euler314's picture
Update app.py
f0d26e9 verified
raw
history blame
24 kB
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
#############################
# 1) Define the discriminant
#############################
# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Scan z in [z_min, z_max] for sign changes in the discriminant,
and return approximated roots (where the discriminant is zero).
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1 * f2 < 0:
zl, zr = z_grid[i], z_grid[i+1]
for _ in range(50):
mid = 0.5 * (zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl, f1 = mid, fm
else:
zr, f2 = mid, fm
roots_found.append(0.5 * (zl + zr))
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
for which the discriminant is zero.
Returns: betas, lower z*(β) values, and upper z*(β) values.
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the "Low y Expression" curve.
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term) / z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
result = np.where(mask, numerator/denominator, np.nan)
return result
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the "High y Expression" curve.
"""
a = z_a
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
return numerator/denominator
def compute_alternate_low_expr(betas, z_a, y):
"""
Compute the alternate low expression:
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
"""
betas = np.array(betas)
return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a)
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr):
"""
Compute custom curve by:
1. Computing s = s_num/s_denom
2. Inserting s into the final expression:
(y*beta*(z_a-1)*s + (a*s+1)*((y-1)*s-1))/((a*s+1)*(s^2 + s))
"""
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym}
try:
# First calculate s = num/denom
num_expr = sp.sympify(s_num_expr, locals=local_dict)
denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
s_expr = num_expr / denom_expr
# Now substitute this s into the main expression
a = z_a_sym # a is alias for z_a
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
final_expr = numerator/denominator
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = final_func(betas, z_a, y)
if np.isscalar(result):
result = np.full_like(betas, result)
return result
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
s_num_expr=None, s_denom_expr=None, show_derivatives=False):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
low_y_curve = compute_low_y_curve(betas, z_a, y)
high_y_curve = compute_high_y_curve(betas, z_a, y)
alt_low_expr = compute_alternate_low_expr(betas, z_a, y)
custom_curve = None
if s_num_expr and s_denom_expr:
custom_curve = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr)
# Compute derivatives
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve,
alt_low_expr, custom_curve)
# Create subplots: one for curves, one for first derivatives, one for second derivatives
fig = go.Figure()
# Original curves
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper z*(β)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower z*(β)", line=dict(color='lightblue')))
fig.add_trace(go.Scatter(x=betas, y=low_y_curve, mode="markers+lines",
name="Low y Expression", line=dict(color='red')))
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
name="High y Expression", line=dict(color='green')))
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
name="Alternate Low Expression", line=dict(color='orange')))
if custom_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve, mode="markers+lines",
name="Custom Expression", line=dict(color='purple')))
if show_derivatives:
# First derivatives
fig.add_trace(go.Scatter(x=betas, y=derivatives['upper'][0], mode="lines",
name="Upper z*(β) d/dβ", line=dict(color='blue', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['lower'][0], mode="lines",
name="Lower z*(β) d/dβ", line=dict(color='lightblue', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['low_y'][0], mode="lines",
name="Low y d/dβ", line=dict(color='red', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['high_y'][0], mode="lines",
name="High y d/dβ", line=dict(color='green', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['alt_low'][0], mode="lines",
name="Alt Low d/dβ", line=dict(color='orange', dash='dash')))
if custom_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=derivatives['custom'][0], mode="lines",
name="Custom d/dβ", line=dict(color='purple', dash='dash')))
# Second derivatives
fig.add_trace(go.Scatter(x=betas, y=derivatives['upper'][1], mode="lines",
name="Upper z*(β) d²/dβ²", line=dict(color='blue', dash='dot')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['lower'][1], mode="lines",
name="Lower z*(β) d²/dβ²", line=dict(color='lightblue', dash='dot')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['low_y'][1], mode="lines",
name="Low y d²/dβ²", line=dict(color='red', dash='dot')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['high_y'][1], mode="lines",
name="High y d²/dβ²", line=dict(color='green', dash='dot')))
fig.add_trace(go.Scatter(x=betas, y=derivatives['alt_low'][1], mode="lines",
name="Alt Low d²/dβ²", line=dict(color='orange', dash='dot')))
if custom_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=derivatives['custom'][1], mode="lines",
name="Custom d²/dβ²", line=dict(color='purple', dash='dot')))
fig.update_layout(
title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""
Generate Im(s) and Re(s) vs. z plots.
"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims, res = [], []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
return fig_im, fig_re
def curve1(s, z, y):
"""First curve: z*s^2 + (z-y+1)*s + 1"""
return z*s**2 + (z-y+1)*s + 1
def curve2(s, y, beta, a):
"""Second curve: y*β*((a-1)*s)/(a*s+1)"""
return y*beta*((a-1)*s)/(a*s+1)
def find_intersections(z, y, beta, a, s_range, n_guesses, tolerance):
"""Find intersections between curve1 and curve2."""
def equation(s):
return curve1(s, z, y) - curve2(s, y, beta, a)
s_guesses = np.linspace(s_range[0], s_range[1], n_guesses)
intersections = []
for s_guess in s_guesses:
try:
s_sol = fsolve(equation, s_guess, full_output=True, xtol=tolerance)
if s_sol[2] == 1:
s_val = s_sol[0][0]
if (s_range[0] <= s_val <= s_range[1] and
not any(abs(s_val - s_prev) < tolerance for s_prev in intersections)):
if abs(equation(s_val)) < tolerance:
intersections.append(s_val)
except:
continue
intersections = np.sort(np.array(intersections))
if len(intersections) % 2 != 0:
refined_intersections = []
for i in range(len(intersections)-1):
mid_point = (intersections[i] + intersections[i+1]) / 2
try:
s_sol = fsolve(equation, mid_point, full_output=True, xtol=tolerance)
if s_sol[2] == 1:
s_val = s_sol[0][0]
if (intersections[i] < s_val < intersections[i+1] and
abs(equation(s_val)) < tolerance):
refined_intersections.append(s_val)
except:
continue
intersections = np.sort(np.append(intersections, refined_intersections))
return intersections
@st.cache_data
def compute_derivatives(curve, betas):
"""Compute first and second derivatives of a curve"""
d1 = np.gradient(curve, betas)
d2 = np.gradient(d1, betas)
return d1, d2
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve=None):
"""Compute derivatives for all curves"""
derivatives = {}
# Upper z*(β)
derivatives['upper'] = compute_derivatives(z_maxs, betas)
# Lower z*(β)
derivatives['lower'] = compute_derivatives(z_mins, betas)
# Low y Expression
derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
# High y Expression
derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
# Alternate Low Expression
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
# Custom Expression (if provided)
if custom_curve is not None:
derivatives['custom'] = compute_derivatives(custom_curve, betas)
return derivatives
def generate_curves_plot(z, y, beta, a, s_range, n_points, n_guesses, tolerance):
s = np.linspace(s_range[0], s_range[1], n_points)
y1 = curve1(s, z, y)
y2 = curve2(s, y, beta, a)
intersections = find_intersections(z, y, beta, a, s_range, n_guesses, tolerance)
fig = go.Figure()
fig.add_trace(go.Scatter(x=s, y=y1, mode='lines', name='z*s² + (z-y+1)*s + 1', line=dict(color='blue', width=2)))
fig.add_trace(go.Scatter(x=s, y=y2, mode='lines', name='y*β*((a-1)*s)/(a*s+1)', line=dict(color='red', width=2)))
if len(intersections) > 0:
fig.add_trace(go.Scatter(x=intersections, y=curve1(intersections, z, y),
mode='markers', name='Intersections',
marker=dict(size=12, color='green', symbol='x', line=dict(width=2))))
fig.update_layout(title=f"Curve Intersection Analysis (y={y:.4f}, β={beta:.4f}, a={a:.4f})",
xaxis_title="s", yaxis_title="Value", hovermode="closest",
showlegend=True, legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01))
return fig, intersections
# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")
# Define four tabs
tab1, tab2, tab3, tab4 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Curve Intersections", "Differential Analysis"])
# ----- Tab 1: z*(β) Curves -----
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with st.expander("Resolution Settings"):
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps")
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps")
st.subheader("Custom s Expression")
st.markdown("""Enter expressions for s = numerator/denominator
(using variables `y`, `beta`, `z_a`)""")
st.latex(r"\text{This s will be inserted into:}")
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
s_num = st.text_input("s numerator", value="y*beta*(z_a-1)", key="s_num")
s_denom = st.text_input("s denominator", value="z_a", key="s_denom")
if st.button("Compute z vs. β Curves", key="tab1_button"):
with col2:
# Compute and plot the z vs. β curves
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
s_num, s_denom)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
# Add explanation of the curves
st.markdown("### Curve Explanations")
st.markdown("""
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
- **Low y Expression** (Red): Asymptotic approximation for low y values
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Alternate Low Expression** (Orange): Alternative asymptotic expression
- **Custom s Expression** (Purple): Result from user-defined s substituted into:
""")
st.latex(r"\frac{y\beta(\text{z_a}-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
# Display the current parameter values
st.markdown("### Current Parameters")
st.markdown(f"""
- z_a = {z_a_1}
- y = {y_1}
- z range: [{z_min_1}, {z_max_1}]
- s = ({s_num})/({s_denom})
""")
# ----- Tab 2: Im{s} vs. z -----
with tab2:
st.header("Plot Complex Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
y_2 = st.number_input("y", value=1.0, key="y_tab2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
with st.expander("Resolution Settings"):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
if st.button("Compute Complex Roots vs. z", key="tab2_button"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
# ----- Tab 3: Curve Intersections -----
with tab3:
st.header("Curve Intersection Analysis")
col1, col2 = st.columns([1, 2])
with col1:
z = st.slider("z", min_value=-10.0, max_value=10000.0, value=1.0, step=0.1, key="z_tab3")
y_3 = st.slider("y", min_value=0.1, max_value=1000.0, value=1.0, step=0.1, key="y_tab3")
beta_3 = st.slider("β", min_value=0.0, max_value=1.0, value=0.5, step=0.01, key="beta_tab3")
a = st.slider("a", min_value=0.1, max_value=1000.0, value=1.0, step=0.1, key="a_tab3")
st.subheader("s Range")
s_min = st.number_input("s_min", value=-5.0, key="s_min_tab3")
s_max = st.number_input("s_max", value=5.0, key="s_max_tab3")
with st.expander("Resolution Settings"):
s_points = st.slider("s grid points", min_value=1000, max_value=10000, value=5000, step=500, key="s_points_tab3")
intersection_guesses = st.slider("Intersection search points", min_value=200, max_value=2000, value=1000, step=100, key="intersect_guesses")
intersection_tolerance = st.select_slider(
"Intersection tolerance",
options=[1e-6, 1e-8, 1e-10, 1e-12, 1e-14, 1e-16, 1e-18, 1e-20],
value=1e-10,
key="intersect_tol"
)
if st.button("Compute Intersections", key="tab3_button"):
with col2:
s_range = (s_min, s_max)
fig, intersections = generate_curves_plot(z, y_3, beta_3, a, s_range, s_points, intersection_guesses, intersection_tolerance)
st.plotly_chart(fig, use_container_width=True)
if len(intersections) > 0:
st.subheader("Intersection Points")
for i, s_val in enumerate(intersections):
y_val = curve1(s_val, z, y_3)
st.write(f"Point {i+1}: s = {s_val:.6f}, y = {y_val:.6f}")
else:
st.write("No intersections found in the given range.")
# ----- Tab 4: Differential Analysis -----
with tab4:
st.header("Differential Analysis vs. β")
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
col1, col2 = st.columns([1, 2])
with col1:
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
y_diff = st.number_input("y", value=1.0, key="y_diff")
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
with st.expander("Resolution Settings"):
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff")
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff")
if st.button("Compute Differentials", key="tab4_button"):
with col2:
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
diff_curve = upper_vals - lower_vals
d1 = np.gradient(diff_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff = go.Figure()
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", name="Difference (Upper - Lower)", line=dict(color="magenta", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", name="First Derivative", line=dict(color="brown", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", name="Second Derivative", line=dict(color="black", width=2)))
fig_diff.update_layout(title="Differential Analysis vs. β", xaxis_title="β", yaxis_title="Value", hovermode="x unified")
st.plotly_chart(fig_diff, use_container_width=True)