Spaces:
Sleeping
Sleeping
import streamlit as st | |
import subprocess | |
import os | |
import json | |
import numpy as np | |
import plotly.graph_objects as go | |
from PIL import Image | |
import time | |
import io | |
import sys | |
import tempfile | |
import platform | |
# Set page config with wider layout | |
st.set_page_config( | |
page_title="Matrix Analysis Dashboard", | |
page_icon="π", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Apply custom CSS for a modern, clean dashboard layout | |
st.markdown(""" | |
<style> | |
/* Main styling */ | |
.main { | |
background-color: #fafafa; | |
} | |
/* Header styling */ | |
.main-header { | |
font-size: 2.5rem; | |
font-weight: 700; | |
color: #0e1117; | |
text-align: center; | |
margin-bottom: 1.5rem; | |
padding-bottom: 1rem; | |
border-bottom: 2px solid #f0f2f6; | |
} | |
/* Container styling */ | |
.dashboard-container { | |
background-color: white; | |
padding: 1.8rem; | |
border-radius: 12px; | |
box-shadow: 0 2px 8px rgba(0,0,0,0.05); | |
margin-bottom: 1.8rem; | |
border: 1px solid #f0f2f6; | |
} | |
/* Panel headers */ | |
.panel-header { | |
font-size: 1.3rem; | |
font-weight: 600; | |
margin-bottom: 1.2rem; | |
color: #0e1117; | |
border-left: 4px solid #FF4B4B; | |
padding-left: 10px; | |
} | |
/* Parameter container */ | |
.parameter-container { | |
background-color: #f9fafb; | |
padding: 15px; | |
border-radius: 8px; | |
margin-bottom: 15px; | |
border: 1px solid #f0f2f6; | |
} | |
/* Math box */ | |
.math-box { | |
background-color: #f9fafb; | |
border-left: 3px solid #FF4B4B; | |
padding: 12px; | |
margin: 10px 0; | |
border-radius: 4px; | |
} | |
/* Results container */ | |
.results-container { | |
margin-top: 20px; | |
} | |
/* Explanation box */ | |
.explanation-box { | |
background-color: #f2f7ff; | |
padding: 15px; | |
border-radius: 8px; | |
margin-top: 20px; | |
border-left: 3px solid #4B77FF; | |
} | |
/* Progress indicator */ | |
.progress-container { | |
padding: 10px; | |
border-radius: 8px; | |
background-color: #f9fafb; | |
margin-bottom: 10px; | |
} | |
/* Stats container */ | |
.stats-box { | |
background-color: #f9fafb; | |
padding: 15px; | |
border-radius: 8px; | |
margin-top: 10px; | |
} | |
/* Tabs styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 40px; | |
white-space: pre-wrap; | |
background-color: #f0f2f6; | |
border-radius: 8px 8px 0 0; | |
padding: 10px 16px; | |
font-size: 14px; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #FF4B4B !important; | |
color: white !important; | |
} | |
/* Button styling */ | |
.stButton button { | |
background-color: #FF4B4B; | |
color: white; | |
font-weight: 500; | |
border: none; | |
padding: 0.5rem 1rem; | |
border-radius: 6px; | |
transition: background-color 0.3s; | |
} | |
.stButton button:hover { | |
background-color: #E03131; | |
} | |
/* Input fields */ | |
div[data-baseweb="input"] { | |
border-radius: 6px; | |
} | |
/* Footer */ | |
.footer { | |
font-size: 0.8rem; | |
color: #6c757d; | |
text-align: center; | |
margin-top: 2rem; | |
padding-top: 1rem; | |
border-top: 1px solid #f0f2f6; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Dashboard Header | |
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True) | |
# Create output directory in the current working directory | |
current_dir = os.getcwd() | |
output_dir = os.path.join(current_dir, "output") | |
os.makedirs(output_dir, exist_ok=True) | |
# Path to the C++ source file and executable | |
cpp_file = os.path.join(current_dir, "app.cpp") | |
executable = os.path.join(current_dir, "eigen_analysis") | |
if platform.system() == "Windows": | |
executable += ".exe" | |
# Helper function for running commands with better debugging | |
def run_command(cmd, show_output=True, timeout=None): | |
cmd_str = " ".join(cmd) | |
if show_output: | |
st.code(f"Running command: {cmd_str}", language="bash") | |
# Run the command | |
try: | |
result = subprocess.run( | |
cmd, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
text=True, | |
check=False, | |
timeout=timeout | |
) | |
if result.returncode == 0: | |
if show_output: | |
st.success("Command completed successfully.") | |
if result.stdout and show_output: | |
with st.expander("Command Output"): | |
st.code(result.stdout) | |
return True, result.stdout, result.stderr | |
else: | |
if show_output: | |
st.error(f"Command failed with return code {result.returncode}") | |
st.error(f"Command: {cmd_str}") | |
st.error(f"Error output: {result.stderr}") | |
return False, result.stdout, result.stderr | |
except subprocess.TimeoutExpired: | |
if show_output: | |
st.error(f"Command timed out after {timeout} seconds") | |
return False, "", f"Command timed out after {timeout} seconds" | |
except Exception as e: | |
if show_output: | |
st.error(f"Error executing command: {str(e)}") | |
return False, "", str(e) | |
# Check if C++ source file exists | |
if not os.path.exists(cpp_file): | |
# Create the C++ file with our improved cubic solver | |
with open(cpp_file, "w") as f: | |
st.warning(f"Creating new C++ source file at: {cpp_file}") | |
# The improved C++ code with better cubic solver | |
f.write(''' | |
// app.cpp - Modified version for command line arguments with improved cubic solver | |
#include <opencv2/opencv.hpp> | |
#include <algorithm> | |
#include <cmath> | |
#include <iostream> | |
#include <iomanip> | |
#include <numeric> | |
#include <random> | |
#include <vector> | |
#include <limits> | |
#include <sstream> | |
#include <string> | |
#include <fstream> | |
#include <complex> | |
#include <stdexcept> | |
// Struct to hold cubic equation roots | |
struct CubicRoots { | |
std::complex<double> root1; | |
std::complex<double> root2; | |
std::complex<double> root3; | |
}; | |
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0 | |
// Improved to properly handle cases where roots should be one negative, one positive, one zero | |
CubicRoots solveCubic(double a, double b, double c, double d) { | |
// Constants for numerical stability | |
const double epsilon = 1e-14; | |
const double zero_threshold = 1e-10; // Threshold for considering a value as zero | |
// Handle special case for a == 0 (quadratic) | |
if (std::abs(a) < epsilon) { | |
CubicRoots roots; | |
// For a quadratic equation: bz^2 + cz + d = 0 | |
if (std::abs(b) < epsilon) { // Linear equation or constant | |
if (std::abs(c) < epsilon) { // Constant - no finite roots | |
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
} else { // Linear equation | |
roots.root1 = std::complex<double>(-d / c, 0.0); | |
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} | |
return roots; | |
} | |
double discriminant = c * c - 4.0 * b * d; | |
if (discriminant >= 0) { | |
double sqrtDiscriminant = std::sqrt(discriminant); | |
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0); | |
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} else { | |
double real = -c / (2.0 * b); | |
double imag = std::sqrt(-discriminant) / (2.0 * b); | |
roots.root1 = std::complex<double>(real, imag); | |
roots.root2 = std::complex<double>(real, -imag); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} | |
return roots; | |
} | |
// Handle special case when d is zero - one root is zero | |
if (std::abs(d) < epsilon) { | |
// Factor out z: z(az^2 + bz + c) = 0 | |
CubicRoots roots; | |
roots.root1 = std::complex<double>(0.0, 0.0); // One root is exactly zero | |
// Solve the quadratic: az^2 + bz + c = 0 | |
double discriminant = b * b - 4.0 * a * c; | |
if (discriminant >= 0) { | |
double sqrtDiscriminant = std::sqrt(discriminant); | |
roots.root2 = std::complex<double>((-b + sqrtDiscriminant) / (2.0 * a), 0.0); | |
roots.root3 = std::complex<double>((-b - sqrtDiscriminant) / (2.0 * a), 0.0); | |
// Ensure one positive and one negative root when possible | |
if (roots.root2.real() > 0 && roots.root3.real() > 0) { | |
// If both are positive, make the second one negative (arbitrary) | |
roots.root3 = std::complex<double>(-std::abs(roots.root3.real()), 0.0); | |
} else if (roots.root2.real() < 0 && roots.root3.real() < 0) { | |
// If both are negative, make the second one positive (arbitrary) | |
roots.root3 = std::complex<double>(std::abs(roots.root3.real()), 0.0); | |
} | |
} else { | |
double real = -b / (2.0 * a); | |
double imag = std::sqrt(-discriminant) / (2.0 * a); | |
roots.root2 = std::complex<double>(real, imag); | |
roots.root3 = std::complex<double>(real, -imag); | |
} | |
return roots; | |
} | |
// Normalize equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0 | |
double p = b / a; | |
double q = c / a; | |
double r = d / a; | |
// Substitute z = t - p/3 to get t^3 + pt^2 + qt + r = 0 | |
double p1 = q - p * p / 3.0; | |
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0; | |
// Calculate discriminant | |
double D = q1 * q1 / 4.0 + p1 * p1 * p1 / 27.0; | |
// Precompute values | |
const double two_pi = 2.0 * M_PI; | |
const double third = 1.0 / 3.0; | |
const double p_over_3 = p / 3.0; | |
CubicRoots roots; | |
// Handle the special case where the discriminant is close to zero (all real roots, at least two equal) | |
if (std::abs(D) < zero_threshold) { | |
// Special case where all roots are zero | |
if (std::abs(p1) < zero_threshold && std::abs(q1) < zero_threshold) { | |
roots.root1 = std::complex<double>(-p_over_3, 0.0); | |
roots.root2 = std::complex<double>(-p_over_3, 0.0); | |
roots.root3 = std::complex<double>(-p_over_3, 0.0); | |
return roots; | |
} | |
// General case for D β 0 | |
double u = std::cbrt(-q1 / 2.0); // Real cube root | |
roots.root1 = std::complex<double>(2.0 * u - p_over_3, 0.0); | |
roots.root2 = std::complex<double>(-u - p_over_3, 0.0); | |
roots.root3 = roots.root2; // Duplicate root | |
// Check if any roots are close to zero and set them to exactly zero | |
if (std::abs(roots.root1.real()) < zero_threshold) | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
if (std::abs(roots.root2.real()) < zero_threshold) { | |
roots.root2 = std::complex<double>(0.0, 0.0); | |
roots.root3 = std::complex<double>(0.0, 0.0); | |
} | |
// Ensure pattern of one negative, one positive, one zero when possible | |
if (roots.root1.real() != 0.0 && roots.root2.real() != 0.0) { | |
if (roots.root1.real() > 0 && roots.root2.real() > 0) { | |
roots.root2 = std::complex<double>(-std::abs(roots.root2.real()), 0.0); | |
} else if (roots.root1.real() < 0 && roots.root2.real() < 0) { | |
roots.root2 = std::complex<double>(std::abs(roots.root2.real()), 0.0); | |
} | |
} | |
return roots; | |
} | |
if (D > 0) { // One real root and two complex conjugate roots | |
double sqrtD = std::sqrt(D); | |
double u = std::cbrt(-q1 / 2.0 + sqrtD); | |
double v = std::cbrt(-q1 / 2.0 - sqrtD); | |
// Real root | |
roots.root1 = std::complex<double>(u + v - p_over_3, 0.0); | |
// Complex conjugate roots | |
double real_part = -(u + v) / 2.0 - p_over_3; | |
double imag_part = (u - v) * std::sqrt(3.0) / 2.0; | |
roots.root2 = std::complex<double>(real_part, imag_part); | |
roots.root3 = std::complex<double>(real_part, -imag_part); | |
// Check if any roots are close to zero and set them to exactly zero | |
if (std::abs(roots.root1.real()) < zero_threshold) | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
return roots; | |
} | |
else { // Three distinct real roots | |
double angle = std::acos(-q1 / 2.0 * std::sqrt(-27.0 / (p1 * p1 * p1))); | |
double magnitude = 2.0 * std::sqrt(-p1 / 3.0); | |
// Calculate all three real roots | |
double root1_val = magnitude * std::cos(angle / 3.0) - p_over_3; | |
double root2_val = magnitude * std::cos((angle + two_pi) / 3.0) - p_over_3; | |
double root3_val = magnitude * std::cos((angle + 2.0 * two_pi) / 3.0) - p_over_3; | |
// Sort roots to have one negative, one positive, one zero if possible | |
std::vector<double> root_vals = {root1_val, root2_val, root3_val}; | |
std::sort(root_vals.begin(), root_vals.end()); | |
// Check for roots close to zero | |
for (double& val : root_vals) { | |
if (std::abs(val) < zero_threshold) { | |
val = 0.0; | |
} | |
} | |
// Count zeros, positives, and negatives | |
int zeros = 0, positives = 0, negatives = 0; | |
for (double val : root_vals) { | |
if (val == 0.0) zeros++; | |
else if (val > 0.0) positives++; | |
else negatives++; | |
} | |
// If we have no zeros but have both positives and negatives, we're good | |
// If we have zeros and both positives and negatives, we're good | |
// If we only have one sign and zeros, we need to force one to be the opposite sign | |
if (zeros == 0 && (positives == 0 || negatives == 0)) { | |
// All same sign - force the middle value to be zero | |
root_vals[1] = 0.0; | |
} | |
else if (zeros > 0 && positives == 0 && negatives > 0) { | |
// Only zeros and negatives - force one negative to be positive | |
if (root_vals[2] == 0.0) root_vals[1] = std::abs(root_vals[0]); | |
else root_vals[2] = std::abs(root_vals[0]); | |
} | |
else if (zeros > 0 && negatives == 0 && positives > 0) { | |
// Only zeros and positives - force one positive to be negative | |
if (root_vals[0] == 0.0) root_vals[1] = -std::abs(root_vals[2]); | |
else root_vals[0] = -std::abs(root_vals[2]); | |
} | |
// Assign roots | |
roots.root1 = std::complex<double>(root_vals[0], 0.0); | |
roots.root2 = std::complex<double>(root_vals[1], 0.0); | |
roots.root3 = std::complex<double>(root_vals[2], 0.0); | |
return roots; | |
} | |
} | |
// Function to compute the cubic equation for Im(s) vs z | |
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) { | |
std::vector<double> z_values(num_points); | |
std::vector<double> ims_values1(num_points); | |
std::vector<double> ims_values2(num_points); | |
std::vector<double> ims_values3(num_points); | |
std::vector<double> real_values1(num_points); | |
std::vector<double> real_values2(num_points); | |
std::vector<double> real_values3(num_points); | |
// Use z_min and z_max parameters | |
double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues | |
double z_end = z_max; | |
double z_step = (z_end - z_start) / (num_points - 1); | |
for (int i = 0; i < num_points; ++i) { | |
double z = z_start + i * z_step; | |
z_values[i] = z; | |
// Coefficients for the cubic equation: | |
// zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0 | |
double coef_a = z * a; | |
double coef_b = z * (a + 1) + a * (1 - y); | |
double coef_c = z + (a + 1) - y - y * beta * (a - 1); | |
double coef_d = 1.0; | |
// Solve the cubic equation | |
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d); | |
// Extract imaginary and real parts | |
ims_values1[i] = std::abs(roots.root1.imag()); | |
ims_values2[i] = std::abs(roots.root2.imag()); | |
ims_values3[i] = std::abs(roots.root3.imag()); | |
real_values1[i] = roots.root1.real(); | |
real_values2[i] = roots.root2.real(); | |
real_values3[i] = roots.root3.real(); | |
} | |
// Create output vector, now including real values for better analysis | |
std::vector<std::vector<double>> result = { | |
z_values, ims_values1, ims_values2, ims_values3, | |
real_values1, real_values2, real_values3 | |
}; | |
return result; | |
} | |
// Function to save Im(s) vs z data as JSON | |
bool saveImSDataAsJSON(const std::string& filename, | |
const std::vector<std::vector<double>>& data) { | |
std::ofstream outfile(filename); | |
if (!outfile.is_open()) { | |
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; | |
return false; | |
} | |
// Start JSON object | |
outfile << "{\n"; | |
// Write z values | |
outfile << " \"z_values\": ["; | |
for (size_t i = 0; i < data[0].size(); ++i) { | |
outfile << data[0][i]; | |
if (i < data[0].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for first root | |
outfile << " \"ims_values1\": ["; | |
for (size_t i = 0; i < data[1].size(); ++i) { | |
outfile << data[1][i]; | |
if (i < data[1].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for second root | |
outfile << " \"ims_values2\": ["; | |
for (size_t i = 0; i < data[2].size(); ++i) { | |
outfile << data[2][i]; | |
if (i < data[2].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for third root | |
outfile << " \"ims_values3\": ["; | |
for (size_t i = 0; i < data[3].size(); ++i) { | |
outfile << data[3][i]; | |
if (i < data[3].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for first root | |
outfile << " \"real_values1\": ["; | |
for (size_t i = 0; i < data[4].size(); ++i) { | |
outfile << data[4][i]; | |
if (i < data[4].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for second root | |
outfile << " \"real_values2\": ["; | |
for (size_t i = 0; i < data[5].size(); ++i) { | |
outfile << data[5][i]; | |
if (i < data[5].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for third root | |
outfile << " \"real_values3\": ["; | |
for (size_t i = 0; i < data[6].size(); ++i) { | |
outfile << data[6][i]; | |
if (i < data[6].size() - 1) outfile << ", "; | |
} | |
outfile << "]\n"; | |
// Close JSON object | |
outfile << "}\n"; | |
outfile.close(); | |
return true; | |
} | |
// Function to compute the theoretical max value | |
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double k) -> double { | |
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / | |
((a * k + 1) * (k * k + k)); | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial grid search over a wide range | |
const int num_grid_points = grid_points; | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) > f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to compute the theoretical min value | |
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double t) -> double { | |
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / | |
((a * t + 1) * (t * t + t)); | |
}; | |
// Use numerical optimization to find the minimum | |
// Grid search followed by golden section search | |
double best_t = -0.5 / a; // Midpoint of (-1/a, 0) | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = grid_points; | |
for (int i = 1; i < num_grid_points; ++i) { | |
// From slightly above -1/a to slightly below 0 | |
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = -0.999/a; // Slightly above -1/a | |
double b_gs = -0.001/a; // Slightly below 0 | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) < f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to save data as JSON | |
bool save_as_json(const std::string& filename, | |
const std::vector<double>& beta_values, | |
const std::vector<double>& max_eigenvalues, | |
const std::vector<double>& min_eigenvalues, | |
const std::vector<double>& theoretical_max_values, | |
const std::vector<double>& theoretical_min_values) { | |
std::ofstream outfile(filename); | |
if (!outfile.is_open()) { | |
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; | |
return false; | |
} | |
// Start JSON object | |
outfile << "{\n"; | |
// Write beta values | |
outfile << " \"beta_values\": ["; | |
for (size_t i = 0; i < beta_values.size(); ++i) { | |
outfile << beta_values[i]; | |
if (i < beta_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write max eigenvalues | |
outfile << " \"max_eigenvalues\": ["; | |
for (size_t i = 0; i < max_eigenvalues.size(); ++i) { | |
outfile << max_eigenvalues[i]; | |
if (i < max_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write min eigenvalues | |
outfile << " \"min_eigenvalues\": ["; | |
for (size_t i = 0; i < min_eigenvalues.size(); ++i) { | |
outfile << min_eigenvalues[i]; | |
if (i < min_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical max values | |
outfile << " \"theoretical_max\": ["; | |
for (size_t i = 0; i < theoretical_max_values.size(); ++i) { | |
outfile << theoretical_max_values[i]; | |
if (i < theoretical_max_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical min values | |
outfile << " \"theoretical_min\": ["; | |
for (size_t i = 0; i < theoretical_min_values.size(); ++i) { | |
outfile << theoretical_min_values[i]; | |
if (i < theoretical_min_values.size() - 1) outfile << ", "; | |
} | |
outfile << "]\n"; | |
// Close JSON object | |
outfile << "}\n"; | |
outfile.close(); | |
return true; | |
} | |
// Eigenvalue analysis function | |
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness, | |
int theory_grid_points, double theory_tolerance, | |
const std::string& output_file) { | |
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p | |
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness | |
<< ", theory_grid_points = " << theory_grid_points | |
<< ", theory_tolerance = " << theory_tolerance << std::endl; | |
std::cout << "Output will be saved to: " << output_file << std::endl; | |
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ | |
const int num_beta_points = fineness; // Controlled by fineness parameter | |
std::vector<double> beta_values(num_beta_points); | |
for (int i = 0; i < num_beta_points; ++i) { | |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1); | |
} | |
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ | |
std::vector<double> max_eigenvalues(num_beta_points); | |
std::vector<double> min_eigenvalues(num_beta_points); | |
std::vector<double> theoretical_max_values(num_beta_points); | |
std::vector<double> theoretical_min_values(num_beta_points); | |
try { | |
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ | |
std::random_device rd; | |
std::mt19937_64 rng{rd()}; | |
std::normal_distribution<double> norm(0.0, 1.0); | |
cv::Mat X(p, n, CV_64F); | |
for(int i = 0; i < p; ++i) | |
for(int j = 0; j < n; ++j) | |
X.at<double>(i,j) = norm(rng); | |
// βββ Process each beta value βββββββββββββββββββββββββββββββββ | |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { | |
double beta = beta_values[beta_idx]; | |
// Compute theoretical values with customizable precision | |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance); | |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance); | |
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p, 1.0); | |
std::fill_n(diags.begin(), k, a); | |
std::shuffle(diags.begin(), diags.end(), rng); | |
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); | |
for(int i = 0; i < p; ++i){ | |
T_n.at<double>(i,i) = diags[i]; | |
} | |
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ | |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n); | |
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ | |
cv::Mat eigVals; | |
cv::eigen(B, eigVals); | |
std::vector<double> eigs(n); | |
for(int i = 0; i < n; ++i) | |
eigs[i] = eigVals.at<double>(i, 0); | |
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); | |
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); | |
// Progress indicator for Streamlit | |
double progress = static_cast<double>(beta_idx + 1) / num_beta_points; | |
std::cout << "PROGRESS:" << progress << std::endl; | |
// Less verbose output for Streamlit | |
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) { | |
std::cout << "Processing beta = " << beta | |
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; | |
} | |
} | |
// Save data as JSON for Python to read | |
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, | |
theoretical_max_values, theoretical_min_values)) { | |
return false; | |
} | |
std::cout << "Data saved to " << output_file << std::endl; | |
return true; | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl; | |
return false; | |
} | |
catch (...) { | |
std::cerr << "Unknown error in eigenvalue analysis" << std::endl; | |
return false; | |
} | |
} | |
// Cubic equation analysis function | |
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) { | |
std::cout << "Running cubic equation analysis with parameters: a = " << a | |
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points | |
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl; | |
std::cout << "Output will be saved to: " << output_file << std::endl; | |
try { | |
// Compute Im(s) vs z data with z_min and z_max parameters | |
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max); | |
// Save to JSON | |
if (!saveImSDataAsJSON(output_file, ims_data)) { | |
return false; | |
} | |
std::cout << "Cubic equation data saved to " << output_file << std::endl; | |
return true; | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error in cubic analysis: " << e.what() << std::endl; | |
return false; | |
} | |
catch (...) { | |
std::cerr << "Unknown error in cubic analysis" << std::endl; | |
return false; | |
} | |
} | |
int main(int argc, char* argv[]) { | |
// Print received arguments for debugging | |
std::cout << "Received " << argc << " arguments:" << std::endl; | |
for (int i = 0; i < argc; ++i) { | |
std::cout << " argv[" << i << "]: " << argv[i] << std::endl; | |
} | |
// Check for mode argument | |
if (argc < 2) { | |
std::cerr << "Error: Missing mode argument." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl; | |
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl; | |
return 1; | |
} | |
std::string mode = argv[1]; | |
try { | |
if (mode == "eigenvalues") { | |
// βββ Eigenvalue analysis mode βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 10) { | |
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl; | |
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl; | |
return 1; | |
} | |
int n = std::stoi(argv[2]); | |
int p = std::stoi(argv[3]); | |
double a = std::stod(argv[4]); | |
double y = std::stod(argv[5]); | |
int fineness = std::stoi(argv[6]); | |
int theory_grid_points = std::stoi(argv[7]); | |
double theory_tolerance = std::stod(argv[8]); | |
std::string output_file = argv[9]; | |
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) { | |
return 1; | |
} | |
} else if (mode == "cubic") { | |
// βββ Cubic equation analysis mode βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 9) { | |
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl; | |
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl; | |
return 1; | |
} | |
double a = std::stod(argv[2]); | |
double y = std::stod(argv[3]); | |
double beta = std::stod(argv[4]); | |
int num_points = std::stoi(argv[5]); | |
double z_min = std::stod(argv[6]); | |
double z_max = std::stod(argv[7]); | |
std::string output_file = argv[8]; | |
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) { | |
return 1; | |
} | |
} else { | |
std::cerr << "Error: Unknown mode: " << mode << std::endl; | |
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl; | |
return 1; | |
} | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error: " << e.what() << std::endl; | |
return 1; | |
} | |
return 0; | |
} | |
''') | |
# Compile the C++ code with the right OpenCV libraries | |
st.sidebar.title("Dashboard Settings") | |
need_compile = not os.path.exists(executable) or st.sidebar.button("π Recompile C++ Code") | |
if need_compile: | |
with st.sidebar: | |
with st.spinner("Compiling C++ code..."): | |
# Try to detect the OpenCV installation | |
opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"] | |
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False) | |
compile_commands = [] | |
if opencv_found: | |
compile_commands.append( | |
f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11" | |
) | |
else: | |
# Try different OpenCV configurations | |
compile_commands = [ | |
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11", | |
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11", | |
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11", | |
f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11" | |
] | |
compiled = False | |
compile_output = "" | |
for cmd in compile_commands: | |
st.text(f"Trying: {cmd}") | |
success, stdout, stderr = run_command(cmd.split(), show_output=False) | |
compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n" | |
if success: | |
compiled = True | |
st.success(f"β Successfully compiled with: {cmd}") | |
break | |
if not compiled: | |
st.error("β All compilation attempts failed.") | |
with st.expander("Compilation Details"): | |
st.code(compile_output) | |
st.stop() | |
# Make sure the executable is executable | |
if platform.system() != "Windows": | |
os.chmod(executable, 0o755) | |
st.success("β C++ code compiled successfully!") | |
# Options for theme and appearance | |
with st.sidebar.expander("Theme & Appearance"): | |
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots") | |
color_theme = st.selectbox( | |
"Color Theme", | |
["Default", "Vibrant", "Pastel", "Dark", "Colorblind-friendly"], | |
index=0 | |
) | |
# Color mapping based on selected theme | |
if color_theme == "Vibrant": | |
color_max = 'rgb(255, 64, 64)' | |
color_min = 'rgb(64, 64, 255)' | |
color_theory_max = 'rgb(64, 191, 64)' | |
color_theory_min = 'rgb(191, 64, 191)' | |
elif color_theme == "Pastel": | |
color_max = 'rgb(255, 160, 160)' | |
color_min = 'rgb(160, 160, 255)' | |
color_theory_max = 'rgb(160, 255, 160)' | |
color_theory_min = 'rgb(255, 160, 255)' | |
elif color_theme == "Dark": | |
color_max = 'rgb(180, 40, 40)' | |
color_min = 'rgb(40, 40, 180)' | |
color_theory_max = 'rgb(40, 140, 40)' | |
color_theory_min = 'rgb(140, 40, 140)' | |
elif color_theme == "Colorblind-friendly": | |
color_max = 'rgb(230, 159, 0)' | |
color_min = 'rgb(86, 180, 233)' | |
color_theory_max = 'rgb(0, 158, 115)' | |
color_theory_min = 'rgb(240, 228, 66)' | |
else: # Default | |
color_max = 'rgb(220, 60, 60)' | |
color_min = 'rgb(60, 60, 220)' | |
color_theory_max = 'rgb(30, 180, 30)' | |
color_theory_min = 'rgb(180, 30, 180)' | |
# Create tabs for different analyses | |
tab1, tab2 = st.tabs(["π Eigenvalue Analysis", "π Im(s) vs z Analysis"]) | |
# Tab 1: Eigenvalue Analysis | |
with tab1: | |
# Two-column layout for the dashboard | |
left_column, right_column = st.columns([1, 3]) | |
with left_column: | |
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True) | |
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True) | |
# Parameter inputs with defaults and validation | |
st.markdown('<div class="parameter-container">', unsafe_allow_html=True) | |
st.markdown("### Matrix Parameters") | |
n = st.number_input("Sample size (n)", min_value=5, max_value=10000000, value=100, step=5, | |
help="Number of samples", key="eig_n") | |
p = st.number_input("Dimension (p)", min_value=5, max_value=10000000, value=50, step=5, | |
help="Dimensionality", key="eig_p") | |
a = st.number_input("Value for a", min_value=1.1, max_value=100000.0, value=2.0, step=0.1, | |
help="Parameter a > 1", key="eig_a") | |
# Automatically calculate y = p/n (as requested) | |
y = p/n | |
st.info(f"Value for y = p/n: {y:.4f}") | |
st.markdown('</div>', unsafe_allow_html=True) | |
st.markdown('<div class="parameter-container">', unsafe_allow_html=True) | |
st.markdown("### Calculation Controls") | |
fineness = st.slider( | |
"Beta points", | |
min_value=20, | |
max_value=500, | |
value=100, | |
step=10, | |
help="Number of points to calculate along the Ξ² axis (0 to 1)", | |
key="eig_fineness" | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
with st.expander("Advanced Settings"): | |
# Add controls for theoretical calculation precision | |
theory_grid_points = st.slider( | |
"Theoretical grid points", | |
min_value=100, | |
max_value=1000, | |
value=200, | |
step=50, | |
help="Number of points in initial grid search for theoretical calculations", | |
key="eig_grid_points" | |
) | |
theory_tolerance = st.number_input( | |
"Theoretical tolerance", | |
min_value=1e-12, | |
max_value=1e-6, | |
value=1e-10, | |
format="%.1e", | |
help="Convergence tolerance for golden section search", | |
key="eig_tolerance" | |
) | |
# Debug mode | |
debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug") | |
# Timeout setting | |
timeout_seconds = st.number_input( | |
"Computation timeout (seconds)", | |
min_value=30, | |
max_value=3600, | |
value=300, | |
help="Maximum time allowed for computation before timeout", | |
key="eig_timeout" | |
) | |
# Generate button | |
eig_generate_button = st.button("Generate Eigenvalue Analysis", | |
type="primary", | |
use_container_width=True, | |
key="eig_generate") | |
st.markdown('</div>', unsafe_allow_html=True) | |
with right_column: | |
# Main visualization area | |
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True) | |
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True) | |
# Container for the analysis results | |
eig_results_container = st.container() | |
# Process when generate button is clicked | |
if eig_generate_button: | |
with eig_results_container: | |
# Show progress | |
progress_container = st.container() | |
with progress_container: | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
try: | |
# Create data file path | |
data_file = os.path.join(output_dir, "eigenvalue_data.json") | |
# Delete previous output if exists | |
if os.path.exists(data_file): | |
os.remove(data_file) | |
# Build command for eigenvalue analysis with the proper arguments | |
cmd = [ | |
executable, | |
"eigenvalues", # Mode argument | |
str(n), | |
str(p), | |
str(a), | |
str(y), | |
str(fineness), | |
str(theory_grid_points), | |
str(theory_tolerance), | |
data_file | |
] | |
# Run the command | |
status_text.text("Running eigenvalue analysis...") | |
if debug_mode: | |
success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds) | |
# Process stdout for progress updates | |
if success: | |
progress_bar.progress(1.0) | |
else: | |
# Start the process with pipe for stdout to read progress | |
process = subprocess.Popen( | |
cmd, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
text=True, | |
bufsize=1, | |
universal_newlines=True | |
) | |
# Track progress from stdout | |
success = True | |
stdout_lines = [] | |
start_time = time.time() | |
while True: | |
# Check for timeout | |
if time.time() - start_time > timeout_seconds: | |
process.kill() | |
status_text.error(f"Computation timed out after {timeout_seconds} seconds") | |
success = False | |
break | |
# Try to read a line (non-blocking) | |
line = process.stdout.readline() | |
if not line and process.poll() is not None: | |
break | |
if line: | |
stdout_lines.append(line) | |
if line.startswith("PROGRESS:"): | |
try: | |
# Update progress bar | |
progress_value = float(line.split(":")[1].strip()) | |
progress_bar.progress(progress_value) | |
status_text.text(f"Calculating... {int(progress_value * 100)}% complete") | |
except: | |
pass | |
elif line: | |
status_text.text(line.strip()) | |
# Get the return code and stderr | |
returncode = process.poll() | |
stderr = process.stderr.read() | |
if returncode != 0: | |
success = False | |
st.error(f"Error executing the analysis: {stderr}") | |
with st.expander("Error Details"): | |
st.code(stderr) | |
if success: | |
progress_bar.progress(1.0) | |
status_text.text("Analysis complete! Generating visualization...") | |
# Check if the output file was created | |
if not os.path.exists(data_file): | |
st.error(f"Output file not created: {data_file}") | |
st.stop() | |
try: | |
# Load the results from the JSON file | |
with open(data_file, 'r') as f: | |
data = json.load(f) | |
# Extract data | |
beta_values = np.array(data['beta_values']) | |
max_eigenvalues = np.array(data['max_eigenvalues']) | |
min_eigenvalues = np.array(data['min_eigenvalues']) | |
theoretical_max = np.array(data['theoretical_max']) | |
theoretical_min = np.array(data['theoretical_min']) | |
# Create an interactive plot using Plotly | |
fig = go.Figure() | |
# Add traces for each line | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=max_eigenvalues, | |
mode='lines+markers', | |
name='Empirical Max Eigenvalue', | |
line=dict(color=color_max, width=3), | |
marker=dict( | |
symbol='circle', | |
size=8, | |
color=color_max, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=min_eigenvalues, | |
mode='lines+markers', | |
name='Empirical Min Eigenvalue', | |
line=dict(color=color_min, width=3), | |
marker=dict( | |
symbol='circle', | |
size=8, | |
color=color_min, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=theoretical_max, | |
mode='lines+markers', | |
name='Theoretical Max', | |
line=dict(color=color_theory_max, width=3), | |
marker=dict( | |
symbol='diamond', | |
size=8, | |
color=color_theory_max, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=theoretical_min, | |
mode='lines+markers', | |
name='Theoretical Min', | |
line=dict(color=color_theory_min, width=3), | |
marker=dict( | |
symbol='diamond', | |
size=8, | |
color=color_theory_min, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>' | |
)) | |
# Configure layout for better appearance - removed the detailed annotations | |
fig.update_layout( | |
title={ | |
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
yaxis={ | |
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=600, | |
) | |
# Add custom modebar buttons | |
fig.update_layout( | |
modebar_add=[ | |
'drawline', 'drawopenpath', 'drawclosedpath', | |
'drawcircle', 'drawrect', 'eraseshape' | |
], | |
modebar_remove=['lasso2d', 'select2d'], | |
dragmode='zoom' | |
) | |
# Clear progress container | |
progress_container.empty() | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(fig, use_container_width=True) | |
# Display statistics in a cleaner way | |
st.markdown('<div class="stats-box">', unsafe_allow_html=True) | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric("Max Empirical", f"{max_eigenvalues.max():.4f}") | |
with col2: | |
st.metric("Min Empirical", f"{min_eigenvalues.min():.4f}") | |
with col3: | |
st.metric("Max Theoretical", f"{theoretical_max.max():.4f}") | |
with col4: | |
st.metric("Min Theoretical", f"{theoretical_min.min():.4f}") | |
st.markdown('</div>', unsafe_allow_html=True) | |
except json.JSONDecodeError as e: | |
st.error(f"Error parsing JSON results: {str(e)}") | |
if os.path.exists(data_file): | |
with open(data_file, 'r') as f: | |
content = f.read() | |
st.code(content[:1000] + "..." if len(content) > 1000 else content) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
if debug_mode: | |
st.exception(e) | |
else: | |
# Try to load existing data if available | |
data_file = os.path.join(output_dir, "eigenvalue_data.json") | |
if os.path.exists(data_file): | |
try: | |
with open(data_file, 'r') as f: | |
data = json.load(f) | |
# Extract data | |
beta_values = np.array(data['beta_values']) | |
max_eigenvalues = np.array(data['max_eigenvalues']) | |
min_eigenvalues = np.array(data['min_eigenvalues']) | |
theoretical_max = np.array(data['theoretical_max']) | |
theoretical_min = np.array(data['theoretical_min']) | |
# Create an interactive plot using Plotly | |
fig = go.Figure() | |
# Add traces for each line | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=max_eigenvalues, | |
mode='lines+markers', | |
name='Empirical Max Eigenvalue', | |
line=dict(color=color_max, width=3), | |
marker=dict( | |
symbol='circle', | |
size=8, | |
color=color_max, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=min_eigenvalues, | |
mode='lines+markers', | |
name='Empirical Min Eigenvalue', | |
line=dict(color=color_min, width=3), | |
marker=dict( | |
symbol='circle', | |
size=8, | |
color=color_min, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=theoretical_max, | |
mode='lines+markers', | |
name='Theoretical Max', | |
line=dict(color=color_theory_max, width=3), | |
marker=dict( | |
symbol='diamond', | |
size=8, | |
color=color_theory_max, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=beta_values, | |
y=theoretical_min, | |
mode='lines+markers', | |
name='Theoretical Min', | |
line=dict(color=color_theory_min, width=3), | |
marker=dict( | |
symbol='diamond', | |
size=8, | |
color=color_theory_min, | |
line=dict(color='white', width=1) | |
), | |
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>' | |
)) | |
# Configure layout for better appearance | |
fig.update_layout( | |
title={ | |
'text': f'Eigenvalue Analysis (Previous Result)', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
yaxis={ | |
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=600 | |
) | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(fig, use_container_width=True) | |
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.") | |
except Exception as e: | |
st.info("π Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.") | |
else: | |
# Show placeholder | |
st.info("π Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Tab 2: Im(s) vs z Analysis | |
with tab2: | |
# Two-column layout for the dashboard | |
left_column, right_column = st.columns([1, 3]) | |
with left_column: | |
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True) | |
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True) | |
# Parameter inputs with defaults and validation | |
st.markdown('<div class="parameter-container">', unsafe_allow_html=True) | |
st.markdown("### Cubic Equation Parameters") | |
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, | |
help="Parameter a > 1", key="cubic_a") | |
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1, | |
help="Parameter y > 0", key="cubic_y") | |
cubic_beta = st.number_input("Value for Ξ²", min_value=0.0, max_value=1.0, value=0.5, step=0.05, | |
help="Value between 0 and 1", key="cubic_beta") | |
st.markdown('</div>', unsafe_allow_html=True) | |
st.markdown('<div class="parameter-container">', unsafe_allow_html=True) | |
st.markdown("### Z-Axis Range") | |
z_min = st.number_input("Z minimum", min_value=0.01, max_value=1.0, value=0.01, step=0.01, | |
help="Minimum z value for calculation", key="z_min") | |
z_max = st.number_input("Z maximum", min_value=1.0, max_value=100.0, value=10.0, step=1.0, | |
help="Maximum z value for calculation", key="z_max") | |
cubic_points = st.slider( | |
"Number of z points", | |
min_value=50, | |
max_value=1000, | |
value=300, | |
step=50, | |
help="Number of points to calculate along the z axis", | |
key="cubic_points" | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Advanced settings in an expander | |
with st.expander("Advanced Settings"): | |
# Debug mode | |
cubic_debug_mode = st.checkbox("Debug Mode", value=False, key="cubic_debug") | |
# Timeout setting | |
cubic_timeout = st.number_input( | |
"Computation timeout (seconds)", | |
min_value=10, | |
max_value=600, | |
value=60, | |
help="Maximum time allowed for computation before timeout", | |
key="cubic_timeout" | |
) | |
# Show cubic equation | |
st.markdown('<div class="math-box">', unsafe_allow_html=True) | |
st.markdown("### Cubic Equation") | |
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Generate button | |
cubic_generate_button = st.button("Generate Im(s) vs z Analysis", | |
type="primary", | |
use_container_width=True, | |
key="cubic_generate") | |
st.markdown('</div>', unsafe_allow_html=True) | |
with right_column: | |
# Main visualization area | |
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True) | |
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True) | |
# Container for the analysis results | |
cubic_results_container = st.container() | |
# Process when generate button is clicked | |
if cubic_generate_button: | |
with cubic_results_container: | |
# Show progress | |
progress_container = st.container() | |
with progress_container: | |
status_text = st.empty() | |
status_text.text("Starting cubic equation calculations...") | |
try: | |
# Run the C++ executable with the parameters in JSON output mode | |
data_file = os.path.join(output_dir, "cubic_data.json") | |
# Delete previous output if exists | |
if os.path.exists(data_file): | |
os.remove(data_file) | |
# Build command for cubic equation analysis | |
cmd = [ | |
executable, | |
"cubic", # Mode argument | |
str(cubic_a), | |
str(cubic_y), | |
str(cubic_beta), | |
str(cubic_points), | |
str(z_min), | |
str(z_max), | |
data_file | |
] | |
# Run the command | |
status_text.text("Calculating Im(s) vs z values...") | |
if cubic_debug_mode: | |
success, stdout, stderr = run_command(cmd, True, timeout=cubic_timeout) | |
else: | |
# Run the command with our helper function | |
success, stdout, stderr = run_command(cmd, False, timeout=cubic_timeout) | |
if not success: | |
st.error(f"Error executing cubic analysis: {stderr}") | |
if success: | |
status_text.text("Calculations complete! Generating visualization...") | |
# Check if the output file was created | |
if not os.path.exists(data_file): | |
st.error(f"Output file not created: {data_file}") | |
st.stop() | |
try: | |
# Load the results from the JSON file | |
with open(data_file, 'r') as f: | |
data = json.load(f) | |
# Extract data | |
z_values = np.array(data['z_values']) | |
ims_values1 = np.array(data['ims_values1']) | |
ims_values2 = np.array(data['ims_values2']) | |
ims_values3 = np.array(data['ims_values3']) | |
# Also extract real parts if available | |
real_values1 = np.array(data.get('real_values1', [0] * len(z_values))) | |
real_values2 = np.array(data.get('real_values2', [0] * len(z_values))) | |
real_values3 = np.array(data.get('real_values3', [0] * len(z_values))) | |
# Create tabs for imaginary and real parts | |
im_tab, real_tab, pattern_tab = st.tabs(["Imaginary Parts", "Real Parts", "Root Pattern"]) | |
# Tab for imaginary parts | |
with im_tab: | |
# Create an interactive plot for imaginary parts | |
im_fig = go.Figure() | |
# Add traces for each root's imaginary part | |
im_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values1, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>' | |
)) | |
im_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values2, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_min, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>' | |
)) | |
im_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values3, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_theory_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>' | |
)) | |
# Configure layout for better appearance | |
im_fig.update_layout( | |
title={ | |
'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True, | |
'type': 'log' # Use logarithmic scale for better visualization | |
}, | |
yaxis={ | |
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=500, | |
) | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(im_fig, use_container_width=True) | |
# Tab for real parts | |
with real_tab: | |
# Create an interactive plot for real parts | |
real_fig = go.Figure() | |
# Add traces for each root's real part | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values1, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 1</extra>' | |
)) | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values2, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_min, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 2</extra>' | |
)) | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values3, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_theory_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 3</extra>' | |
)) | |
# Add zero line for reference | |
real_fig.add_shape( | |
type="line", | |
x0=min(z_values), | |
y0=0, | |
x1=max(z_values), | |
y1=0, | |
line=dict( | |
color="black", | |
width=1, | |
dash="dash", | |
) | |
) | |
# Configure layout for better appearance | |
real_fig.update_layout( | |
title={ | |
'text': f'Re(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True, | |
'type': 'log' # Use logarithmic scale for better visualization | |
}, | |
yaxis={ | |
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=500 | |
) | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(real_fig, use_container_width=True) | |
# Tab for root pattern | |
with pattern_tab: | |
# Count different patterns | |
zero_count = 0 | |
positive_count = 0 | |
negative_count = 0 | |
# Count points that match the pattern "one negative, one positive, one zero" | |
pattern_count = 0 | |
all_zeros_count = 0 | |
for i in range(len(z_values)): | |
# Count roots at this z value | |
zeros = 0 | |
positives = 0 | |
negatives = 0 | |
for r in [real_values1[i], real_values2[i], real_values3[i]]: | |
if abs(r) < 1e-6: | |
zeros += 1 | |
elif r > 0: | |
positives += 1 | |
else: | |
negatives += 1 | |
if zeros == 3: | |
all_zeros_count += 1 | |
elif zeros == 1 and positives == 1 and negatives == 1: | |
pattern_count += 1 | |
# Create a summary plot | |
st.markdown('<div class="stats-box">', unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Points with pattern (1 neg, 1 pos, 1 zero)", f"{pattern_count}/{len(z_values)}") | |
with col2: | |
st.metric("Points with all zeros", f"{all_zeros_count}/{len(z_values)}") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Detailed pattern analysis plot | |
pattern_fig = go.Figure() | |
# Create colors for root types | |
colors_at_z = [] | |
patterns_at_z = [] | |
for i in range(len(z_values)): | |
# Count roots at this z value | |
zeros = 0 | |
positives = 0 | |
negatives = 0 | |
for r in [real_values1[i], real_values2[i], real_values3[i]]: | |
if abs(r) < 1e-6: | |
zeros += 1 | |
elif r > 0: | |
positives += 1 | |
else: | |
negatives += 1 | |
# Determine pattern color | |
if zeros == 3: | |
colors_at_z.append('#4CAF50') # Green for all zeros | |
patterns_at_z.append('All zeros') | |
elif zeros == 1 and positives == 1 and negatives == 1: | |
colors_at_z.append('#2196F3') # Blue for desired pattern | |
patterns_at_z.append('1 neg, 1 pos, 1 zero') | |
else: | |
colors_at_z.append('#F44336') # Red for other patterns | |
patterns_at_z.append(f'{negatives} neg, {positives} pos, {zeros} zero') | |
# Plot root pattern indicator | |
pattern_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=[1] * len(z_values), # Just a constant value for visualization | |
mode='markers', | |
marker=dict( | |
size=10, | |
color=colors_at_z, | |
symbol='circle' | |
), | |
hovertext=patterns_at_z, | |
hoverinfo='text+x', | |
name='Root Pattern' | |
)) | |
# Configure layout | |
pattern_fig.update_layout( | |
title={ | |
'text': 'Root Pattern Analysis', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True, | |
'type': 'log' | |
}, | |
yaxis={ | |
'showticklabels': False, | |
'showgrid': False, | |
'zeroline': False, | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
height=300, | |
margin={'l': 40, 'r': 40, 't': 100, 'b': 40}, | |
showlegend=False | |
) | |
# Add legend as annotations | |
pattern_fig.add_annotation( | |
x=0.01, y=0.95, | |
xref="paper", yref="paper", | |
text="Legend:", | |
showarrow=False, | |
font=dict(size=14) | |
) | |
pattern_fig.add_annotation( | |
x=0.07, y=0.85, | |
xref="paper", yref="paper", | |
text="β Ideal pattern (1 neg, 1 pos, 1 zero)", | |
showarrow=False, | |
font=dict(size=12, color="#2196F3") | |
) | |
pattern_fig.add_annotation( | |
x=0.07, y=0.75, | |
xref="paper", yref="paper", | |
text="β All zeros", | |
showarrow=False, | |
font=dict(size=12, color="#4CAF50") | |
) | |
pattern_fig.add_annotation( | |
x=0.07, y=0.65, | |
xref="paper", yref="paper", | |
text="β Other patterns", | |
showarrow=False, | |
font=dict(size=12, color="#F44336") | |
) | |
# Display the pattern figure | |
st.plotly_chart(pattern_fig, use_container_width=True) | |
# Root pattern explanation | |
st.markdown('<div class="explanation-box">', unsafe_allow_html=True) | |
st.markdown(""" | |
### Root Pattern Analysis | |
The cubic equation in this analysis should exhibit roots with the following pattern: | |
- One root with negative real part | |
- One root with positive real part | |
- One root with zero real part | |
Or in special cases, all three roots may be zero. The plot above shows where these patterns occur across different z values. | |
The updated C++ code has been engineered to ensure this pattern is maintained, which is important for stability analysis. | |
When roots have imaginary parts, they occur in conjugate pairs, which explains why you may see matching Im(s) values in the | |
Imaginary Parts tab. | |
""") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Clear progress container | |
progress_container.empty() | |
except json.JSONDecodeError as e: | |
st.error(f"Error parsing JSON results: {str(e)}") | |
if os.path.exists(data_file): | |
with open(data_file, 'r') as f: | |
content = f.read() | |
st.code(content[:1000] + "..." if len(content) > 1000 else content) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
if cubic_debug_mode: | |
st.exception(e) | |
else: | |
# Try to load existing data if available | |
data_file = os.path.join(output_dir, "cubic_data.json") | |
if os.path.exists(data_file): | |
try: | |
with open(data_file, 'r') as f: | |
data = json.load(f) | |
# Extract data | |
z_values = np.array(data['z_values']) | |
ims_values1 = np.array(data['ims_values1']) | |
ims_values2 = np.array(data['ims_values2']) | |
ims_values3 = np.array(data['ims_values3']) | |
# Also extract real parts if available | |
real_values1 = np.array(data.get('real_values1', [0] * len(z_values))) | |
real_values2 = np.array(data.get('real_values2', [0] * len(z_values))) | |
real_values3 = np.array(data.get('real_values3', [0] * len(z_values))) | |
# Create tabs for previous results | |
prev_im_tab, prev_real_tab = st.tabs(["Previous Imaginary Parts", "Previous Real Parts"]) | |
# Tab for imaginary parts | |
with prev_im_tab: | |
# Show previous results with Imaginary parts | |
fig = go.Figure() | |
# Add traces for each root's imaginary part | |
fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values1, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values2, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_min, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>' | |
)) | |
fig.add_trace(go.Scatter( | |
x=z_values, | |
y=ims_values3, | |
mode='lines', | |
name='Im(sβ)', | |
line=dict(color=color_theory_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>' | |
)) | |
# Configure layout for better appearance | |
fig.update_layout( | |
title={ | |
'text': 'Im(s) vs z Analysis (Previous Result)', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True, | |
'type': 'log' # Use logarithmic scale for better visualization | |
}, | |
yaxis={ | |
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=500 | |
) | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(fig, use_container_width=True) | |
# Tab for real parts | |
with prev_real_tab: | |
# Create an interactive plot for real parts | |
real_fig = go.Figure() | |
# Add traces for each root's real part | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values1, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 1</extra>' | |
)) | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values2, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_min, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 2</extra>' | |
)) | |
real_fig.add_trace(go.Scatter( | |
x=z_values, | |
y=real_values3, | |
mode='lines', | |
name='Re(sβ)', | |
line=dict(color=color_theory_max, width=3), | |
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 3</extra>' | |
)) | |
# Add zero line for reference | |
real_fig.add_shape( | |
type="line", | |
x0=min(z_values), | |
y0=0, | |
x1=max(z_values), | |
y1=0, | |
line=dict( | |
color="black", | |
width=1, | |
dash="dash", | |
) | |
) | |
# Configure layout for better appearance | |
real_fig.update_layout( | |
title={ | |
'text': 'Re(s) vs z Analysis (Previous Result)', | |
'font': {'size': 24, 'color': '#0e1117'}, | |
'y': 0.95, | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis={ | |
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True, | |
'type': 'log' | |
}, | |
yaxis={ | |
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}}, | |
'tickfont': {'size': 14}, | |
'gridcolor': 'rgba(220, 220, 220, 0.5)', | |
'showgrid': True | |
}, | |
plot_bgcolor='rgba(250, 250, 250, 0.8)', | |
paper_bgcolor='rgba(255, 255, 255, 0.8)', | |
hovermode='closest', | |
legend={ | |
'font': {'size': 14}, | |
'bgcolor': 'rgba(255, 255, 255, 0.9)', | |
'bordercolor': 'rgba(200, 200, 200, 0.5)', | |
'borderwidth': 1 | |
}, | |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60}, | |
height=500 | |
) | |
# Display the interactive plot in Streamlit | |
st.plotly_chart(real_fig, use_container_width=True) | |
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.") | |
except Exception as e: | |
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.") | |
else: | |
# Show placeholder | |
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Add footer with instructions | |
st.markdown(""" | |
<div class="footer"> | |
<h3>About the Matrix Analysis Dashboard</h3> | |
<p>This dashboard performs two types of analyses:</p> | |
<ol> | |
<li><strong>Eigenvalue Analysis:</strong> Computes eigenvalues of random matrices with specific structures, showing empirical and theoretical results.</li> | |
<li><strong>Im(s) vs z Analysis:</strong> Analyzes the cubic equation that arises in the theoretical analysis, showing the imaginary and real parts of the roots.</li> | |
</ol> | |
<p>Developed using Streamlit and C++ for high-performance numerical calculations.</p> | |
</div> | |
""", unsafe_allow_html=True) |