Spaces:
Running
Running
import streamlit as st | |
import sympy as sp | |
import numpy as np | |
import plotly.graph_objects as go | |
from scipy.optimize import fsolve | |
from scipy.stats import gaussian_kde | |
import sys | |
import os | |
import importlib.util | |
# Configure Streamlit for Hugging Face Spaces - THIS MUST COME FIRST | |
st.set_page_config( | |
page_title="Cubic Root Analysis", | |
layout="wide", | |
initial_sidebar_state="collapsed" | |
) | |
# Try to import C++ module | |
try: | |
import cubic_cpp | |
cpp_available = True | |
# Print the location of the imported module to verify | |
print(f"Loaded C++ module from: {cubic_cpp.__file__}") | |
except ImportError as e: | |
print(f"C++ acceleration unavailable: {e}") | |
cpp_available = False | |
def add_sqrt_support(expr_str): | |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility""" | |
return expr_str.replace('sqrt(', 'sp.sqrt(') | |
############################# | |
# 1) Define the discriminant | |
############################# | |
# Symbolic variables for the cubic discriminant | |
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True) | |
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym | |
a_sym = z_sym * z_a_sym | |
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym | |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) | |
d_sym = 1 | |
# Symbolic expression for the cubic discriminant | |
Delta_expr = ( | |
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2 | |
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3 | |
) | |
# Define fallback Python implementations for all functions | |
# These will be used if C++ module is unavailable | |
def discriminant_func_py(z, beta, z_a, y): | |
"""Fast numeric function for the discriminant""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
# Coefficients | |
a = z * z_a | |
b = z * z_a + z + z_a - z_a*y_effective | |
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta) | |
d = 1 | |
# Calculate the discriminant | |
return ((b*c)/(6*a**2) - (b**3)/(27*a**3) - d/(2*a))**2 + (c/(3*a) - (b**2)/(9*a**2))**3 | |
def find_z_at_discriminant_zero_py(z_a, y, beta, z_min, z_max, steps): | |
""" | |
Scan z in [z_min, z_max] for sign changes in the discriminant, | |
and return approximated roots (where the discriminant is zero). | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
z_grid = np.linspace(z_min, z_max, steps) | |
disc_vals = np.array([discriminant_func_py(z, beta, z_a, y_effective) for z in z_grid]) | |
roots_found = [] | |
for i in range(len(z_grid) - 1): | |
f1, f2 = disc_vals[i], disc_vals[i+1] | |
if np.isnan(f1) or np.isnan(f2): | |
continue | |
if f1 == 0.0: | |
roots_found.append(z_grid[i]) | |
elif f2 == 0.0: | |
roots_found.append(z_grid[i+1]) | |
elif f1 * f2 < 0: | |
zl, zr = z_grid[i], z_grid[i+1] | |
for _ in range(50): | |
mid = 0.5 * (zl + zr) | |
fm = discriminant_func_py(mid, beta, z_a, y_effective) | |
if fm == 0: | |
zl = zr = mid | |
break | |
if np.sign(fm) == np.sign(f1): | |
zl, f1 = mid, fm | |
else: | |
zr, f2 = mid, fm | |
roots_found.append(0.5 * (zl + zr)) | |
return np.array(roots_found) | |
def sweep_beta_and_find_z_bounds_py(z_a, y, z_min, z_max, beta_steps, z_steps): | |
""" | |
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z | |
for which the discriminant is zero. | |
Returns: betas, lower z*(β) values, and upper z*(β) values. | |
""" | |
betas = np.linspace(0, 1, beta_steps) | |
z_min_values = [] | |
z_max_values = [] | |
for b in betas: | |
roots = find_z_at_discriminant_zero_py(z_a, y, b, z_min, z_max, z_steps) | |
if len(roots) == 0: | |
z_min_values.append(np.nan) | |
z_max_values.append(np.nan) | |
else: | |
z_min_values.append(np.min(roots)) | |
z_max_values.append(np.max(roots)) | |
return betas, np.array(z_min_values), np.array(z_max_values) | |
def compute_eigenvalue_support_boundaries_py(z_a, y, beta_values, n_samples=100, seeds=5): | |
""" | |
Compute the support boundaries of the eigenvalue distribution by directly | |
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values. | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
min_eigenvalues = np.zeros_like(beta_values) | |
max_eigenvalues = np.zeros_like(beta_values) | |
# Use a progress bar for Streamlit | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
for i, beta in enumerate(beta_values): | |
# Update progress | |
progress_bar.progress((i + 1) / len(beta_values)) | |
status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})") | |
min_vals = [] | |
max_vals = [] | |
# Run multiple trials with different seeds for more stable results | |
for seed in range(seeds): | |
# Set random seed | |
np.random.seed(seed * 100 + i) | |
# Compute dimension p based on aspect ratio y | |
n = n_samples | |
p = int(y_effective * n) | |
# Constructing T_n (Population / Shape Matrix) | |
k = int(np.floor(beta * p)) | |
diag_entries = np.concatenate([ | |
np.full(k, z_a), | |
np.full(p - k, 1.0) | |
]) | |
np.random.shuffle(diag_entries) | |
T_n = np.diag(diag_entries) | |
# Generate the data matrix X with i.i.d. standard normal entries | |
X = np.random.randn(p, n) | |
# Compute the sample covariance matrix S_n = (1/n) * XX^T | |
S_n = (1 / n) * (X @ X.T) | |
# Compute B_n = S_n T_n | |
B_n = S_n @ T_n | |
# Compute eigenvalues of B_n | |
eigenvalues = np.linalg.eigvalsh(B_n) | |
# Find minimum and maximum eigenvalues | |
min_vals.append(np.min(eigenvalues)) | |
max_vals.append(np.max(eigenvalues)) | |
# Average over seeds for stability | |
min_eigenvalues[i] = np.mean(min_vals) | |
max_eigenvalues[i] = np.mean(max_vals) | |
# Clear progress indicators | |
progress_bar.empty() | |
status_text.empty() | |
return min_eigenvalues, max_eigenvalues | |
def compute_cubic_roots_py(z, beta, z_a, y): | |
""" | |
Compute the roots of the cubic equation for given parameters. | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
# Coefficients in the form as^3 + bs^2 + cs + d = 0 | |
a = z * z_a | |
b = z * z_a + z + z_a - z_a*y_effective | |
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta) | |
d = 1 | |
# Handle special cases | |
if abs(a) < 1e-10: | |
if abs(b) < 1e-10: # Linear case | |
roots = np.array([-d/c, 0, 0], dtype=complex) | |
else: # Quadratic case | |
quad_roots = np.roots([b, c, d]) | |
roots = np.append(quad_roots, 0).astype(complex) | |
return roots | |
# Standard cubic case | |
coeffs = [a, b, c, d] | |
return np.roots(coeffs) | |
def compute_high_y_curve_py(betas, z_a, y): | |
""" | |
Compute the "High y Expression" curve. | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
a = z_a | |
betas = np.array(betas) | |
denominator = 1 - 2*a | |
if denominator == 0: | |
return np.full_like(betas, np.nan) | |
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1) | |
return numerator/denominator | |
def compute_alternate_low_expr_py(betas, z_a, y): | |
""" | |
Compute the alternate low expression. | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
betas = np.array(betas) | |
return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a) | |
def compute_max_k_expression_py(betas, z_a, y, k_samples=1000): | |
""" | |
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k)) | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
a = z_a | |
# Sample k values on a logarithmic scale | |
k_values = np.logspace(-3, 3, k_samples) | |
max_vals = np.zeros_like(betas) | |
for i, beta in enumerate(betas): | |
values = np.zeros_like(k_values) | |
for j, k in enumerate(k_values): | |
numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1) | |
denominator = (a*k+1)*(k**2+k) | |
if abs(denominator) < 1e-10: | |
values[j] = np.nan | |
else: | |
values[j] = numerator/denominator | |
valid_indices = ~np.isnan(values) | |
if np.any(valid_indices): | |
max_vals[i] = np.max(values[valid_indices]) | |
else: | |
max_vals[i] = np.nan | |
return max_vals | |
def compute_min_t_expression_py(betas, z_a, y, t_samples=1000): | |
""" | |
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t)) | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
a = z_a | |
if a <= 0: | |
return np.full_like(betas, np.nan) | |
lower_bound = -1/a + 1e-10 # Avoid division by zero | |
t_values = np.linspace(lower_bound, -1e-10, t_samples) | |
min_vals = np.zeros_like(betas) | |
for i, beta in enumerate(betas): | |
values = np.zeros_like(t_values) | |
for j, t in enumerate(t_values): | |
numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1) | |
denominator = (a*t+1)*(t**2+t) | |
if abs(denominator) < 1e-10: | |
values[j] = np.nan | |
else: | |
values[j] = numerator/denominator | |
valid_indices = ~np.isnan(values) | |
if np.any(valid_indices): | |
min_vals[i] = np.min(values[valid_indices]) | |
else: | |
min_vals[i] = np.nan | |
return min_vals | |
def compute_derivatives_py(curve, betas): | |
"""Compute first and second derivatives of a curve""" | |
d1 = np.gradient(curve, betas) | |
d2 = np.gradient(d1, betas) | |
return d1, d2 | |
def generate_eigenvalue_distribution_py(beta, y, z_a, n=1000, seed=42): | |
""" | |
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞ | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
# Set random seed | |
np.random.seed(seed) | |
# Compute dimension p based on aspect ratio y | |
p = int(y_effective * n) | |
# Constructing T_n (Population / Shape Matrix) | |
k = int(np.floor(beta * p)) | |
diag_entries = np.concatenate([ | |
np.full(k, z_a), | |
np.full(p - k, 1.0) | |
]) | |
np.random.shuffle(diag_entries) | |
T_n = np.diag(diag_entries) | |
# Generate the data matrix X with i.i.d. standard normal entries | |
X = np.random.randn(p, n) | |
# Compute the sample covariance matrix S_n = (1/n) * XX^T | |
S_n = (1 / n) * (X @ X.T) | |
# Compute B_n = S_n T_n | |
B_n = S_n @ T_n | |
# Compute eigenvalues of B_n | |
eigenvalues = np.linalg.eigvalsh(B_n) | |
return eigenvalues | |
# Use C++ implementations if available, otherwise use Python implementations | |
if cpp_available: | |
discriminant_func = cubic_cpp.discriminant_func | |
find_z_at_discriminant_zero = cubic_cpp.find_z_at_discriminant_zero | |
sweep_beta_and_find_z_bounds = cubic_cpp.sweep_beta_and_find_z_bounds | |
compute_eigenvalue_support_boundaries = cubic_cpp.compute_eigenvalue_support_boundaries | |
compute_cubic_roots = cubic_cpp.compute_cubic_roots | |
compute_high_y_curve = cubic_cpp.compute_high_y_curve | |
compute_alternate_low_expr = cubic_cpp.compute_alternate_low_expr | |
compute_max_k_expression = cubic_cpp.compute_max_k_expression | |
compute_min_t_expression = cubic_cpp.compute_min_t_expression | |
compute_derivatives = cubic_cpp.compute_derivatives | |
generate_eigenvalue_distribution = lambda beta, y, z_a, n=1000, seed=42: cubic_cpp.generate_eigenvalue_distribution(beta, y, z_a, n, seed) | |
else: | |
discriminant_func = discriminant_func_py | |
find_z_at_discriminant_zero = find_z_at_discriminant_zero_py | |
sweep_beta_and_find_z_bounds = sweep_beta_and_find_z_bounds_py | |
compute_eigenvalue_support_boundaries = compute_eigenvalue_support_boundaries_py | |
compute_cubic_roots = compute_cubic_roots_py | |
compute_high_y_curve = compute_high_y_curve_py | |
compute_alternate_low_expr = compute_alternate_low_expr_py | |
compute_max_k_expression = compute_max_k_expression_py | |
compute_min_t_expression = compute_min_t_expression_py | |
compute_derivatives = compute_derivatives_py | |
generate_eigenvalue_distribution = generate_eigenvalue_distribution_py | |
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None): | |
"""Compute derivatives for all curves""" | |
derivatives = {} | |
# Upper z*(β) | |
derivatives['upper'] = compute_derivatives(z_maxs, betas) | |
# Lower z*(β) | |
derivatives['lower'] = compute_derivatives(z_mins, betas) | |
# Low y Expression (only if provided) | |
if low_y_curve is not None: | |
derivatives['low_y'] = compute_derivatives(low_y_curve, betas) | |
# High y Expression | |
if high_y_curve is not None: | |
derivatives['high_y'] = compute_derivatives(high_y_curve, betas) | |
# Alternate Low Expression | |
if alt_low_expr is not None: | |
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas) | |
# Custom Expression 1 (if provided) | |
if custom_curve1 is not None: | |
derivatives['custom1'] = compute_derivatives(custom_curve1, betas) | |
# Custom Expression 2 (if provided) | |
if custom_curve2 is not None: | |
derivatives['custom2'] = compute_derivatives(custom_curve2, betas) | |
return derivatives | |
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True): | |
""" | |
Compute custom curve. If is_s_based=True, compute using s substitution. | |
Otherwise, compute direct z(β) expression. | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) | |
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp} | |
try: | |
# Add sqrt support | |
s_num_expr = add_sqrt_support(s_num_expr) | |
s_denom_expr = add_sqrt_support(s_denom_expr) | |
num_expr = sp.sympify(s_num_expr, locals=local_dict) | |
denom_expr = sp.sympify(s_denom_expr, locals=local_dict) | |
if is_s_based: | |
# Compute s and substitute into main expression | |
s_expr = num_expr / denom_expr | |
a = z_a_sym | |
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1) | |
denominator = (a*s_expr+1)*(s_expr**2 + s_expr) | |
final_expr = numerator/denominator | |
else: | |
# Direct z(β) expression | |
final_expr = num_expr / denom_expr | |
except sp.SympifyError as e: | |
st.error(f"Error parsing expressions: {e}") | |
return np.full_like(betas, np.nan) | |
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"]) | |
with np.errstate(divide='ignore', invalid='ignore'): | |
result = final_func(betas, z_a, y_effective) | |
if np.isscalar(result): | |
result = np.full_like(betas, result) | |
return result | |
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, | |
s_num_expr=None, s_denom_expr=None, | |
z_num_expr=None, z_denom_expr=None, | |
show_derivatives=False, | |
show_high_y=False, | |
show_low_y=False, | |
show_max_k=True, | |
show_min_t=True, | |
use_eigenvalue_method=True, | |
n_samples=1000, | |
seeds=5): | |
if z_a <= 0 or y <= 0 or z_min >= z_max: | |
st.error("Invalid input parameters.") | |
return None | |
betas = np.linspace(0, 1, beta_steps) | |
if use_eigenvalue_method: | |
# Use the eigenvalue method to compute boundaries | |
st.info("Computing eigenvalue support boundaries. This may take a moment...") | |
min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds) | |
z_mins, z_maxs = min_eigs, max_eigs | |
else: | |
# Use the original discriminant method | |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) | |
high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None | |
alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None | |
# Compute the max/min expressions | |
max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None | |
min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None | |
# Compute both custom curves | |
custom_curve1 = None | |
custom_curve2 = None | |
if s_num_expr and s_denom_expr: | |
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True) | |
if z_num_expr and z_denom_expr: | |
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False) | |
# Compute derivatives if needed | |
if show_derivatives: | |
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, | |
alt_low_expr, custom_curve1, custom_curve2) | |
# Calculate derivatives for max_k and min_t curves if they exist | |
if show_max_k: | |
max_k_derivatives = compute_derivatives(max_k_curve, betas) | |
if show_min_t: | |
min_t_derivatives = compute_derivatives(min_t_curve, betas) | |
fig = go.Figure() | |
# Original curves | |
if use_eigenvalue_method: | |
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", | |
name="Upper Bound (Max Eigenvalue)", line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", | |
name="Lower Bound (Min Eigenvalue)", line=dict(color='blue'))) | |
# Add shaded region between curves | |
fig.add_trace(go.Scatter( | |
x=np.concatenate([betas, betas[::-1]]), | |
y=np.concatenate([z_maxs, z_mins[::-1]]), | |
fill='toself', | |
fillcolor='rgba(0,0,255,0.2)', | |
line=dict(color='rgba(255,255,255,0)'), | |
showlegend=False, | |
hoverinfo='skip' | |
)) | |
else: | |
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", | |
name="Upper z*(β)", line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", | |
name="Lower z*(β)", line=dict(color='blue'))) | |
# Add High y Expression only if selected | |
if show_high_y and high_y_curve is not None: | |
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", | |
name="High y Expression", line=dict(color='green'))) | |
# Add Low Expression only if selected | |
if show_low_y and alt_low_expr is not None: | |
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", | |
name="Low Expression", line=dict(color='orange'))) | |
# Add the max/min curves if selected | |
if show_max_k and max_k_curve is not None: | |
fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", | |
name="Max k Expression", line=dict(color='red', width=2))) | |
if show_min_t and min_t_curve is not None: | |
fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", | |
name="Min t Expression", line=dict(color='purple', width=2))) | |
if custom_curve1 is not None: | |
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", | |
name="Custom 1 (s-based)", line=dict(color='magenta'))) | |
if custom_curve2 is not None: | |
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", | |
name="Custom 2 (direct)", line=dict(color='brown'))) | |
if show_derivatives: | |
# First derivatives | |
curve_info = [ | |
('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'), | |
('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'), | |
] | |
if show_high_y and high_y_curve is not None: | |
curve_info.append(('high_y', 'High y', 'green')) | |
if show_low_y and alt_low_expr is not None: | |
curve_info.append(('alt_low', 'Alt Low', 'orange')) | |
if custom_curve1 is not None: | |
curve_info.append(('custom1', 'Custom 1', 'magenta')) | |
if custom_curve2 is not None: | |
curve_info.append(('custom2', 'Custom 2', 'brown')) | |
for key, name, color in curve_info: | |
if key in derivatives: | |
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", | |
name=f"{name} d/dβ", line=dict(color=color, dash='dash'))) | |
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", | |
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot'))) | |
# Add derivatives for max_k and min_t curves if they exist | |
if show_max_k and max_k_curve is not None: | |
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", | |
name="Max k d/dβ", line=dict(color='red', dash='dash'))) | |
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", | |
name="Max k d²/dβ²", line=dict(color='red', dash='dot'))) | |
if show_min_t and min_t_curve is not None: | |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", | |
name="Min t d/dβ", line=dict(color='purple', dash='dash'))) | |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", | |
name="Min t d²/dβ²", line=dict(color='purple', dash='dot'))) | |
fig.update_layout( | |
title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method | |
else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions", | |
xaxis_title="β", | |
yaxis_title="Value", | |
hovermode="x unified", | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="left", | |
x=0.01 | |
) | |
) | |
return fig | |
def track_roots_consistently(z_values, all_roots): | |
""" | |
Ensure consistent tracking of roots across z values by minimizing discontinuity. | |
""" | |
n_points = len(z_values) | |
n_roots = len(all_roots[0]) | |
tracked_roots = np.zeros((n_points, n_roots), dtype=complex) | |
tracked_roots[0] = all_roots[0] | |
for i in range(1, n_points): | |
prev_roots = tracked_roots[i-1] | |
current_roots = all_roots[i] | |
# For each previous root, find the closest current root | |
assigned = np.zeros(n_roots, dtype=bool) | |
assignments = np.zeros(n_roots, dtype=int) | |
for j in range(n_roots): | |
distances = np.abs(current_roots - prev_roots[j]) | |
# Find the closest unassigned root | |
while True: | |
best_idx = np.argmin(distances) | |
if not assigned[best_idx]: | |
assignments[j] = best_idx | |
assigned[best_idx] = True | |
break | |
else: | |
# Mark as infinite distance and try again | |
distances[best_idx] = np.inf | |
# Safety check if all are assigned (shouldn't happen) | |
if np.all(distances == np.inf): | |
assignments[j] = j # Default to same index | |
break | |
# Reorder current roots based on assignments | |
tracked_roots[i] = current_roots[assignments] | |
return tracked_roots | |
def generate_cubic_discriminant(z, beta, z_a, y_effective): | |
""" | |
Calculate the cubic discriminant using the standard formula. | |
For a cubic ax^3 + bx^2 + cx + d: | |
Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3 | |
""" | |
a = z * z_a | |
b = z * z_a + z + z_a - z_a*y_effective | |
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta) | |
d = 1 | |
# Standard formula for cubic discriminant | |
discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3) | |
return discriminant | |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): | |
""" | |
Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy. | |
""" | |
if z_a <= 0 or y <= 0 or z_min >= z_max: | |
st.error("Invalid input parameters.") | |
return None, None, None | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
z_points = np.linspace(z_min, z_max, n_points) | |
# Collect all roots first | |
all_roots = [] | |
discriminants = [] | |
# Progress indicator | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
for i, z in enumerate(z_points): | |
# Update progress | |
progress_bar.progress((i + 1) / n_points) | |
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})") | |
# Calculate roots | |
roots = compute_cubic_roots(z, beta, z_a, y) | |
# Initial sorting to help with tracking | |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) | |
all_roots.append(roots) | |
# Calculate discriminant | |
disc = generate_cubic_discriminant(z, beta, z_a, y_effective) | |
discriminants.append(disc) | |
# Clear progress indicators | |
progress_bar.empty() | |
status_text.empty() | |
all_roots = np.array(all_roots) | |
discriminants = np.array(discriminants) | |
# Track roots consistently across z values | |
tracked_roots = track_roots_consistently(z_points, all_roots) | |
# Extract imaginary and real parts | |
ims = np.imag(tracked_roots) | |
res = np.real(tracked_roots) | |
# Create figure for imaginary parts | |
fig_im = go.Figure() | |
for i in range(3): | |
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", | |
line=dict(width=2))) | |
# Add vertical lines at discriminant zero crossings | |
disc_zeros = [] | |
for i in range(len(discriminants)-1): | |
if discriminants[i] * discriminants[i+1] <= 0: # Sign change | |
zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i]) | |
disc_zeros.append(zero_pos) | |
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) | |
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified") | |
# Create figure for real parts | |
fig_re = go.Figure() | |
for i in range(3): | |
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", | |
line=dict(width=2))) | |
# Add vertical lines at discriminant zero crossings | |
for zero_pos in disc_zeros: | |
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) | |
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified") | |
# Create discriminant plot | |
fig_disc = go.Figure() | |
fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines", | |
name="Cubic Discriminant", line=dict(color="black", width=2))) | |
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash")) | |
fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified") | |
return fig_im, fig_re, fig_disc | |
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): | |
""" | |
Generate Im(s) and Re(s) vs. β plots with improved accuracy. | |
""" | |
if z_a <= 0 or y <= 0 or beta_min >= beta_max: | |
st.error("Invalid input parameters.") | |
return None, None, None | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
beta_points = np.linspace(beta_min, beta_max, n_points) | |
# Collect all roots first | |
all_roots = [] | |
discriminants = [] | |
# Progress indicator | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
for i, beta in enumerate(beta_points): | |
# Update progress | |
progress_bar.progress((i + 1) / n_points) | |
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})") | |
# Calculate roots | |
roots = compute_cubic_roots(z, beta, z_a, y) | |
# Initial sorting to help with tracking | |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) | |
all_roots.append(roots) | |
# Calculate discriminant | |
disc = generate_cubic_discriminant(z, beta, z_a, y_effective) | |
discriminants.append(disc) | |
# Clear progress indicators | |
progress_bar.empty() | |
status_text.empty() | |
all_roots = np.array(all_roots) | |
discriminants = np.array(discriminants) | |
# Track roots consistently across beta values | |
tracked_roots = track_roots_consistently(beta_points, all_roots) | |
# Extract imaginary and real parts | |
ims = np.imag(tracked_roots) | |
res = np.real(tracked_roots) | |
# Create figure for imaginary parts | |
fig_im = go.Figure() | |
for i in range(3): | |
fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", | |
line=dict(width=2))) | |
# Add vertical lines at discriminant zero crossings | |
disc_zeros = [] | |
for i in range(len(discriminants)-1): | |
if discriminants[i] * discriminants[i+1] <= 0: # Sign change | |
zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i]) | |
disc_zeros.append(zero_pos) | |
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) | |
fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified") | |
# Create figure for real parts | |
fig_re = go.Figure() | |
for i in range(3): | |
fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", | |
line=dict(width=2))) | |
# Add vertical lines at discriminant zero crossings | |
for zero_pos in disc_zeros: | |
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) | |
fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified") | |
# Create discriminant plot | |
fig_disc = go.Figure() | |
fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines", | |
name="Cubic Discriminant", line=dict(color="black", width=2))) | |
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash")) | |
fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified") | |
return fig_im, fig_re, fig_disc | |
def analyze_complex_root_structure(beta_values, z, z_a, y): | |
""" | |
Analyze when the cubic equation switches between having all real roots | |
and having a complex conjugate pair plus one real root. | |
Returns: | |
- transition_points: beta values where the root structure changes | |
- structure_types: list indicating whether each interval has all real roots or complex roots | |
""" | |
transition_points = [] | |
structure_types = [] | |
previous_type = None | |
for beta in beta_values: | |
roots = compute_cubic_roots(z, beta, z_a, y) | |
# Check if all roots are real (imaginary parts close to zero) | |
is_all_real = all(abs(root.imag) < 1e-10 for root in roots) | |
current_type = "real" if is_all_real else "complex" | |
if previous_type is not None and current_type != previous_type: | |
# Found a transition point | |
transition_points.append(beta) | |
structure_types.append(previous_type) | |
previous_type = current_type | |
# Add the final interval type | |
if previous_type is not None: | |
structure_types.append(previous_type) | |
return transition_points, structure_types | |
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, | |
beta_steps=100, z_steps=100): | |
""" | |
Generate a phase diagram showing regions of complex and real roots. | |
Returns a heatmap where: | |
- Value 1 (red): Region with all real roots | |
- Value -1 (blue): Region with complex roots | |
""" | |
# Apply the condition for y | |
y_effective = y if y > 1 else 1/y | |
beta_values = np.linspace(beta_min, beta_max, beta_steps) | |
z_values = np.linspace(z_min, z_max, z_steps) | |
# Initialize phase map | |
phase_map = np.zeros((z_steps, beta_steps)) | |
# Progress tracking | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
for i, z in enumerate(z_values): | |
# Update progress | |
progress_bar.progress((i + 1) / len(z_values)) | |
status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})") | |
for j, beta in enumerate(beta_values): | |
roots = compute_cubic_roots(z, beta, z_a, y) | |
# Check if all roots are real (imaginary parts close to zero) | |
is_all_real = all(abs(root.imag) < 1e-10 for root in roots) | |
phase_map[i, j] = 1 if is_all_real else -1 | |
# Clear progress indicators | |
progress_bar.empty() | |
status_text.empty() | |
# Create heatmap | |
fig = go.Figure(data=go.Heatmap( | |
z=phase_map, | |
x=beta_values, | |
y=z_values, | |
colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']], | |
zmin=-1, | |
zmax=1, | |
showscale=True, | |
colorbar=dict( | |
title="Root Type", | |
tickvals=[-1, 1], | |
ticktext=["Complex Roots", "All Real Roots"] | |
) | |
)) | |
fig.update_layout( | |
title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="β", | |
yaxis_title="z", | |
hovermode="closest" | |
) | |
return fig | |
def generate_eigenvalue_distribution_plot(beta, y, z_a, n=1000, seed=42): | |
""" | |
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞ | |
""" | |
# Generate eigenvalues | |
eigenvalues = generate_eigenvalue_distribution(beta, y, z_a, n, seed) | |
# Use KDE to compute a smooth density estimate | |
kde = gaussian_kde(eigenvalues) | |
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500) | |
kde_vals = kde(x_vals) | |
# Create figure | |
fig = go.Figure() | |
# Add histogram trace | |
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density', | |
name="Histogram", marker=dict(color='blue', opacity=0.6))) | |
# Add KDE trace | |
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines", | |
name="KDE", line=dict(color='red', width=2))) | |
fig.update_layout( | |
title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})", | |
xaxis_title="Eigenvalue", | |
yaxis_title="Density", | |
hovermode="closest", | |
showlegend=True | |
) | |
return fig, eigenvalues | |
# ----------------- Streamlit UI ----------------- | |
def main(): | |
st.title("Cubic Root Analysis") | |
# Define three tabs | |
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"]) | |
# ----- Tab 1: z*(β) Curves ----- | |
with tab1: | |
st.header("Eigenvalue Support Boundaries") | |
# Cleaner layout with better column organization | |
col1, col2, col3 = st.columns([1, 1, 2]) | |
with col1: | |
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") | |
y_1 = st.number_input("y", value=1.0, key="y_1") | |
with col2: | |
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") | |
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") | |
with col1: | |
method_type = st.radio( | |
"Calculation Method", | |
["Eigenvalue Method", "Discriminant Method"], | |
index=0 # Default to eigenvalue method | |
) | |
# Advanced settings in collapsed expanders | |
with st.expander("Method Settings", expanded=False): | |
if method_type == "Eigenvalue Method": | |
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, | |
key="beta_steps_eigen") | |
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, | |
step=100) | |
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1) | |
else: | |
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, | |
key="beta_steps") | |
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, | |
step=1000, key="z_steps") | |
# Curve visibility options | |
with st.expander("Curve Visibility", expanded=False): | |
col_vis1, col_vis2 = st.columns(2) | |
with col_vis1: | |
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y") | |
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k") | |
with col_vis2: | |
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y") | |
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t") | |
# Custom expressions collapsed by default | |
with st.expander("Custom Expression 1 (s-based)", expanded=False): | |
st.markdown("""Enter expressions for s = numerator/denominator | |
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""") | |
st.latex(r"\text{This s will be inserted into:}") | |
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}") | |
s_num = st.text_input("s numerator", value="", key="s_num") | |
s_denom = st.text_input("s denominator", value="", key="s_denom") | |
with st.expander("Custom Expression 2 (direct z(β))", expanded=False): | |
st.markdown("""Enter direct expression for z(β) = numerator/denominator | |
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""") | |
z_num = st.text_input("z(β) numerator", value="", key="z_num") | |
z_denom = st.text_input("z(β) denominator", value="", key="z_denom") | |
# Move show_derivatives to main UI level for better visibility | |
with col2: | |
show_derivatives = st.checkbox("Show derivatives", value=False) | |
# Compute button | |
if st.button("Compute Curves", key="tab1_button"): | |
with col3: | |
use_eigenvalue_method = (method_type == "Eigenvalue Method") | |
if use_eigenvalue_method: | |
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None, | |
s_num, s_denom, z_num, z_denom, show_derivatives, | |
show_high_y, show_low_y, show_max_k, show_min_t, | |
use_eigenvalue_method=True, n_samples=n_samples, | |
seeds=seeds) | |
else: | |
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps, | |
s_num, s_denom, z_num, z_denom, show_derivatives, | |
show_high_y, show_low_y, show_max_k, show_min_t, | |
use_eigenvalue_method=False) | |
if fig is not None: | |
st.plotly_chart(fig, use_container_width=True) | |
# Curve explanations in collapsed expander | |
with st.expander("Curve Explanations", expanded=False): | |
if use_eigenvalue_method: | |
st.markdown(""" | |
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n | |
- **Shaded Region**: Eigenvalue support region | |
- **High y Expression** (Green): Asymptotic approximation for high y values | |
- **Low Expression** (Orange): Alternative asymptotic expression | |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$ | |
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$ | |
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula | |
- **Custom Expression 2** (Brown): Direct z(β) expression | |
""") | |
else: | |
st.markdown(""" | |
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero | |
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero | |
- **High y Expression** (Green): Asymptotic approximation for high y values | |
- **Low Expression** (Orange): Alternative asymptotic expression | |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$ | |
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$ | |
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula | |
- **Custom Expression 2** (Brown): Direct z(β) expression | |
""") | |
if show_derivatives: | |
st.markdown(""" | |
Derivatives are shown as: | |
- Dashed lines: First derivatives (d/dβ) | |
- Dotted lines: Second derivatives (d²/dβ²) | |
""") | |
# ----- Tab 2: Complex Root Analysis ----- | |
with tab2: | |
st.header("Complex Root Analysis") | |
# Create tabs within the page for different plots | |
plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"]) | |
# Tab for Im{s} vs. z plot | |
with plot_tabs[0]: | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z") | |
y_z = st.number_input("y", value=1.0, key="y_tab2_z") | |
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z") | |
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z") | |
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z") | |
with st.expander("Resolution Settings", expanded=False): | |
z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z") | |
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"): | |
with col2: | |
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points) | |
if fig_im is not None and fig_re is not None and fig_disc is not None: | |
st.plotly_chart(fig_im, use_container_width=True) | |
st.plotly_chart(fig_re, use_container_width=True) | |
st.plotly_chart(fig_disc, use_container_width=True) | |
with st.expander("Root Structure Analysis", expanded=False): | |
st.markdown(""" | |
### Root Structure Explanation | |
The red dashed vertical lines mark the points where the cubic discriminant equals zero. | |
At these points, the cubic equation's root structure changes: | |
- When the discriminant is positive, the cubic has three distinct real roots. | |
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots. | |
- When the discriminant is exactly zero, the cubic has at least two equal roots. | |
These transition points align perfectly with the z*(β) boundary curves from the first tab, | |
which represent exactly these transitions in the (β,z) plane. | |
""") | |
# New tab for Im{s} vs. β plot | |
with plot_tabs[1]: | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
z_beta = st.number_input("z", value=1.0, key="z_tab2_beta") | |
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta") | |
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta") | |
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2") | |
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2") | |
with st.expander("Resolution Settings", expanded=False): | |
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points") | |
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"): | |
with col2: | |
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots( | |
z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points) | |
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None: | |
st.plotly_chart(fig_im_beta, use_container_width=True) | |
st.plotly_chart(fig_re_beta, use_container_width=True) | |
st.plotly_chart(fig_disc, use_container_width=True) | |
# Add analysis of transition points | |
transition_points, structure_types = analyze_complex_root_structure( | |
np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta) | |
if transition_points: | |
st.subheader("Root Structure Transition Points") | |
for i, beta in enumerate(transition_points): | |
prev_type = structure_types[i] | |
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown" | |
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots") | |
else: | |
st.info("No transitions detected in root structure across this β range.") | |
# Explanation | |
with st.expander("Analysis Explanation", expanded=False): | |
st.markdown(""" | |
### Interpreting the Plots | |
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real. | |
- **Re{s} vs. β**: Shows how the real parts of the roots change with β. | |
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes. | |
- When discriminant < 0: The cubic has one real root and two complex conjugate roots. | |
- When discriminant > 0: The cubic has three distinct real roots. | |
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal). | |
The vertical red dashed lines mark the transition points where the root structure changes. | |
""") | |
# Tab for Phase Diagram | |
with plot_tabs[2]: | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase") | |
y_phase = st.number_input("y", value=1.0, key="y_phase") | |
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase") | |
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase") | |
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase") | |
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase") | |
with st.expander("Resolution Settings", expanded=False): | |
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase") | |
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase") | |
if st.button("Generate Phase Diagram", key="tab2_button_phase"): | |
with col2: | |
st.info("Generating phase diagram. This may take a while depending on resolution...") | |
fig_phase = generate_phase_diagram( | |
z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, | |
beta_steps_phase, z_steps_phase) | |
if fig_phase is not None: | |
st.plotly_chart(fig_phase, use_container_width=True) | |
with st.expander("Phase Diagram Explanation", expanded=False): | |
st.markdown(""" | |
### Understanding the Phase Diagram | |
This heatmap shows the regions in the (β, z) plane where: | |
- **Red Regions**: The cubic equation has all real roots | |
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots | |
The boundaries between these regions represent values where the discriminant is zero, | |
which are the exact same curves as the z*(β) boundaries in the first tab. This phase | |
diagram provides a comprehensive view of the eigenvalue support structure. | |
""") | |
# Eigenvalue distribution tab | |
with plot_tabs[3]: | |
st.subheader("Eigenvalue Distribution for B_n = S_n T_n") | |
with st.expander("Simulation Information", expanded=False): | |
st.markdown(""" | |
This simulation generates the eigenvalue distribution of B_n as n→∞, where: | |
- B_n = (1/n)XX^T with X being a p×n matrix | |
- p/n → y as n→∞ | |
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1) | |
""") | |
col_eigen1, col_eigen2 = st.columns([1, 2]) | |
with col_eigen1: | |
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen") | |
y_eigen = st.number_input("y", value=1.0, key="y_eigen") | |
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen") | |
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100) | |
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1) | |
# Add comparison option | |
show_theoretical = st.checkbox("Show theoretical boundaries", value=True) | |
show_empirical_stats = st.checkbox("Show empirical statistics", value=True) | |
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"): | |
with col_eigen2: | |
# Generate the eigenvalue distribution | |
fig_eigen, eigenvalues = generate_eigenvalue_distribution_plot(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed) | |
# If requested, compute and add theoretical boundaries | |
if show_theoretical: | |
# Calculate min and max eigenvalues using the support boundary functions | |
betas = np.array([beta_eigen]) | |
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5) | |
# Add vertical lines for boundaries | |
fig_eigen.add_vline( | |
x=min_eig[0], | |
line=dict(color="red", width=2, dash="dash"), | |
annotation_text="Min theoretical", | |
annotation_position="top right" | |
) | |
fig_eigen.add_vline( | |
x=max_eig[0], | |
line=dict(color="red", width=2, dash="dash"), | |
annotation_text="Max theoretical", | |
annotation_position="top left" | |
) | |
# Display the plot | |
st.plotly_chart(fig_eigen, use_container_width=True) | |
# Add comparison of empirical vs theoretical bounds | |
if show_theoretical and show_empirical_stats: | |
empirical_min = eigenvalues.min() | |
empirical_max = eigenvalues.max() | |
st.markdown("### Comparison of Empirical vs Theoretical Bounds") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric("Theoretical Min", f"{min_eig[0]:.4f}") | |
st.metric("Theoretical Max", f"{max_eig[0]:.4f}") | |
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}") | |
with col2: | |
st.metric("Empirical Min", f"{empirical_min:.4f}") | |
st.metric("Empirical Max", f"{empirical_max:.4f}") | |
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}") | |
with col3: | |
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}") | |
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}") | |
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}") | |
# Display additional statistics | |
if show_empirical_stats: | |
st.markdown("### Eigenvalue Statistics") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Mean", f"{np.mean(eigenvalues):.4f}") | |
st.metric("Median", f"{np.median(eigenvalues):.4f}") | |
with col2: | |
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}") | |
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}") | |
# ----- Tab 3: Differential Analysis ----- | |
with tab3: | |
st.header("Differential Analysis vs. β") | |
with st.expander("Description", expanded=False): | |
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff") | |
y_diff = st.number_input("y", value=1.0, key="y_diff") | |
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff") | |
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff") | |
diff_method_type = st.radio( | |
"Boundary Calculation Method", | |
["Eigenvalue Method", "Discriminant Method"], | |
index=0, | |
key="diff_method_type" | |
) | |
with st.expander("Resolution Settings", expanded=False): | |
if diff_method_type == "Eigenvalue Method": | |
beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, | |
key="beta_steps_diff_eigen") | |
diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, | |
step=100, key="diff_n_samples") | |
diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1, | |
key="diff_seeds") | |
else: | |
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, | |
key="beta_steps_diff") | |
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, | |
step=1000, key="z_steps_diff") | |
# Add options for curve selection | |
st.subheader("Curves to Analyze") | |
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True) | |
analyze_high_y = st.checkbox("High y Expression", value=False) | |
analyze_alt_low = st.checkbox("Low y Expression", value=False) | |
if st.button("Compute Differentials", key="tab3_button"): | |
with col2: | |
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method") | |
if use_eigenvalue_method_diff: | |
betas_diff = np.linspace(0, 1, beta_steps_diff) | |
st.info("Computing eigenvalue support boundaries. This may take a moment...") | |
lower_vals, upper_vals = compute_eigenvalue_support_boundaries( | |
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds) | |
else: | |
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds( | |
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff) | |
# Create figure | |
fig_diff = go.Figure() | |
if analyze_upper_lower: | |
diff_curve = upper_vals - lower_vals | |
d1, d2 = compute_derivatives(diff_curve, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", | |
name="Upper-Lower Difference", line=dict(color="magenta", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot'))) | |
if analyze_high_y: | |
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff) | |
d1, d2 = compute_derivatives(high_y_curve, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", | |
name="High y", line=dict(color="green", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="High y d/dβ", line=dict(color="green", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="High y d²/dβ²", line=dict(color="green", dash='dot'))) | |
if analyze_alt_low: | |
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff) | |
d1, d2 = compute_derivatives(alt_low_curve, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", | |
name="Low y", line=dict(color="orange", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="Low y d/dβ", line=dict(color="orange", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="Low y d²/dβ²", line=dict(color="orange", dash='dot'))) | |
fig_diff.update_layout( | |
title="Differential Analysis vs. β" + | |
(" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"), | |
xaxis_title="β", | |
yaxis_title="Value", | |
hovermode="x unified", | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="left", | |
x=0.01 | |
) | |
) | |
st.plotly_chart(fig_diff, use_container_width=True) | |
with st.expander("Curve Types", expanded=False): | |
st.markdown(""" | |
- Solid lines: Original curves | |
- Dashed lines: First derivatives (d/dβ) | |
- Dotted lines: Second derivatives (d²/dβ²) | |
""") | |
if __name__ == "__main__": | |
main() |