euler314's picture
Update app.py
7ac6a51 verified
raw
history blame
15.7 kB
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
#############################
# 1) Define the discriminant
#############################
# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the standard cubic discriminant
Delta_expr = (
( (b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym) )**2
+ ( c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2) )**3
)
# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Numerically scan z in [z_min, z_max] looking for sign changes of
Delta(z) = 0. Returns all roots found via bisection.
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
# Scan for sign changes
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1*f2 < 0:
zl = z_grid[i]
zr = z_grid[i+1]
for _ in range(50):
mid = 0.5*(zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl = mid
f1 = fm
else:
zr = mid
f2 = fm
root_approx = 0.5*(zl + zr)
roots_found.append(root_approx)
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta, find both the largest and smallest z where discriminant=0.
Returns (betas, z_min_values, z_max_values).
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the additional curve with proper handling of divide by zero cases
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term)/z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
# Handle division by zero and invalid values
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
return np.where(mask, numerator/denominator, np.nan)
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the expression: (-4a(a-1)yβ - 2ay + 2a(2a-1))/(1-2a)
"""
a = z_a # for clarity in the formula
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
return numerator/denominator
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
low_y_curve = compute_low_y_curve(betas, z_a, y)
high_y_curve = compute_high_y_curve(betas, z_a, y)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=betas,
y=z_maxs,
mode="markers+lines",
name="Upper z*(β)",
marker=dict(size=5, color='blue'),
line=dict(color='blue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=z_mins,
mode="markers+lines",
name="Lower z*(β)",
marker=dict(size=5, color='lightblue'),
line=dict(color='lightblue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=low_y_curve,
mode="markers+lines",
name="Low y Expression",
marker=dict(size=5, color='red'),
line=dict(color='red'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=high_y_curve,
mode="markers+lines",
name="High y Expression",
marker=dict(size=5, color='green'),
line=dict(color='green'),
)
)
fig.update_layout(
title="Curves vs β: z*(β) boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""Generate both Im(s) and Re(s) vs. z plots"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims = []
res = []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
# Create Im(s) plot
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(
go.Scatter(
x=z_points,
y=ims[:,i],
mode="lines",
name=f"Im{{s{i+1}}}",
line=dict(width=2),
)
)
fig_im.update_layout(
title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Im{s}",
hovermode="x unified",
)
# Create Re(s) plot
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(
go.Scatter(
x=z_points,
y=res[:,i],
mode="lines",
name=f"Re{{s{i+1}}}",
line=dict(width=2),
)
)
fig_re.update_layout(
title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Re{s}",
hovermode="x unified",
)
return fig_im, fig_re
def curve1(s, z, y):
"""First curve: z*s^2 + (z-y+1)*s + 1"""
return z*s**2 + (z-y+1)*s + 1
def curve2(s, y, beta, a):
"""Second curve: y*β*((a-1)*s)/(a*s+1)"""
return y*beta*((a-1)*s)/(a*s+1)
def find_intersections(z, y, beta, a, s_range, n_guesses, tolerance):
"""Find intersections between the two curves with improved accuracy"""
def equation(s):
return curve1(s, z, y) - curve2(s, y, beta, a)
# Create a finer grid of initial guesses
s_guesses = np.linspace(s_range[0], s_range[1], n_guesses)
intersections = []
# First pass: find all potential intersections
for s_guess in s_guesses:
try:
s_sol = fsolve(equation, s_guess, full_output=True, xtol=tolerance)
if s_sol[2] == 1: # Check if convergence was achieved
s_val = s_sol[0][0]
if (s_range[0] <= s_val <= s_range[1] and
not any(abs(s_val - s_prev) < tolerance for s_prev in intersections)):
if abs(equation(s_val)) < tolerance:
intersections.append(s_val)
except:
continue
# Sort intersections
intersections = np.sort(np.array(intersections))
# Ensure even number of intersections by checking for missed ones
if len(intersections) % 2 != 0:
refined_intersections = []
for i in range(len(intersections)-1):
mid_point = (intersections[i] + intersections[i+1])/2
try:
s_sol = fsolve(equation, mid_point, full_output=True, xtol=tolerance)
if s_sol[2] == 1:
s_val = s_sol[0][0]
if (intersections[i] < s_val < intersections[i+1] and
abs(equation(s_val)) < tolerance):
refined_intersections.append(s_val)
except:
continue
intersections = np.sort(np.append(intersections, refined_intersections))
return intersections
def generate_curves_plot(z, y, beta, a, s_range, n_points, n_guesses, tolerance):
s = np.linspace(s_range[0], s_range[1], n_points)
# Compute curves
y1 = curve1(s, z, y)
y2 = curve2(s, y, beta, a)
# Find intersections with improved accuracy
intersections = find_intersections(z, y, beta, a, s_range, n_guesses, tolerance)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=s, y=y1,
mode='lines',
name='z*s² + (z-y+1)*s + 1',
line=dict(color='blue', width=2)
)
)
fig.add_trace(
go.Scatter(
x=s, y=y2,
mode='lines',
name='y*β*((a-1)*s)/(a*s+1)',
line=dict(color='red', width=2)
)
)
if len(intersections) > 0:
fig.add_trace(
go.Scatter(
x=intersections,
y=curve1(intersections, z, y),
mode='markers',
name='Intersections',
marker=dict(
size=12,
color='green',
symbol='x',
line=dict(width=2)
)
)
)
fig.update_layout(
title=f"Curve Intersection Analysis (y={y:.4f}, β={beta:.4f}, a={a:.4f})",
xaxis_title="s",
yaxis_title="Value",
hovermode="closest",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig, intersections
# Streamlit UI
st.title("Cubic Root Analysis")
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Curve Intersections"])
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with st.expander("Resolution Settings"):
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50)
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000)
if st.button("Compute z vs. β Curves"):
with col2:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Additional Expressions")
st.markdown("""
**Low y Expression (Red):**
```
((y - 2)*(-1 + sqrt(y*β*(a-1)))/a + y*β*((a-1)/a) - 1/a - 1) /
((-1 + sqrt(y*β*(a-1)))/a)^2 + (-1 + sqrt(y*β*(a-1)))/a)
```
**High y Expression (Green):**
```
(- 4 a ( a - 1 )*y*β - 2a*y + 2a*( 2 a - 1 ) )/( 1 - 2 a )
```
where a = z_a
""")
with tab2:
st.header("Plot Complex Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
y_2 = st.number_input("y", value=1.0, key="y_2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
with st.expander("Resolution Settings"):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500)
if st.button("Compute Complex Roots vs. z"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
with tab3:
st.header("Curve Intersection Analysis")
col1, col2 = st.columns([1, 2])
with col1:
z = st.slider("z", min_value=-10.0, max_value=10000.0, value=1.0, step=0.1)
y_3 = st.slider("y", min_value=0.1, max_value=1000.0, value=1.0, step=0.1, key="y_3")
beta_3 = st.slider("β", min_value=0.0, max_value=1.0, value=0.5, step=0.01, key="beta_3")
a = st.slider("a", min_value=0.1, max_value=1000.0, value=1.0, step=0.1)
st.subheader("s Range")
s_min = st.number_input("s_min", value=-5.0)
s_max = st.number_input("s_max", value=5.0)
with st.expander("Resolution Settings"):
s_points = st.slider("s grid points", min_value=1000, max_value=10000, value=5000, step=500)
intersection_guesses = st.slider("Intersection search points", min_value=200, max_value=2000, value=1000, step=100)
intersection_tolerance = st.select_slider(
"Intersection tolerance",
options=[1e-6, 1e-8, 1e-10, 1e-12, 1e-14,1e-16,1e-18,1e-20],
value=1e-10
)
if st.button("Compute Intersections"):
with col2:
s_range = (s_min, s_max)
fig, intersections = generate_curves_plot(z, y_3, beta_3, a, s_range, s_points, intersection_guesses, intersection_tolerance)
st.plotly_chart(fig, use_container_width=True)
if len(intersections) > 0:
st.subheader("Intersection Points")
for i, s_val in enumerate(intersections):
y_val = curve1(s_val, z, y_3)
st.write(f"Point {i+1}: s = {s_val:.6f}, y = {y_val:.6f}")
else:
st.write("No intersections found in the given range.")