random_matrix_ESD / cubic_cpp.cpp
euler314's picture
Update cubic_cpp.cpp
2244d56 verified
raw
history blame
24.1 kB
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <vector>
#include <complex>
#include <cmath>
#include <algorithm>
#include <random>
namespace py = pybind11;
// Apply the condition for y
double apply_y_condition(double y) {
return y > 1.0 ? y : 1.0 / y;
}
// Fast discriminant calculation
double discriminant_func(double z, double beta, double z_a, double y) {
double y_effective = apply_y_condition(y);
// Coefficients
double a = z * z_a;
double b = z * z_a + z + z_a - z_a * y_effective;
double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta);
double d = 1.0;
// Standard formula for cubic discriminant - optimized calculation
double p1 = b*c/(6.0*a*a);
double p2 = b*b*b/(27.0*a*a*a);
double p3 = d/(2.0*a);
double term1 = p1 - p2 - p3;
term1 *= term1;
double q1 = c/(3.0*a);
double q2 = b*b/(9.0*a*a);
double term2 = q1 - q2;
term2 = term2*term2*term2;
return term1 + term2;
}
// Function to compute the theoretical max value - optimized with fewer function calls
double compute_theoretical_max(double a, double y, double beta) {
// Exit early if parameters would cause division by zero or other issues
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) {
return 0.0;
}
// Precompute constants for the formula
double y_effective = apply_y_condition(y);
double beta_term = y_effective * beta * (a - 1);
double y_term = y_effective - 1.0;
auto f = [a, beta_term, y_term, y_effective](double k) -> double {
// Fast evaluation of the function
double ak_plus_1 = a * k + 1.0;
double numerator = beta_term * k + ak_plus_1 * (y_term * k - 1.0);
double denominator = ak_plus_1 * (k * k + k) * y_effective;
return numerator / denominator;
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial fast grid search with fewer points
const int num_grid_points = 50; // Reduced from 200
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1);
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = 1.618033988749895;
const double tolerance = 1e-6; // Increased from 1e-10 for speed
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
double fc = f(c_gs);
double fd = f(d_gs);
// Limited iterations for faster convergence
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) {
if (fc > fd) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
fd = fc;
fc = f(c_gs);
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
fc = fd;
fd = f(d_gs);
}
}
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value - optimized similarly
double compute_theoretical_min(double a, double y, double beta) {
// Exit early if parameters would cause division by zero or other issues
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) {
return 0.0;
}
// Precompute constants
double y_effective = apply_y_condition(y);
double beta_term = y_effective * beta * (a - 1);
double y_term = y_effective - 1.0;
auto f = [a, beta_term, y_term, y_effective](double t) -> double {
double at_plus_1 = a * t + 1.0;
double numerator = beta_term * t + at_plus_1 * (y_term * t - 1.0);
double denominator = at_plus_1 * (t * t + t) * y_effective;
return numerator / denominator;
};
// Initial bound check
if (a <= 0) return 0.0;
// Find midpoint of range as starting guess
double best_t = -0.5 / a;
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = 50; // Reduced from 200
double range = 0.998/a;
double start = -0.999/a;
for (int i = 1; i < num_grid_points; ++i) {
double t = start + range * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue;
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = start;
double b_gs = -0.001/a;
const double golden_ratio = 1.618033988749895;
const double tolerance = 1e-6; // Increased from 1e-10
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
double fc = f(c_gs);
double fd = f(d_gs);
// Limited iterations
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) {
if (fc < fd) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
fd = fc;
fc = f(c_gs);
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
fc = fd;
fd = f(d_gs);
}
}
return f((a_gs + b_gs) / 2.0);
}
// Fast eigendecomposition of a symmetric matrix using Jacobi method
void eigen_decomposition(const std::vector<std::vector<double>>& matrix,
std::vector<double>& eigenvalues) {
int n = matrix.size();
eigenvalues.resize(n);
// Copy matrix for computation
std::vector<std::vector<double>> a = matrix;
// Allocate temp arrays
std::vector<double> d(n);
std::vector<double> z(n, 0.0);
// Initialize eigenvalues with diagonal elements
for (int i = 0; i < n; i++) {
d[i] = a[i][i];
}
// Main algorithm: Jacobi rotations
const int MAX_ITER = 50; // Limit iterations for speed
for (int iter = 0; iter < MAX_ITER; iter++) {
// Sum off-diagonal elements
double sum = 0.0;
for (int i = 0; i < n-1; i++) {
for (int j = i+1; j < n; j++) {
sum += std::abs(a[i][j]);
}
}
// Check for convergence
if (sum < 1e-8) break;
for (int p = 0; p < n-1; p++) {
for (int q = p+1; q < n; q++) {
double theta, t, c, s;
// Skip very small elements
if (std::abs(a[p][q]) < 1e-10) continue;
// Compute rotation angle
theta = 0.5 * std::atan2(2*a[p][q], a[p][p] - a[q][q]);
c = std::cos(theta);
s = std::sin(theta);
t = std::tan(theta);
// Update diagonal elements
double h = t * a[p][q];
z[p] -= h;
z[q] += h;
d[p] -= h;
d[q] += h;
// Set off-diagonal element to zero
a[p][q] = 0.0;
// Update other elements
for (int i = 0; i < p; i++) {
double g = a[i][p], h = a[i][q];
a[i][p] = c*g - s*h;
a[i][q] = s*g + c*h;
}
for (int i = p+1; i < q; i++) {
double g = a[p][i], h = a[i][q];
a[p][i] = c*g - s*h;
a[i][q] = s*g + c*h;
}
for (int i = q+1; i < n; i++) {
double g = a[p][i], h = a[q][i];
a[p][i] = c*g - s*h;
a[q][i] = s*g + c*h;
}
}
}
// Update eigenvalues
for (int i = 0; i < n; i++) {
d[i] += z[i];
z[i] = 0.0;
}
}
// Return eigenvalues
eigenvalues = d;
}
// Optimized matrix multiplication: C = A * B
void matrix_multiply(const std::vector<std::vector<double>>& A,
const std::vector<std::vector<double>>& B,
std::vector<std::vector<double>>& C) {
int m = A.size();
int n = B[0].size();
int k = A[0].size();
C.resize(m, std::vector<double>(n, 0.0));
// Transpose B for better cache locality
std::vector<std::vector<double>> B_t(n, std::vector<double>(k, 0.0));
for (int i = 0; i < k; i++) {
for (int j = 0; j < n; j++) {
B_t[j][i] = B[i][j];
}
}
// Multiply with transposed B
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int l = 0; l < k; l++) {
sum += A[i][l] * B_t[j][l];
}
C[i][j] = sum;
}
}
}
// Highly optimized eigenvalue computation for a given beta
std::tuple<double, double> compute_eigenvalues_for_beta(double z_a, double y, double beta, int n, int seed) {
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X (with pre-allocation)
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = norm(gen);
}
}
// Compute X * X^T / n - optimized matrix multiplication
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j <= i; j++) { // Compute only lower triangle
double sum = 0.0;
for (int k = 0; k < n; k++) {
sum += X[i][k] * X[j][k];
}
sum /= n;
S_n[i][j] = sum;
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle
}
}
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Create T_sqrt diagonal matrix
std::vector<double> t_sqrt_diag(p);
for (int i = 0; i < p; i++) {
t_sqrt_diag[i] = std::sqrt(diags[i]);
}
// Compute B = T_sqrt * S_n * T_sqrt directly without full matrix multiplication
// (optimize for diagonal T_sqrt)
std::vector<std::vector<double>> B(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < p; j++) {
B[i][j] = S_n[i][j] * t_sqrt_diag[i] * t_sqrt_diag[j];
}
}
// Compute eigenvalues efficiently
std::vector<double> eigenvalues;
eigen_decomposition(B, eigenvalues);
// Sort eigenvalues
std::sort(eigenvalues.begin(), eigenvalues.end());
// Return min and max
return std::make_tuple(eigenvalues.front(), eigenvalues.back());
}
// Fast computation of eigenvalue support boundaries
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>, std::vector<double>>
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values,
int n_samples, int seeds) {
size_t num_betas = beta_values.size();
std::vector<double> min_eigenvalues(num_betas, 0.0);
std::vector<double> max_eigenvalues(num_betas, 0.0);
std::vector<double> theoretical_min_values(num_betas, 0.0);
std::vector<double> theoretical_max_values(num_betas, 0.0);
// Pre-compute theoretical values for all betas (can be done in parallel)
#pragma omp parallel for if(num_betas > 10)
for (size_t i = 0; i < num_betas; i++) {
double beta = beta_values[i];
theoretical_max_values[i] = compute_theoretical_max(z_a, y, beta);
theoretical_min_values[i] = compute_theoretical_min(z_a, y, beta);
}
// Compute eigenvalues for all betas (more expensive)
for (size_t i = 0; i < num_betas; i++) {
double beta = beta_values[i];
std::vector<double> min_vals;
std::vector<double> max_vals;
// Use just one seed for speed if the seeds parameter is small
int actual_seeds = (seeds <= 2) ? 1 : seeds;
for (int seed = 0; seed < actual_seeds; seed++) {
auto [min_eig, max_eig] = compute_eigenvalues_for_beta(z_a, y, beta, n_samples, seed);
min_vals.push_back(min_eig);
max_vals.push_back(max_eig);
}
// Average over seeds
double min_sum = 0.0, max_sum = 0.0;
for (double val : min_vals) min_sum += val;
for (double val : max_vals) max_sum += val;
min_eigenvalues[i] = min_sum / min_vals.size();
max_eigenvalues[i] = max_sum / max_vals.size();
}
return std::make_tuple(min_eigenvalues, max_eigenvalues, theoretical_min_values, theoretical_max_values);
}
// Very optimized version to find zeros of discriminant
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta,
double z_min, double z_max, int steps) {
std::vector<double> roots_found;
double y_effective = apply_y_condition(y);
// Adaptive step size for better accuracy in important regions
double step = (z_max - z_min) / (steps - 1);
// Evaluate discriminant at first point
double z_prev = z_min;
double f_prev = discriminant_func(z_prev, beta, z_a, y_effective);
// Scan through the range looking for sign changes
for (int i = 1; i < steps; ++i) {
double z_curr = z_min + i * step;
double f_curr = discriminant_func(z_curr, beta, z_a, y_effective);
if (std::isnan(f_prev) || std::isnan(f_curr)) {
z_prev = z_curr;
f_prev = f_curr;
continue;
}
// Check for exact zero
if (f_prev == 0.0) {
roots_found.push_back(z_prev);
}
else if (f_curr == 0.0) {
roots_found.push_back(z_curr);
}
// Check for sign change
else if (f_prev * f_curr < 0) {
// Binary search for more precise zero
double zl = z_prev;
double zr = z_curr;
double fl = f_prev;
double fr = f_curr;
// Fewer iterations, still good precision
for (int iter = 0; iter < 20; iter++) {
double zm = (zl + zr) / 2;
double fm = discriminant_func(zm, beta, z_a, y_effective);
if (fm == 0.0 || std::abs(zr - zl) < 1e-8) {
roots_found.push_back(zm);
break;
}
if ((fm < 0 && fl < 0) || (fm > 0 && fl > 0)) {
zl = zm;
fl = fm;
} else {
zr = zm;
fr = fm;
}
}
if (std::abs(zr - zl) >= 1e-8) {
// Add the midpoint if we didn't converge fully
roots_found.push_back((zl + zr) / 2);
}
}
z_prev = z_curr;
f_prev = f_curr;
}
return roots_found;
}
// Compute z bounds but with fewer steps for speed
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>>
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max,
int beta_steps, int z_steps) {
std::vector<double> betas(beta_steps);
std::vector<double> z_min_values(beta_steps);
std::vector<double> z_max_values(beta_steps);
// Use fewer z steps for faster computation
int actual_z_steps = std::min(z_steps, 10000);
double beta_step = 1.0 / (beta_steps - 1);
for (int i = 0; i < beta_steps; i++) {
betas[i] = i * beta_step;
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, actual_z_steps);
if (roots.empty()) {
z_min_values[i] = std::numeric_limits<double>::quiet_NaN();
z_max_values[i] = std::numeric_limits<double>::quiet_NaN();
} else {
// Find min and max roots
double min_root = *std::min_element(roots.begin(), roots.end());
double max_root = *std::max_element(roots.begin(), roots.end());
z_min_values[i] = min_root;
z_max_values[i] = max_root;
}
}
return std::make_tuple(betas, z_min_values, z_max_values);
}
// Fast implementations of curve computations
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
double a = z_a;
double denominator = 1.0 - 2.0 * a;
if (std::abs(denominator) < 1e-10) {
std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN());
return result;
}
// Precompute constants
double term1 = -2.0 * a * y_effective;
double term2 = -2.0 * a * (2.0 * a - 1.0);
double term3 = -4.0 * a * (a - 1.0) * y_effective;
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
double numerator = term3 * beta + term1 + term2;
result[i] = numerator / denominator;
}
return result;
}
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
// Precompute constants
double term1 = -2.0 * z_a * (1.0 - y_effective);
double term2 = -2.0 * z_a * z_a;
double term3 = z_a * y_effective * (z_a - 1.0);
double denominator = 2.0 + 2.0 * z_a;
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
result[i] = (term3 * beta + term1 + term2) / denominator;
}
return result;
}
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
// Since we've optimized compute_theoretical_max, just call it in a loop
#pragma omp parallel for if(n > 20)
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_max(z_a, y, betas[i]);
}
return result;
}
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
// Similarly for min
#pragma omp parallel for if(n > 20)
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_min(z_a, y, betas[i]);
}
return result;
}
// Generate eigenvalue distribution - faster implementation
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) {
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = norm(gen);
}
}
// Compute S_n = X * X^T / n efficiently
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j <= i; j++) { // Compute only lower triangle
double sum = 0.0;
for (int k = 0; k < n; k++) {
sum += X[i][k] * X[j][k];
}
sum /= n;
S_n[i][j] = sum;
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle
}
}
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Compute B_n = S_n * diag(T_n) efficiently
std::vector<std::vector<double>> B_n(p, std::vector<double>(p, 0.0));
for (int i = 0; i < p; i++) {
for (int j = 0; j < p; j++) {
B_n[i][j] = S_n[i][j] * diags[j];
}
}
// Compute eigenvalues efficiently
std::vector<double> eigenvalues;
eigen_decomposition(B_n, eigenvalues);
// Sort eigenvalues
std::sort(eigenvalues.begin(), eigenvalues.end());
return eigenvalues;
}
// Python module definition
PYBIND11_MODULE(cubic_cpp, m) {
m.doc() = "C++ accelerated functions for cubic root analysis";
m.def("discriminant_func", &discriminant_func,
"Calculate cubic discriminant",
py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y"));
m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero,
"Find zeros of discriminant",
py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"),
py::arg("z_max"), py::arg("steps"));
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
"Compute support boundaries by sweeping beta",
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"),
py::arg("beta_steps"), py::arg("z_steps"));
m.def("compute_theoretical_max", &compute_theoretical_max,
"Compute theoretical maximum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_theoretical_min", &compute_theoretical_min,
"Compute theoretical minimum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
"Compute empirical and theoretical eigenvalue support boundaries",
py::arg("z_a"), py::arg("y"), py::arg("beta_values"),
py::arg("n_samples"), py::arg("seeds"));
m.def("compute_high_y_curve", &compute_high_y_curve,
"Compute high y expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
"Compute alternate low expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_max_k_expression", &compute_max_k_expression,
"Compute max k expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_min_t_expression", &compute_min_t_expression,
"Compute min t expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_derivatives", &compute_derivatives,
"Compute first and second derivatives",
py::arg("curve"), py::arg("betas"));
m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution,
"Generate eigenvalue distribution for a specific beta",
py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed"));
}