Spaces:
Running
Running
namespace py = pybind11; | |
// Apply the condition for y | |
double apply_y_condition(double y) { | |
return y > 1.0 ? y : 1.0 / y; | |
} | |
// Fast discriminant calculation | |
double discriminant_func(double z, double beta, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
// Coefficients | |
double a = z * z_a; | |
double b = z * z_a + z + z_a - z_a * y_effective; | |
double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta); | |
double d = 1.0; | |
// Standard formula for cubic discriminant - optimized calculation | |
double p1 = b*c/(6.0*a*a); | |
double p2 = b*b*b/(27.0*a*a*a); | |
double p3 = d/(2.0*a); | |
double term1 = p1 - p2 - p3; | |
term1 *= term1; | |
double q1 = c/(3.0*a); | |
double q2 = b*b/(9.0*a*a); | |
double term2 = q1 - q2; | |
term2 = term2*term2*term2; | |
return term1 + term2; | |
} | |
// Function to compute the theoretical max value - optimized with fewer function calls | |
double compute_theoretical_max(double a, double y, double beta) { | |
// Exit early if parameters would cause division by zero or other issues | |
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) { | |
return 0.0; | |
} | |
// Precompute constants for the formula | |
double y_effective = apply_y_condition(y); | |
double beta_term = y_effective * beta * (a - 1); | |
double y_term = y_effective - 1.0; | |
auto f = [a, beta_term, y_term, y_effective](double k) -> double { | |
// Fast evaluation of the function | |
double ak_plus_1 = a * k + 1.0; | |
double numerator = beta_term * k + ak_plus_1 * (y_term * k - 1.0); | |
double denominator = ak_plus_1 * (k * k + k) * y_effective; | |
return numerator / denominator; | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial fast grid search with fewer points | |
const int num_grid_points = 50; // Reduced from 200 | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = 1.618033988749895; | |
const double tolerance = 1e-6; // Increased from 1e-10 for speed | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
double fc = f(c_gs); | |
double fd = f(d_gs); | |
// Limited iterations for faster convergence | |
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) { | |
if (fc > fd) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
fd = fc; | |
fc = f(c_gs); | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
fc = fd; | |
fd = f(d_gs); | |
} | |
} | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to compute the theoretical min value - optimized similarly | |
double compute_theoretical_min(double a, double y, double beta) { | |
// Exit early if parameters would cause division by zero or other issues | |
if (a <= 0 || y <= 0 || beta < 0 || beta > 1) { | |
return 0.0; | |
} | |
// Precompute constants | |
double y_effective = apply_y_condition(y); | |
double beta_term = y_effective * beta * (a - 1); | |
double y_term = y_effective - 1.0; | |
auto f = [a, beta_term, y_term, y_effective](double t) -> double { | |
double at_plus_1 = a * t + 1.0; | |
double numerator = beta_term * t + at_plus_1 * (y_term * t - 1.0); | |
double denominator = at_plus_1 * (t * t + t) * y_effective; | |
return numerator / denominator; | |
}; | |
// Initial bound check | |
if (a <= 0) return 0.0; | |
// Find midpoint of range as starting guess | |
double best_t = -0.5 / a; | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = 50; // Reduced from 200 | |
double range = 0.998/a; | |
double start = -0.999/a; | |
for (int i = 1; i < num_grid_points; ++i) { | |
double t = start + range * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = start; | |
double b_gs = -0.001/a; | |
const double golden_ratio = 1.618033988749895; | |
const double tolerance = 1e-6; // Increased from 1e-10 | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
double fc = f(c_gs); | |
double fd = f(d_gs); | |
// Limited iterations | |
for (int iter = 0; iter < 20 && std::abs(b_gs - a_gs) > tolerance; ++iter) { | |
if (fc < fd) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
fd = fc; | |
fc = f(c_gs); | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
fc = fd; | |
fd = f(d_gs); | |
} | |
} | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Fast eigendecomposition of a symmetric matrix using Jacobi method | |
void eigen_decomposition(const std::vector<std::vector<double>>& matrix, | |
std::vector<double>& eigenvalues) { | |
int n = matrix.size(); | |
eigenvalues.resize(n); | |
// Copy matrix for computation | |
std::vector<std::vector<double>> a = matrix; | |
// Allocate temp arrays | |
std::vector<double> d(n); | |
std::vector<double> z(n, 0.0); | |
// Initialize eigenvalues with diagonal elements | |
for (int i = 0; i < n; i++) { | |
d[i] = a[i][i]; | |
} | |
// Main algorithm: Jacobi rotations | |
const int MAX_ITER = 50; // Limit iterations for speed | |
for (int iter = 0; iter < MAX_ITER; iter++) { | |
// Sum off-diagonal elements | |
double sum = 0.0; | |
for (int i = 0; i < n-1; i++) { | |
for (int j = i+1; j < n; j++) { | |
sum += std::abs(a[i][j]); | |
} | |
} | |
// Check for convergence | |
if (sum < 1e-8) break; | |
for (int p = 0; p < n-1; p++) { | |
for (int q = p+1; q < n; q++) { | |
double theta, t, c, s; | |
// Skip very small elements | |
if (std::abs(a[p][q]) < 1e-10) continue; | |
// Compute rotation angle | |
theta = 0.5 * std::atan2(2*a[p][q], a[p][p] - a[q][q]); | |
c = std::cos(theta); | |
s = std::sin(theta); | |
t = std::tan(theta); | |
// Update diagonal elements | |
double h = t * a[p][q]; | |
z[p] -= h; | |
z[q] += h; | |
d[p] -= h; | |
d[q] += h; | |
// Set off-diagonal element to zero | |
a[p][q] = 0.0; | |
// Update other elements | |
for (int i = 0; i < p; i++) { | |
double g = a[i][p], h = a[i][q]; | |
a[i][p] = c*g - s*h; | |
a[i][q] = s*g + c*h; | |
} | |
for (int i = p+1; i < q; i++) { | |
double g = a[p][i], h = a[i][q]; | |
a[p][i] = c*g - s*h; | |
a[i][q] = s*g + c*h; | |
} | |
for (int i = q+1; i < n; i++) { | |
double g = a[p][i], h = a[q][i]; | |
a[p][i] = c*g - s*h; | |
a[q][i] = s*g + c*h; | |
} | |
} | |
} | |
// Update eigenvalues | |
for (int i = 0; i < n; i++) { | |
d[i] += z[i]; | |
z[i] = 0.0; | |
} | |
} | |
// Return eigenvalues | |
eigenvalues = d; | |
} | |
// Optimized matrix multiplication: C = A * B | |
void matrix_multiply(const std::vector<std::vector<double>>& A, | |
const std::vector<std::vector<double>>& B, | |
std::vector<std::vector<double>>& C) { | |
int m = A.size(); | |
int n = B[0].size(); | |
int k = A[0].size(); | |
C.resize(m, std::vector<double>(n, 0.0)); | |
// Transpose B for better cache locality | |
std::vector<std::vector<double>> B_t(n, std::vector<double>(k, 0.0)); | |
for (int i = 0; i < k; i++) { | |
for (int j = 0; j < n; j++) { | |
B_t[j][i] = B[i][j]; | |
} | |
} | |
// Multiply with transposed B | |
for (int i = 0; i < m; i++) { | |
for (int j = 0; j < n; j++) { | |
double sum = 0.0; | |
for (int l = 0; l < k; l++) { | |
sum += A[i][l] * B_t[j][l]; | |
} | |
C[i][j] = sum; | |
} | |
} | |
} | |
// Highly optimized eigenvalue computation for a given beta | |
std::tuple<double, double> compute_eigenvalues_for_beta(double z_a, double y, double beta, int n, int seed) { | |
double y_effective = apply_y_condition(y); | |
// Set random seed | |
std::mt19937 gen(seed); | |
std::normal_distribution<double> norm(0.0, 1.0); | |
// Compute dimension p based on aspect ratio y | |
int p = static_cast<int>(y_effective * n); | |
// Generate random matrix X (with pre-allocation) | |
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < n; j++) { | |
X[i][j] = norm(gen); | |
} | |
} | |
// Compute X * X^T / n - optimized matrix multiplication | |
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j <= i; j++) { // Compute only lower triangle | |
double sum = 0.0; | |
for (int k = 0; k < n; k++) { | |
sum += X[i][k] * X[j][k]; | |
} | |
sum /= n; | |
S_n[i][j] = sum; | |
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle | |
} | |
} | |
// Build T_n diagonal matrix | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, z_a); | |
std::fill_n(diags.begin() + k, p - k, 1.0); | |
// Shuffle diagonal entries | |
std::shuffle(diags.begin(), diags.end(), gen); | |
// Create T_sqrt diagonal matrix | |
std::vector<double> t_sqrt_diag(p); | |
for (int i = 0; i < p; i++) { | |
t_sqrt_diag[i] = std::sqrt(diags[i]); | |
} | |
// Compute B = T_sqrt * S_n * T_sqrt directly without full matrix multiplication | |
// (optimize for diagonal T_sqrt) | |
std::vector<std::vector<double>> B(p, std::vector<double>(p, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < p; j++) { | |
B[i][j] = S_n[i][j] * t_sqrt_diag[i] * t_sqrt_diag[j]; | |
} | |
} | |
// Compute eigenvalues efficiently | |
std::vector<double> eigenvalues; | |
eigen_decomposition(B, eigenvalues); | |
// Sort eigenvalues | |
std::sort(eigenvalues.begin(), eigenvalues.end()); | |
// Return min and max | |
return std::make_tuple(eigenvalues.front(), eigenvalues.back()); | |
} | |
// Fast computation of eigenvalue support boundaries | |
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>, std::vector<double>> | |
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values, | |
int n_samples, int seeds) { | |
size_t num_betas = beta_values.size(); | |
std::vector<double> min_eigenvalues(num_betas, 0.0); | |
std::vector<double> max_eigenvalues(num_betas, 0.0); | |
std::vector<double> theoretical_min_values(num_betas, 0.0); | |
std::vector<double> theoretical_max_values(num_betas, 0.0); | |
// Pre-compute theoretical values for all betas (can be done in parallel) | |
for (size_t i = 0; i < num_betas; i++) { | |
double beta = beta_values[i]; | |
theoretical_max_values[i] = compute_theoretical_max(z_a, y, beta); | |
theoretical_min_values[i] = compute_theoretical_min(z_a, y, beta); | |
} | |
// Compute eigenvalues for all betas (more expensive) | |
for (size_t i = 0; i < num_betas; i++) { | |
double beta = beta_values[i]; | |
std::vector<double> min_vals; | |
std::vector<double> max_vals; | |
// Use just one seed for speed if the seeds parameter is small | |
int actual_seeds = (seeds <= 2) ? 1 : seeds; | |
for (int seed = 0; seed < actual_seeds; seed++) { | |
auto [min_eig, max_eig] = compute_eigenvalues_for_beta(z_a, y, beta, n_samples, seed); | |
min_vals.push_back(min_eig); | |
max_vals.push_back(max_eig); | |
} | |
// Average over seeds | |
double min_sum = 0.0, max_sum = 0.0; | |
for (double val : min_vals) min_sum += val; | |
for (double val : max_vals) max_sum += val; | |
min_eigenvalues[i] = min_sum / min_vals.size(); | |
max_eigenvalues[i] = max_sum / max_vals.size(); | |
} | |
return std::make_tuple(min_eigenvalues, max_eigenvalues, theoretical_min_values, theoretical_max_values); | |
} | |
// Very optimized version to find zeros of discriminant | |
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta, | |
double z_min, double z_max, int steps) { | |
std::vector<double> roots_found; | |
double y_effective = apply_y_condition(y); | |
// Adaptive step size for better accuracy in important regions | |
double step = (z_max - z_min) / (steps - 1); | |
// Evaluate discriminant at first point | |
double z_prev = z_min; | |
double f_prev = discriminant_func(z_prev, beta, z_a, y_effective); | |
// Scan through the range looking for sign changes | |
for (int i = 1; i < steps; ++i) { | |
double z_curr = z_min + i * step; | |
double f_curr = discriminant_func(z_curr, beta, z_a, y_effective); | |
if (std::isnan(f_prev) || std::isnan(f_curr)) { | |
z_prev = z_curr; | |
f_prev = f_curr; | |
continue; | |
} | |
// Check for exact zero | |
if (f_prev == 0.0) { | |
roots_found.push_back(z_prev); | |
} | |
else if (f_curr == 0.0) { | |
roots_found.push_back(z_curr); | |
} | |
// Check for sign change | |
else if (f_prev * f_curr < 0) { | |
// Binary search for more precise zero | |
double zl = z_prev; | |
double zr = z_curr; | |
double fl = f_prev; | |
double fr = f_curr; | |
// Fewer iterations, still good precision | |
for (int iter = 0; iter < 20; iter++) { | |
double zm = (zl + zr) / 2; | |
double fm = discriminant_func(zm, beta, z_a, y_effective); | |
if (fm == 0.0 || std::abs(zr - zl) < 1e-8) { | |
roots_found.push_back(zm); | |
break; | |
} | |
if ((fm < 0 && fl < 0) || (fm > 0 && fl > 0)) { | |
zl = zm; | |
fl = fm; | |
} else { | |
zr = zm; | |
fr = fm; | |
} | |
} | |
if (std::abs(zr - zl) >= 1e-8) { | |
// Add the midpoint if we didn't converge fully | |
roots_found.push_back((zl + zr) / 2); | |
} | |
} | |
z_prev = z_curr; | |
f_prev = f_curr; | |
} | |
return roots_found; | |
} | |
// Compute z bounds but with fewer steps for speed | |
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> | |
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max, | |
int beta_steps, int z_steps) { | |
std::vector<double> betas(beta_steps); | |
std::vector<double> z_min_values(beta_steps); | |
std::vector<double> z_max_values(beta_steps); | |
// Use fewer z steps for faster computation | |
int actual_z_steps = std::min(z_steps, 10000); | |
double beta_step = 1.0 / (beta_steps - 1); | |
for (int i = 0; i < beta_steps; i++) { | |
betas[i] = i * beta_step; | |
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, actual_z_steps); | |
if (roots.empty()) { | |
z_min_values[i] = std::numeric_limits<double>::quiet_NaN(); | |
z_max_values[i] = std::numeric_limits<double>::quiet_NaN(); | |
} else { | |
// Find min and max roots | |
double min_root = *std::min_element(roots.begin(), roots.end()); | |
double max_root = *std::max_element(roots.begin(), roots.end()); | |
z_min_values[i] = min_root; | |
z_max_values[i] = max_root; | |
} | |
} | |
return std::make_tuple(betas, z_min_values, z_max_values); | |
} | |
// Fast implementations of curve computations | |
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
double a = z_a; | |
double denominator = 1.0 - 2.0 * a; | |
if (std::abs(denominator) < 1e-10) { | |
std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN()); | |
return result; | |
} | |
// Precompute constants | |
double term1 = -2.0 * a * y_effective; | |
double term2 = -2.0 * a * (2.0 * a - 1.0); | |
double term3 = -4.0 * a * (a - 1.0) * y_effective; | |
for (size_t i = 0; i < n; i++) { | |
double beta = betas[i]; | |
double numerator = term3 * beta + term1 + term2; | |
result[i] = numerator / denominator; | |
} | |
return result; | |
} | |
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
// Precompute constants | |
double term1 = -2.0 * z_a * (1.0 - y_effective); | |
double term2 = -2.0 * z_a * z_a; | |
double term3 = z_a * y_effective * (z_a - 1.0); | |
double denominator = 2.0 + 2.0 * z_a; | |
for (size_t i = 0; i < n; i++) { | |
double beta = betas[i]; | |
result[i] = (term3 * beta + term1 + term2) / denominator; | |
} | |
return result; | |
} | |
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y) { | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
// Since we've optimized compute_theoretical_max, just call it in a loop | |
for (size_t i = 0; i < n; i++) { | |
result[i] = compute_theoretical_max(z_a, y, betas[i]); | |
} | |
return result; | |
} | |
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y) { | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
// Similarly for min | |
for (size_t i = 0; i < n; i++) { | |
result[i] = compute_theoretical_min(z_a, y, betas[i]); | |
} | |
return result; | |
} | |
// Generate eigenvalue distribution - faster implementation | |
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) { | |
double y_effective = apply_y_condition(y); | |
// Set random seed | |
std::mt19937 gen(seed); | |
std::normal_distribution<double> norm(0.0, 1.0); | |
// Compute dimension p based on aspect ratio y | |
int p = static_cast<int>(y_effective * n); | |
// Generate random matrix X | |
std::vector<std::vector<double>> X(p, std::vector<double>(n, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < n; j++) { | |
X[i][j] = norm(gen); | |
} | |
} | |
// Compute S_n = X * X^T / n efficiently | |
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j <= i; j++) { // Compute only lower triangle | |
double sum = 0.0; | |
for (int k = 0; k < n; k++) { | |
sum += X[i][k] * X[j][k]; | |
} | |
sum /= n; | |
S_n[i][j] = sum; | |
if (i != j) S_n[j][i] = sum; // Mirror to upper triangle | |
} | |
} | |
// Build T_n diagonal matrix | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, z_a); | |
std::fill_n(diags.begin() + k, p - k, 1.0); | |
// Shuffle diagonal entries | |
std::shuffle(diags.begin(), diags.end(), gen); | |
// Compute B_n = S_n * diag(T_n) efficiently | |
std::vector<std::vector<double>> B_n(p, std::vector<double>(p, 0.0)); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < p; j++) { | |
B_n[i][j] = S_n[i][j] * diags[j]; | |
} | |
} | |
// Compute eigenvalues efficiently | |
std::vector<double> eigenvalues; | |
eigen_decomposition(B_n, eigenvalues); | |
// Sort eigenvalues | |
std::sort(eigenvalues.begin(), eigenvalues.end()); | |
return eigenvalues; | |
} | |
// Python module definition | |
PYBIND11_MODULE(cubic_cpp, m) { | |
m.doc() = "C++ accelerated functions for cubic root analysis"; | |
m.def("discriminant_func", &discriminant_func, | |
"Calculate cubic discriminant", | |
py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y")); | |
m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero, | |
"Find zeros of discriminant", | |
py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"), | |
py::arg("z_max"), py::arg("steps")); | |
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds, | |
"Compute support boundaries by sweeping beta", | |
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"), | |
py::arg("beta_steps"), py::arg("z_steps")); | |
m.def("compute_theoretical_max", &compute_theoretical_max, | |
"Compute theoretical maximum function value", | |
py::arg("a"), py::arg("y"), py::arg("beta")); | |
m.def("compute_theoretical_min", &compute_theoretical_min, | |
"Compute theoretical minimum function value", | |
py::arg("a"), py::arg("y"), py::arg("beta")); | |
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries, | |
"Compute empirical and theoretical eigenvalue support boundaries", | |
py::arg("z_a"), py::arg("y"), py::arg("beta_values"), | |
py::arg("n_samples"), py::arg("seeds")); | |
m.def("compute_high_y_curve", &compute_high_y_curve, | |
"Compute high y expression curve", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_alternate_low_expr", &compute_alternate_low_expr, | |
"Compute alternate low expression curve", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_max_k_expression", &compute_max_k_expression, | |
"Compute max k expression for multiple beta values", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_min_t_expression", &compute_min_t_expression, | |
"Compute min t expression for multiple beta values", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_derivatives", &compute_derivatives, | |
"Compute first and second derivatives", | |
py::arg("curve"), py::arg("betas")); | |
m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution, | |
"Generate eigenvalue distribution for a specific beta", | |
py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed")); | |
} |