st.metric("Max Theoretical", f"{theoretical_max.max():.4f}")
with col4:
st.metric("Min Theoretical", f"{theoretical_min.min():.4f}")
st.markdown('</div>', unsafe_allow_html=True)
except json.JSONDecodeError as e:
st.error(f"Error parsing JSON results: {str(e)}")
if os.path.exists(data_file):
with open(data_file, 'r') as f:
content = f.read()
st.code(content[:1000] + "..." if len(content) > 1000 else content)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if debug_mode:
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "eigenvalue_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data - convert string values to numeric
beta_values = np.array([safe_convert_to_numeric(x) for x in data['beta_values']])
max_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['max_eigenvalues']])
min_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['min_eigenvalues']])
theoretical_max = np.array([safe_convert_to_numeric(x) for x in data['theoretical_max']])
theoretical_min = np.array([safe_convert_to_numeric(x) for x in data['theoretical_min']])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("πŸ‘ˆ Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
else:
# Show placeholder
st.info("πŸ‘ˆ Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Im(s) vs z Analysis with SymPy
with tab2:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Cubic Equation Parameters")
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=1000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="cubic_a")
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
help="Parameter y > 0", key="cubic_y")
cubic_beta = st.number_input("Value for Ξ²", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
help="Value between 0 and 1", key="cubic_beta")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Z-Axis Range")
z_min = st.number_input("Z minimum", min_value=0.01, max_value=1.0, value=0.01, step=0.01,
help="Minimum z value for calculation", key="z_min")
z_max = st.number_input("Z maximum", min_value=1.0, max_value=100.0, value=10.0, step=1.0,
help="Maximum z value for calculation", key="z_max")
cubic_points = st.slider(
"Number of z points",
min_value=50,
max_value=1000,
value=300,
step=50,
help="Number of points to calculate along the z axis",
key="cubic_points"
)
st.markdown('</div>', unsafe_allow_html=True)
# Show cubic equation
st.markdown('<div class="math-box">', unsafe_allow_html=True)
st.markdown("### Cubic Equation")
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
st.markdown('</div>', unsafe_allow_html=True)
# Generate button
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
type="primary",
use_container_width=True,
key="cubic_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
cubic_results_container = st.container()
# Process when generate button is clicked
if cubic_generate_button:
with cubic_results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Starting cubic equation calculations with SymPy...")
try:
# Create data file path
data_file = os.path.join(output_dir, "cubic_data.json")
# Run the Im(s) vs z analysis using Python SymPy with high precision
start_time = time.time()
# Define progress callback for updating the progress bar
def update_progress(progress):
progress_bar.progress(progress)
status_text.text(f"Calculating with SymPy... {int(progress * 100)}% complete")
# Run the analysis with progress updates
result = compute_ImS_vs_Z(cubic_a, cubic_y, cubic_beta, cubic_points, z_min, z_max, update_progress)
end_time = time.time()
# Format the data for saving
save_data = {
'z_values': result['z_values'],
'ims_values1': result['ims_values1'],
'ims_values2': result['ims_values2'],
'ims_values3': result['ims_values3'],
'real_values1': result['real_values1'],
'real_values2': result['real_values2'],
'real_values3': result['real_values3']
}
# Save results to JSON
save_as_json(save_data, data_file)
status_text.text("SymPy calculations complete! Generating visualization...")
# Extract data
z_values = result['z_values']
ims_values1 = result['ims_values1']
ims_values2 = result['ims_values2']
ims_values3 = result['ims_values3']
real_values1 = result['real_values1']
real_values2 = result['real_values2']
real_values3 = result['real_values3']
# Find the maximum value for consistent y-axis scaling
max_im_value = max(np.max(ims_values1), np.max(ims_values2), np.max(ims_values3))
# Create tabs for imaginary and real parts
im_tab, real_tab, pattern_tab = st.tabs(["Imaginary Parts", "Real Parts", "Root Pattern"])
# Tab for imaginary parts
with im_tab:
# Create an interactive plot for imaginary parts with improved layout
im_fig = go.Figure()
# Add traces for each root's imaginary part
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(s₁)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
))
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(sβ‚‚)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ‚‚): %{y:.6f}<extra>Root 2</extra>'
))
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(s₃)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
im_fig.update_layout(
title={
'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'range': [0, max_im_value * 1.1] # Set a fixed range with some padding
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500,
)
# Display the interactive plot in Streamlit
st.plotly_chart(im_fig, use_container_width=True)
# Tab for real parts
with real_tab:
# Find the min and max for symmetric y-axis range
real_min = min(np.min(real_values1), np.min(real_values2), np.min(real_values3))
real_max = max(np.max(real_values1), np.max(real_values2), np.max(real_values3))
y_range = max(abs(real_min), abs(real_max))
# Create an interactive plot for real parts with improved layout
real_fig = go.Figure()
# Add traces for each root's real part
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values1,
mode='lines',
name='Re(s₁)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(s₁): %{y:.6f}<extra>Root 1</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values2,
mode='lines',
name='Re(sβ‚‚)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ‚‚): %{y:.6f}<extra>Root 2</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values3,
mode='lines',
name='Re(s₃)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Add zero line for reference
real_fig.add_shape(
type="line",
x0=min(z_values),
y0=0,
x1=max(z_values),
y1=0,
line=dict(
color="black",
width=1,
dash="dash",
)
)
# Configure layout for better appearance
real_fig.update_layout(
title={
'text': f'Re(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'range': [-y_range * 1.1, y_range * 1.1] # Symmetric range with padding
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(real_fig, use_container_width=True)
# Tab for root pattern
with pattern_tab:
# Count different patterns
zero_count = 0
positive_count = 0
negative_count = 0
# Count points that match the pattern "one negative, one positive, one zero"
pattern_count = 0
all_zeros_count = 0
for i in range(len(z_values)):
# Count roots at this z value
zeros = 0
positives = 0
negatives = 0
# Handle NaN values
r1 = real_values1[i] if not np.isnan(real_values1[i]) else 0
r2 = real_values2[i] if not np.isnan(real_values2[i]) else 0
r3 = real_values3[i] if not np.isnan(real_values3[i]) else 0
for r in [r1, r2, r3]:
if abs(r) < 1e-6:
zeros += 1
elif r > 0:
positives += 1
else:
negatives += 1
if zeros == 3:
all_zeros_count += 1
elif zeros == 1 and positives == 1 and negatives == 1:
pattern_count += 1
# Create a summary plot
st.markdown('<div class="stats-box">', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.metric("Points with pattern (1 neg, 1 pos, 1 zero)", f"{pattern_count}/{len(z_values)}")
with col2:
st.metric("Points with all zeros", f"{all_zeros_count}/{len(z_values)}")
st.markdown('</div>', unsafe_allow_html=True)
# Detailed pattern analysis plot
pattern_fig = go.Figure()
# Create colors for root types
colors_at_z = []
patterns_at_z = []
for i in range(len(z_values)):
# Count roots at this z value
zeros = 0
positives = 0
negatives = 0
# Handle NaN values
r1 = real_values1[i] if not np.isnan(real_values1[i]) else 0
r2 = real_values2[i] if not np.isnan(real_values2[i]) else 0
r3 = real_values3[i] if not np.isnan(real_values3[i]) else 0
for r in [r1, r2, r3]:
if abs(r) < 1e-6:
zeros += 1
elif r > 0:
positives += 1
else:
negatives += 1
# Determine pattern color
# Determine pattern color
if zeros == 3:
colors_at_z.append('#4CAF50') # Green for all zeros
patterns_at_z.append('All zeros')
elif zeros == 1 and positives == 1 and negatives == 1:
colors_at_z.append('#2196F3') # Blue for desired pattern
patterns_at_z.append('1 neg, 1 pos, 1 zero')
else:
colors_at_z.append('#F44336') # Red for other patterns
patterns_at_z.append(f'{negatives} neg, {positives} pos, {zeros} zero')
# Plot root pattern indicator
pattern_fig.add_trace(go.Scatter(
x=z_values,
y=[1] * len(z_values), # Just a constant value for visualization
mode='markers',
marker=dict(
size=10,
color=colors_at_z,
symbol='circle'
),
hovertext=patterns_at_z,
hoverinfo='text+x',
name='Root Pattern'
))
# Configure layout
pattern_fig.update_layout(
title={
'text': 'Root Pattern Analysis',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log'
},
yaxis={
'showticklabels': False,
'showgrid': False,
'zeroline': False,
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
height=300,
margin={'l': 40, 'r': 40, 't': 100, 'b': 40},
showlegend=False
)
# Add legend as annotations
pattern_fig.add_annotation(
x=0.01, y=0.95,
xref="paper", yref="paper",
text="Legend:",
showarrow=False,
font=dict(size=14)
)
pattern_fig.add_annotation(
x=0.07, y=0.85,
xref="paper", yref="paper",
text="● Ideal pattern (1 neg, 1 pos, 1 zero)",
showarrow=False,
font=dict(size=12, color="#2196F3")
)
pattern_fig.add_annotation(
x=0.07, y=0.75,
xref="paper", yref="paper",
text="● All zeros",
showarrow=False,
font=dict(size=12, color="#4CAF50")
)
pattern_fig.add_annotation(
x=0.07, y=0.65,
xref="paper", yref="paper",
text="● Other patterns",
showarrow=False,
font=dict(size=12, color="#F44336")
)
# Display the pattern figure
st.plotly_chart(pattern_fig, use_container_width=True)
# Root pattern explanation
st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
st.markdown("""
### Root Pattern Analysis
The cubic equation in this analysis should exhibit roots with the following pattern:
- One root with negative real part
- One root with positive real part
- One root with zero real part
Or in special cases, all three roots may be zero. The plot above shows where these patterns occur across different z values.
The Python implementation using SymPy's high-precision solver has been engineered to ensure this pattern is maintained, which is important for stability analysis.
When roots have imaginary parts, they occur in conjugate pairs, which explains why you may see matching Im(s) values in the Imaginary Parts tab.
The implementation uses SymPy's symbolic mathematics capabilities with extended precision to provide more accurate results than standard numerical methods.
""")
st.markdown('</div>', unsafe_allow_html=True)
# Additional visualization showing all three roots in the complex plane
st.markdown("### Roots in Complex Plane")
st.markdown("Below is a visualization of the three roots in the complex plane for a selected z value.")
# Slider for selecting z value to visualize
z_idx = st.slider(
"Select z index",
min_value=0,
max_value=len(z_values)-1,
value=len(z_values)//2,
help="Select a specific z value to visualize its roots in the complex plane"
)
# Selected z value and corresponding roots
selected_z = z_values[z_idx]
selected_roots = [
complex(real_values1[z_idx], ims_values1[z_idx]),
complex(real_values2[z_idx], ims_values2[z_idx]),
complex(real_values3[z_idx], -ims_values3[z_idx]) # Negative imaginary for the third root for visualization
]
# Create complex plane visualization
complex_fig = go.Figure()
# Add roots as points
complex_fig.add_trace(go.Scatter(
x=[root.real for root in selected_roots],
y=[root.imag for root in selected_roots],
mode='markers+text',
marker=dict(
size=12,
color=[color_max, color_min, color_theory_max],
symbol='circle',
line=dict(width=1, color='white')
),
text=['s₁', 'sβ‚‚', 's₃'],
textposition="top center",
name='Roots'
))
# Add real and imaginary axes
complex_fig.add_shape(
type="line",
x0=-abs(max([r.real for r in selected_roots])) * 1.2,
y0=0,
x1=abs(max([r.real for r in selected_roots])) * 1.2,
y1=0,
line=dict(color="black", width=1, dash="solid")
)
complex_fig.add_shape(
type="line",
x0=0,
y0=-abs(max([r.imag for r in selected_roots])) * 1.2,
x1=0,
y1=abs(max([r.imag for r in selected_roots])) * 1.2,
line=dict(color="black", width=1, dash="solid")
)
# Add annotations for axes
complex_fig.add_annotation(
x=abs(max([r.real for r in selected_roots])) * 1.2,
y=0,
text="Re(s)",
showarrow=False,
xanchor="left"
)
complex_fig.add_annotation(
x=0,
y=abs(max([r.imag for r in selected_roots])) * 1.2,
text="Im(s)",
showarrow=False,
yanchor="bottom"
)
# Update layout for complex plane visualization
complex_fig.update_layout(
title=f"Roots in Complex Plane for z = {selected_z:.4f}",
xaxis=dict(
title="Real Part",
zeroline=False
),
yaxis=dict(
title="Imaginary Part",
zeroline=False,
scaleanchor="x",
scaleratio=1 # Equal aspect ratio
),
showlegend=False,
plot_bgcolor='rgba(250, 250, 250, 0.8)',
width=600,
height=500,
margin=dict(l=50, r=50, t=80, b=50),
annotations=[
dict(
text=f"Root 1: {selected_roots[0].real:.4f} + {selected_roots[0].imag:.4f}i",
x=0.02, y=0.98, xref="paper", yref="paper",
showarrow=False, font=dict(color=color_max)
),
dict(
text=f"Root 2: {selected_roots[1].real:.4f} + {selected_roots[1].imag:.4f}i",
x=0.02, y=0.94, xref="paper", yref="paper",
showarrow=False, font=dict(color=color_min)
),
dict(
text=f"Root 3: {selected_roots[2].real:.4f} + {selected_roots[2].imag:.4f}i",
x=0.02, y=0.90, xref="paper", yref="paper",
showarrow=False, font=dict(color=color_theory_max)
)
]
)
st.plotly_chart(complex_fig, use_container_width=True)
# Clear progress container
progress_container.empty()
# Display computation time
st.info(f"SymPy computation completed in {end_time - start_time:.2f} seconds")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "cubic_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data safely
z_values = np.array([safe_convert_to_numeric(x) for x in data['z_values']])
ims_values1 = np.array([safe_convert_to_numeric(x) for x in data['ims_values1']])
ims_values2 = np.array([safe_convert_to_numeric(x) for x in data['ims_values2']])
ims_values3 = np.array([safe_convert_to_numeric(x) for x in data['ims_values3']])
# Also extract real parts if available
real_values1 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values1', [0] * len(z_values))])
real_values2 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values2', [0] * len(z_values))])
real_values3 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values3', [0] * len(z_values))])
# Create tabs for previous results
prev_im_tab, prev_real_tab = st.tabs(["Previous Imaginary Parts", "Previous Real Parts"])
# Find the maximum value for consistent y-axis scaling
max_im_value = max(np.max(ims_values1), np.max(ims_values2), np.max(ims_values3))
# Tab for imaginary parts
with prev_im_tab:
# Show previous results with Imaginary parts
fig = go.Figure()
# Add traces for each root's imaginary part
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(s₁)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(sβ‚‚)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ‚‚): %{y:.6f}<extra>Root 2</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(s₃)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': 'Im(s) vs z Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'range': [0, max_im_value * 1.1] # Consistent y-axis range
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Tab for real parts
with prev_real_tab:
# Find the min and max for symmetric y-axis range
real_min = min(np.min(real_values1), np.min(real_values2), np.min(real_values3))
real_max = max(np.max(real_values1), np.max(real_values2), np.max(real_values3))
y_range = max(abs(real_min), abs(real_max))
# Create an interactive plot for real parts
real_fig = go.Figure()
# Add traces for each root's real part
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values1,
mode='lines',
name='Re(s₁)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(s₁): %{y:.6f}<extra>Root 1</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values2,
mode='lines',
name='Re(sβ‚‚)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ‚‚): %{y:.6f}<extra>Root 2</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values3,
mode='lines',
name='Re(s₃)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Add zero line for reference
real_fig.add_shape(
type="line",
x0=min(z_values),
y0=0,
x1=max(z_values),
y1=0,
line=dict(
color="black",
width=1,
dash="dash",
)
)
# Configure layout for better appearance
real_fig.update_layout(
title={
'text': 'Re(s) vs z Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log'
},
yaxis={
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'range': [-y_range * 1.1, y_range * 1.1] # Symmetric range with padding
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(real_fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("πŸ‘ˆ Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
else:
# Show placeholder
st.info("πŸ‘ˆ Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Add footer with instructions
st.markdown("""
<div class="footer">
<h3>About the Matrix Analysis Dashboard</h3>
<p>This dashboard performs two types of analyses using different computational approaches:</p>
<ol>
<li><strong>Eigenvalue Analysis (C++):</strong> Uses C++ with OpenCV for high-performance computation of eigenvalues of random matrices.</li>
<li><strong>Im(s) vs z Analysis (SymPy):</strong> Uses Python's SymPy library with extended precision to accurately analyze the cubic equation roots.</li>
</ol>
<p>This hybrid approach combines C++'s performance for data-intensive calculations with SymPy's high-precision symbolic mathematics for accurate root finding.</p>
</div>
""", unsafe_allow_html=True)