euler314's picture
Update app.cpp
d422d23 verified
raw
history blame
21.3 kB
// app.cpp - Modified version for Hugging Face Spaces
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k));
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = 200;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
const double tolerance = 1e-10;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Multiply the result by y before returning
return f((a_gs + b_gs) / 2.0) *y ;
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t) * y);
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = 200;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
const double tolerance = 1e-10;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Multiply the result by y before returning
return f((a_gs + b_gs) / 2.0) *y ;
}
int main(int argc, char* argv[]) {
// ─── Inputs from command line ───────────────────────────────────────────
if (argc != 6) {
std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y> <output_file>" << std::endl;
return 1;
}
int n = std::stoi(argv[1]);
int p = std::stoi(argv[2]);
double a = std::stod(argv[3]);
double y = std::stod(argv[4]);
std::string output_file = argv[5];
const double b = 1.0;
std::cout << "Running with parameters: n = " << n << ", p = " << p
<< ", a = " << a << ", y = " << y << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
// ─── Beta range parameters ────────────────────────────────────────
const int num_beta_points = 100; // More points for smoother curves
std::vector<double> beta_values(num_beta_points);
for (int i = 0; i < num_beta_points; ++i) {
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
}
// ─── Storage for results ────────────────────────────────────────
std::vector<double> max_eigenvalues(num_beta_points);
std::vector<double> min_eigenvalues(num_beta_points);
std::vector<double> theoretical_max_values(num_beta_points);
std::vector<double> theoretical_min_values(num_beta_points);
// ─── Random‐Gaussian X and S_n ────────────────────────────────
std::mt19937_64 rng{std::random_device{}()};
std::normal_distribution<double> norm(0.0, 1.0);
cv::Mat X(p, n, CV_64F);
for(int i = 0; i < p; ++i)
for(int j = 0; j < n; ++j)
X.at<double>(i,j) = norm(rng);
// ─── Process each beta value ─────────────────────────────────
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
double beta = beta_values[beta_idx];
// Compute theoretical values
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta);
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta);
// ─── Build T_n matrix ──────────────────────────────────
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, a);
std::fill_n(diags.begin()+k, p-k, b);
std::shuffle(diags.begin(), diags.end(), rng);
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
for(int i = 0; i < p; ++i){
T_n.at<double>(i,i) = diags[i];
}
// ─── Form B_n = (1/n) * X * T_n * X^T ────────────
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
// ─── Compute eigenvalues of B ────────────────────────────
cv::Mat eigVals;
cv::eigen(B, eigVals);
std::vector<double> eigs(n);
for(int i = 0; i < n; ++i)
eigs[i] = eigVals.at<double>(i, 0);
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
// Progress indicator - modified to be less verbose for Streamlit
if (beta_idx % 20 == 0) {
std::cout << "Processing beta = " << beta
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
}
}
// ─── Prepare canvas for plotting ────────────────────────────────
const int H = 950, W = 1200; // Taller canvas to accommodate legend below
cv::Mat canvas(H, W, CV_8UC3, cv::Scalar(250, 250, 250)); // Slightly off-white background
// ─── Find min/max for scaling ───────────────────────────────────
double min_y = std::numeric_limits<double>::max();
double max_y = std::numeric_limits<double>::lowest();
for (double v : max_eigenvalues) max_y = std::max(max_y, v);
for (double v : min_eigenvalues) min_y = std::min(min_y, v);
for (double v : theoretical_max_values) max_y = std::max(max_y, v);
for (double v : theoretical_min_values) min_y = std::min(min_y, v);
// Add some padding
double y_padding = (max_y - min_y) * 0.15; // More padding for better spacing
min_y -= y_padding;
max_y += y_padding;
// ─── Draw coordinate axes ───────────────────────────────────────
const int margin = 100; // Larger margin for better spacing
const int plot_width = W - 2 * margin;
const int plot_height = H - 2 * margin - 150; // Reduced height to make room for legend below
// Plot area background (light gray)
cv::rectangle(canvas,
cv::Point(margin, margin),
cv::Point(W - margin, margin + plot_height),
cv::Scalar(245, 245, 245), cv::FILLED);
// X-axis (beta)
cv::line(canvas,
cv::Point(margin, margin + plot_height),
cv::Point(W - margin, margin + plot_height),
cv::Scalar(40, 40, 40), 2);
// Y-axis (eigenvalues)
cv::line(canvas,
cv::Point(margin, margin + plot_height),
cv::Point(margin, margin),
cv::Scalar(40, 40, 40), 2);
// ─── Draw axes labels ────────────────────────────────────────────
cv::putText(canvas, "Ξ²",
cv::Point(W - margin/2, margin + plot_height + 30),
cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
// Y-axis label (fixed - no rotation)
cv::putText(canvas, "Eigenvalues",
cv::Point(margin/4, margin/2 - 10),
cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
// ─── Draw title ───────────────────────────────────────────────────
std::stringstream title_ss;
title_ss << std::fixed << std::setprecision(2);
title_ss << "Eigenvalue Analysis: a = " << a << ", y = " << y;
cv::putText(canvas, title_ss.str(),
cv::Point(W/2 - 200, 45),
cv::FONT_HERSHEY_COMPLEX, 1.2, cv::Scalar(0, 0, 0), 2);
// ─── Draw grid lines ────────────────────────────────────────────────
const int num_grid_lines = 11; // 0.0, 0.1, 0.2, ..., 1.0 for beta
for (int i = 0; i < num_grid_lines; ++i) {
// Horizontal grid lines
int y_pos = margin + i * (plot_height / (num_grid_lines - 1));
cv::line(canvas,
cv::Point(margin, y_pos),
cv::Point(W - margin, y_pos),
cv::Scalar(220, 220, 220), 1);
// Vertical grid lines
int x_pos = margin + i * (plot_width / (num_grid_lines - 1));
cv::line(canvas,
cv::Point(x_pos, margin),
cv::Point(x_pos, margin + plot_height),
cv::Scalar(220, 220, 220), 1);
// X-axis labels (beta values)
double beta_val = static_cast<double>(i) / (num_grid_lines - 1);
std::stringstream ss;
ss << std::fixed << std::setprecision(1) << beta_val;
cv::putText(canvas, ss.str(),
cv::Point(x_pos - 10, margin + plot_height + 30),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
// Y-axis labels (eigenvalue values)
double eig_val = min_y + (max_y - min_y) * i / (num_grid_lines - 1);
std::stringstream ss2;
ss2 << std::fixed << std::setprecision(2) << eig_val;
cv::putText(canvas, ss2.str(),
cv::Point(margin/2 - 40, margin + plot_height - i * (plot_height / (num_grid_lines - 1)) + 5),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
}
// ─── Draw the four curves ───────────────────────────────────────────
// Convert data points to pixel coordinates
auto to_point = [&](double beta, double val) -> cv::Point {
int x = margin + static_cast<int>(beta * plot_width);
int y = margin + plot_height - static_cast<int>((val - min_y) / (max_y - min_y) * plot_height);
return cv::Point(x, y);
};
// Better colors for visibility
cv::Scalar emp_max_color(60, 60, 220); // Dark red
cv::Scalar emp_min_color(220, 60, 60); // Dark blue
cv::Scalar theo_max_color(30, 180, 30); // Dark green
cv::Scalar theo_min_color(180, 30, 180); // Dark purple
// Empirical max eigenvalues (red)
std::vector<cv::Point> max_eig_points;
for (int i = 0; i < num_beta_points; ++i) {
max_eig_points.push_back(to_point(beta_values[i], max_eigenvalues[i]));
}
cv::polylines(canvas, max_eig_points, false, emp_max_color, 3);
// Empirical min eigenvalues (blue)
std::vector<cv::Point> min_eig_points;
for (int i = 0; i < num_beta_points; ++i) {
min_eig_points.push_back(to_point(beta_values[i], min_eigenvalues[i]));
}
cv::polylines(canvas, min_eig_points, false, emp_min_color, 3);
// Theoretical max values (green)
std::vector<cv::Point> theo_max_points;
for (int i = 0; i < num_beta_points; ++i) {
theo_max_points.push_back(to_point(beta_values[i], theoretical_max_values[i]));
}
cv::polylines(canvas, theo_max_points, false, theo_max_color, 3);
// Theoretical min values (purple)
std::vector<cv::Point> theo_min_points;
for (int i = 0; i < num_beta_points; ++i) {
theo_min_points.push_back(to_point(beta_values[i], theoretical_min_values[i]));
}
cv::polylines(canvas, theo_min_points, false, theo_min_color, 3);
// ─── Draw markers on the curves for better visibility ──────────────
const int marker_interval = 10; // Show markers every 10 points
for (int i = 0; i < num_beta_points; i += marker_interval) {
// Max empirical eigenvalue markers
cv::circle(canvas, max_eig_points[i], 5, emp_max_color, cv::FILLED);
cv::circle(canvas, max_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
// Min empirical eigenvalue markers
cv::circle(canvas, min_eig_points[i], 5, emp_min_color, cv::FILLED);
cv::circle(canvas, min_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
// Theoretical max markers
cv::drawMarker(canvas, theo_max_points[i], theo_max_color, cv::MARKER_DIAMOND, 10, 2);
// Theoretical min markers
cv::drawMarker(canvas, theo_min_points[i], theo_min_color, cv::MARKER_DIAMOND, 10, 2);
}
// ─── Draw legend BELOW the graph ────────────────────────────────────
// Set up dimensions for the legend
const int legend_width = 600;
const int legend_height = 100;
// Center the legend horizontally
const int legend_x = W/2 - legend_width/2;
// Position legend below the graph
const int legend_y = margin + plot_height + 70;
const int line_length = 40;
const int line_spacing = 35;
// Box around legend with shadow effect
cv::rectangle(canvas,
cv::Point(legend_x + 3, legend_y + 3),
cv::Point(legend_x + legend_width + 3, legend_y + legend_height + 3),
cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
cv::rectangle(canvas,
cv::Point(legend_x, legend_y),
cv::Point(legend_x + legend_width, legend_y + legend_height),
cv::Scalar(240, 240, 240), cv::FILLED); // Main box
cv::rectangle(canvas,
cv::Point(legend_x, legend_y),
cv::Point(legend_x + legend_width, legend_y + legend_height),
cv::Scalar(0, 0, 0), 1); // Border
// Legend title
cv::putText(canvas, "Legend",
cv::Point(legend_x + legend_width/2 - 30, legend_y + 20),
cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
cv::line(canvas,
cv::Point(legend_x + 5, legend_y + 30),
cv::Point(legend_x + legend_width - 5, legend_y + 30),
cv::Scalar(150, 150, 150), 1);
// Two legend entries per row, in two columns
// First row
// Empirical max (red)
cv::line(canvas,
cv::Point(legend_x + 20, legend_y + 50),
cv::Point(legend_x + 20 + line_length, legend_y + 50),
emp_max_color, 3);
cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 50), 5, emp_max_color, cv::FILLED);
cv::putText(canvas, "Empirical Max Eigenvalue",
cv::Point(legend_x + 20 + line_length + 10, legend_y + 50 + 5),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
// Empirical min (blue)
cv::line(canvas,
cv::Point(legend_x + 20 + legend_width/2, legend_y + 50),
cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 50),
emp_min_color, 3);
cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 50), 5, emp_min_color, cv::FILLED);
cv::putText(canvas, "Empirical Min Eigenvalue",
cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 50 + 5),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
// Second row
// Theoretical max (green)
cv::line(canvas,
cv::Point(legend_x + 20, legend_y + 80),
cv::Point(legend_x + 20 + line_length, legend_y + 80),
theo_max_color, 3);
cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 80),
theo_max_color, cv::MARKER_DIAMOND, 10, 2);
cv::putText(canvas, "Theoretical Max Function",
cv::Point(legend_x + 20 + line_length + 10, legend_y + 80 + 5),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
// Theoretical min (purple)
cv::line(canvas,
cv::Point(legend_x + 20 + legend_width/2, legend_y + 80),
cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 80),
theo_min_color, 3);
cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 80),
theo_min_color, cv::MARKER_DIAMOND, 10, 2);
cv::putText(canvas, "Theoretical Min Function",
cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 80 + 5),
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
// ─── Draw mathematical formulas in a box ──────────────────────────────
cv::rectangle(canvas,
cv::Point(margin + 3, H - 80 + 3),
cv::Point(W - margin + 3, H - 20 + 3),
cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
cv::rectangle(canvas,
cv::Point(margin, H - 80),
cv::Point(W - margin, H - 20),
cv::Scalar(240, 240, 240), cv::FILLED); // Main box
cv::rectangle(canvas,
cv::Point(margin, H - 80),
cv::Point(W - margin, H - 20),
cv::Scalar(0, 0, 0), 1); // Border
std::string formula_text1 = "Max Function: max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)y]";
std::string formula_text2 = "Min Function: min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)y]";
cv::putText(canvas, formula_text1,
cv::Point(margin + 20, H - 55),
cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_max_color, 2);
cv::putText(canvas, formula_text2,
cv::Point(W/2 + 20, H - 55),
cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_min_color, 2);
// ─── Draw parameter info ────────────────────────────────────────────
std::stringstream params_ss;
params_ss << std::fixed << std::setprecision(2);
params_ss << "Parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y;
cv::putText(canvas, params_ss.str(),
cv::Point(margin, 80),
cv::FONT_HERSHEY_COMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
// ─── Save the image to the output directory ───────────────────────────
cv::imwrite(output_file, canvas);
std::cout << "Plot saved as " << output_file << std::endl;
return 0;
}