euler314's picture
Update app.py
da34afc verified
raw
history blame
18.1 kB
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="expanded" # Changed to expanded
)
# Move custom expression inputs to sidebar
with st.sidebar:
st.header("Custom Expression Settings")
expression_type = st.radio(
"Select Expression Type",
["Original Low y", "Alternative Low y"]
)
if expression_type == "Original Low y":
default_num = "(y - 2)*((-1 + sqrt(y*beta*(z_a - 1)))/z_a) + y*beta*((z_a-1)/z_a) - 1/z_a - 1"
default_denom = "((-1 + sqrt(y*beta*(z_a - 1)))/z_a)**2 + ((-1 + sqrt(y*beta*(z_a - 1)))/z_a)"
else:
default_num = "1*z_a*y*beta*(z_a-1) - 2*z_a*(1 - y) - 2*z_a**2"
default_denom = "2+2*z_a"
custom_num_expr = st.text_input("Numerator Expression", value=default_num)
custom_denom_expr = st.text_input("Denominator Expression", value=default_denom)
#############################
# 1) Define the discriminant
#############################
# Symbolic variables to build a symbolic expression of discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym # Fixed coefficient b
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the standard cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Turn that into a fast numeric function:
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Numerically scan z in [z_min, z_max] looking for sign changes of
Delta(z) = 0. Returns all roots found via bisection.
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
# Scan for sign changes
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1*f2 < 0:
zl = z_grid[i]
zr = z_grid[i+1]
for _ in range(50):
mid = 0.5*(zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl = mid
f1 = fm
else:
zr = mid
f2 = fm
root_approx = 0.5*(zl + zr)
roots_found.append(root_approx)
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta, find both the largest and smallest z where discriminant=0.
Returns (betas, z_min_values, z_max_values).
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the additional curve with proper handling of divide by zero cases
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term)/z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
# Handle division by zero and invalid values
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
return np.where(mask, numerator/denominator, np.nan)
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the expression: (-4a(a-1)yβ - 2ay + 2a(2a-1))/(1-2a)
"""
a = z_a # for clarity in the formula
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
return numerator/denominator
@st.cache_data
def compute_z_difference_and_derivatives(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
Compute the difference between upper and lower z*(β) curves and their derivatives
"""
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
# Compute difference
z_difference = z_maxs - z_mins
# First derivatives
dz_diff_dbeta = np.gradient(z_difference, betas)
# Second derivatives
d2z_diff_dbeta2 = np.gradient(dz_diff_dbeta, betas)
return betas, z_difference, dz_diff_dbeta, d2z_diff_dbeta2
def compute_custom_expression(betas, z_a, y, num_expr_str, denom_expr_str):
"""
Compute a custom curve given numerator and denominator expressions
as strings that can depend on z_a, beta, and y.
Allows 'a' as an alias for z_a.
"""
# Define allowed symbols. Also allow 'a' as an alias for z_a.
beta_sym, z_a_sym, y_sym, a_sym = sp.symbols("beta z_a y a", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "a": z_a_sym}
try:
num_expr = sp.sympify(num_expr_str, locals=local_dict)
denom_expr = sp.sympify(denom_expr_str, locals=local_dict)
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
num_func = sp.lambdify((beta_sym, z_a_sym, y_sym), num_expr, modules=["numpy"])
denom_func = sp.lambdify((beta_sym, z_a_sym, y_sym), denom_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = num_func(betas, z_a, y) / denom_func(betas, z_a, y)
return result
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
custom_num_expr=None, custom_denom_expr=None):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
low_y_curve = compute_low_y_curve(betas, z_a, y)
high_y_curve = compute_high_y_curve(betas, z_a, y)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=betas,
y=z_maxs,
mode="markers+lines",
name="Upper z*(β)",
marker=dict(size=5, color='blue'),
line=dict(color='blue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=z_mins,
mode="markers+lines",
name="Lower z*(β)",
marker=dict(size=5, color='lightblue'),
line=dict(color='lightblue'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=low_y_curve,
mode="markers+lines",
name="Low y Expression",
marker=dict(size=5, color='red'),
line=dict(color='red'),
)
)
fig.add_trace(
go.Scatter(
x=betas,
y=high_y_curve,
mode="markers+lines",
name="High y Expression",
marker=dict(size=5, color='green'),
line=dict(color='green'),
)
)
custom_curve = None
# Add custom expression if both numerator and denominator are provided
if custom_num_expr and custom_denom_expr:
custom_curve = compute_custom_expression(betas, z_a, y, custom_num_expr, custom_denom_expr)
fig.add_trace(
go.Scatter(
x=betas,
y=custom_curve,
mode="markers+lines",
name="Custom Expression",
marker=dict(size=5, color='purple'),
line=dict(color='purple'),
)
)
fig.update_layout(
title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
)
# Compute Derivatives with Respect to β
dzmax_dbeta = np.gradient(z_maxs, betas)
dzmin_dbeta = np.gradient(z_mins, betas)
dlowy_dbeta = np.gradient(low_y_curve, betas)
dhighy_dbeta = np.gradient(high_y_curve, betas)
dcustom_dbeta = np.gradient(custom_curve, betas) if custom_curve is not None else None
fig_deriv = go.Figure()
fig_deriv.add_trace(
go.Scatter(
x=betas,
y=dzmax_dbeta,
mode="markers+lines",
name="d/dβ Upper z*(β)",
marker=dict(size=5, color='blue'),
line=dict(color='blue'),
)
)
fig_deriv.add_trace(
go.Scatter(
x=betas,
y=dzmin_dbeta,
mode="markers+lines",
name="d/dβ Lower z*(β)",
marker=dict(size=5, color='lightblue'),
line=dict(color='lightblue'),
)
)
fig_deriv.add_trace(
go.Scatter(
x=betas,
y=dlowy_dbeta,
mode="markers+lines",
name="d/dβ Low y Expression",
marker=dict(size=5, color='red'),
line=dict(color='red'),
)
)
fig_deriv.add_trace(
go.Scatter(
x=betas,
y=dhighy_dbeta,
mode="markers+lines",
name="d/dβ High y Expression",
marker=dict(size=5, color='green'),
line=dict(color='green'),
)
)
if dcustom_dbeta is not None:
fig_deriv.add_trace(
go.Scatter(
x=betas,
y=dcustom_dbeta,
mode="markers+lines",
name="d/dβ Custom Expression",
marker=dict(size=5, color='purple'),
line=dict(color='purple'),
)
)
fig_deriv.update_layout(
title="Derivatives vs β of Each Curve",
xaxis_title="β",
yaxis_title="d(Value)/dβ",
hovermode="x unified",
)
return fig, fig_deriv
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""Generate both Im(s) and Re(s) vs. z plots"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims = []
res = []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
# Create Im(s) plot
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(
go.Scatter(
x=z_points,
y=ims[:,i],
mode="lines",
name=f"Im{{s{i+1}}}",
line=dict(width=2),
)
)
fig_im.update_layout(
title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Im{s}",
hovermode="x unified",
)
# Create Re(s) plot
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(
go.Scatter(
x=z_points,
y=res[:,i],
mode="lines",
name=f"Re{{s{i+1}}}",
line=dict(width=2),
)
)
fig_re.update_layout(
title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z",
yaxis_title="Re{s}",
hovermode="x unified",
)
return fig_im, fig_re
# ------------------- Streamlit UI -------------------
st.title("Cubic Root Analysis")
tab1, tab2, tab3, tab4 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Curve Intersections", "z*(β) Difference Analysis"])
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with st.expander("Resolution Settings"):
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50)
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000)
if st.button("Compute z vs. β Curves"):
with col2:
fig_main, fig_deriv = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1,
beta_steps, z_steps,
custom_num_expr, custom_denom_expr)
if fig_main is not None and fig_deriv is not None:
st.plotly_chart(fig_main, use_container_width=True)
st.plotly_chart(fig_deriv, use_container_width=True)
with tab2:
st.header("Plot Complex Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0)
y_2 = st.number_input("y", value=1.0, key="y_2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2")
with st.expander("Resolution Settings"):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500)
if st.button("Compute Complex Roots vs. z"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
with tab4:
st.header("z*(β) Difference Analysis")
col1, col2 = st.columns([1, 2])
with col1:
z_a_4 = st.number_input("z_a", value=1.0, key="z_a_4")
y_4 = st.number_input("y", value=1.0, key="y_4")
z_min_4 = st.number_input("z_min", value=-10.0, key="z_min_4")
z_max_4 = st.number_input("z_max", value=10.0, key="z_max_4")
with st.expander("Resolution Settings"):
beta_steps_4 = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_4")
z_steps_4 = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_4")
if st.button("Compute Difference Analysis"):
with col2:
betas, z_diff, dz_diff, d2z_diff = compute_z_difference_and_derivatives(
z_a_4, y_4, z_min_4, z_max_4, beta_steps_4, z_steps_4
)
# Plot difference
fig_diff = go.Figure()
fig_diff.add_trace(
go.Scatter(
x=betas,
y=z_diff,
mode="lines",
name="z*(β) Difference",
line=dict(color='purple', width=2)
)
)
fig_diff.update_layout(
title="Difference between Upper and Lower z*(β)",
xaxis_title="β",
yaxis_title="z_max - z_min",
hovermode="x unified"
)
st.plotly_chart(fig_diff, use_container_width=True)
# Plot first derivative
fig_first_deriv = go.Figure()
fig_first_deriv.add_trace(
go.Scatter(
x=betas,
y=dz_diff,
mode="lines",
name="First Derivative",
line=dict(color='blue', width=2)
)
)
fig_first_deriv.update_layout(
title="First Derivative of z*(β) Difference",
xaxis_title="β",
yaxis_title="d(z_max - z_min)/dβ",
hovermode="x unified"
)
st.plotly_chart(fig_first_deriv, use_container_width=True)
# Plot second derivative
fig_second_deriv = go.Figure()
fig_second_deriv.add_trace(
go.Scatter(
x=betas,
y=d2z_diff,
mode="lines",
name="Second Derivative",
line=dict(color='green', width=2)
)
)
fig_second_deriv.update_layout(
title="Second Derivative of z*(β) Difference",
xaxis_title="β",
yaxis_title="d²(z_max - z_min)/dβ²",
hovermode="x unified"
)
st.plotly_chart(fig_second_deriv, use_container_width=True)