euler314's picture
Update app.py
f90829b verified
raw
history blame
11.7 kB
import streamlit as st
import subprocess
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import time
import io
# Set page config
st.set_page_config(
page_title="Eigenvalue Analysis",
page_icon="📊",
layout="wide"
)
# Title and description
st.title("Eigenvalue Analysis Visualization")
st.markdown("""
This application visualizes eigenvalue analysis for matrices with specific properties.
Adjust the parameters below to generate a plot showing the relationship between empirical
and theoretical eigenvalues.
""")
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Compile the C++ code at runtime
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
# Check if cpp file exists
if not os.path.exists(cpp_file):
st.error(f"C++ source file not found at: {cpp_file}")
st.stop()
# Compile the C++ code with the right OpenCV libraries
try:
st.info("Compiling C++ code...")
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
for cmd in compile_commands:
compile_result = subprocess.run(
cmd,
shell=True,
capture_output=True,
text=True
)
if compile_result.returncode == 0:
compiled = True
break
if not compiled:
st.error("All compilation attempts failed. Please check the system requirements.")
st.stop()
# Make sure the executable is executable
os.chmod(executable, 0o755)
st.success("C++ code compiled successfully")
except Exception as e:
st.error(f"Error during compilation: {str(e)}")
st.stop()
# Input parameters sidebar
st.sidebar.header("Parameters")
# Parameter inputs with defaults and validation
n = st.sidebar.number_input("Sample size (n)", min_value=5, max_value=100000, value=100, step=5, help="Number of samples")
p = st.sidebar.number_input("Dimension (p)", min_value=5, max_value=1000000, value=50, step=5, help="Dimensionality")
a = st.sidebar.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, help="Parameter a > 1")
# Automatically calculate y = p/n (as requested)
y = p/n
st.sidebar.text(f"Value for y = p/n: {y:.4f}")
# Add fineness control
st.sidebar.subheader("Calculation Controls")
fineness = st.sidebar.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the β axis (0 to 1)"
)
# Add controls for theoretical calculation precision
theory_grid_points = st.sidebar.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations"
)
theory_tolerance = st.sidebar.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search"
)
# Generate button
if st.sidebar.button("Generate Plot", type="primary"):
# Show progress
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Run the C++ executable with the parameters in JSON output mode
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Execute the C++ program
cmd = [
executable,
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Show output in a status area
status_text.text("Starting calculations...")
last_progress = 0
while process.poll() is None:
output = process.stdout.readline()
if output:
if output.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(output.split(":")[1].strip())
progress_bar.progress(progress_value)
last_progress = progress_value
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
else:
status_text.text(output.strip())
time.sleep(0.1)
return_code = process.poll()
if return_code != 0:
error = process.stderr.read()
st.error(f"Error executing the analysis: {error}")
else:
progress_bar.progress(1.0)
status_text.text("Calculations complete! Generating plot...")
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Create a better plot with matplotlib
beta_values = np.array(data['beta_values'])
max_eigenvalues = np.array(data['max_eigenvalues'])
min_eigenvalues = np.array(data['min_eigenvalues'])
theoretical_max = np.array(data['theoretical_max'])
theoretical_min = np.array(data['theoretical_min'])
# Create the plot
fig, ax = plt.subplots(figsize=(12, 9), dpi=100)
# Set the background color
fig.patch.set_facecolor('#f5f5f5')
ax.set_facecolor('#f0f0f0')
# Plot the data
ax.plot(beta_values, max_eigenvalues, 'r-', linewidth=2,
label='Empirical Max Eigenvalue', marker='o', markevery=len(beta_values)//20)
ax.plot(beta_values, min_eigenvalues, 'b-', linewidth=2,
label='Empirical Min Eigenvalue', marker='o', markevery=len(beta_values)//20)
ax.plot(beta_values, theoretical_max, 'g-', linewidth=2,
label='Theoretical Max Function', marker='D', markevery=len(beta_values)//20)
ax.plot(beta_values, theoretical_min, 'm-', linewidth=2,
label='Theoretical Min Function', marker='D', markevery=len(beta_values)//20)
# Add grid
ax.grid(True, linestyle='--', alpha=0.7)
# Set labels and title
ax.set_xlabel('β', fontsize=14)
ax.set_ylabel('Eigenvalues', fontsize=14)
ax.set_title(f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}', fontsize=16)
# Add legend
ax.legend(loc='best', fontsize=12, framealpha=0.9)
# Add formulas as text
formula_text1 = r"Max Function: $\max_{k \in (0,\infty)} \frac{y\beta(a-1)k + (ak+1)((y-1)k-1)}{(ak+1)(k^2+k)}$"
formula_text2 = r"Min Function: $\min_{t \in (-1/a,0)} \frac{y\beta(a-1)t + (at+1)((y-1)t-1)}{(at+1)(t^2+t)}$"
plt.figtext(0.02, 0.02, formula_text1, fontsize=10, color='green')
plt.figtext(0.55, 0.02, formula_text2, fontsize=10, color='purple')
# Adjust layout
plt.tight_layout(rect=[0, 0.05, 1, 0.95])
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
# Save to file
output_file = os.path.join(output_dir, "eigenvalue_analysis.png")
plt.savefig(output_file, format='png', dpi=100)
plt.close()
# Display the image in Streamlit
status_text.success("Analysis completed successfully!")
st.image(buf, use_column_width=True)
# Provide download button
with open(output_file, "rb") as file:
btn = st.download_button(
label="Download Plot",
data=file,
file_name=f"eigenvalue_analysis_n{n}_p{p}_a{a}_y{y:.4f}.png",
mime="image/png"
)
# Add some statistics
st.subheader("Statistical Summary")
col1, col2 = st.columns(2)
with col1:
st.write("### Maximum Eigenvalues")
st.write(f"Empirical Max: {max(max_eigenvalues):.6f}")
st.write(f"Theoretical Max: {max(theoretical_max):.6f}")
st.write(f"Difference: {abs(max(max_eigenvalues) - max(theoretical_max)):.6f}")
with col2:
st.write("### Minimum Eigenvalues")
st.write(f"Empirical Min: {min(min_eigenvalues):.6f}")
st.write(f"Theoretical Min: {min(theoretical_min):.6f}")
st.write(f"Difference: {abs(min(min_eigenvalues) - min(theoretical_min)):.6f}")
# Display calculation settings
with st.expander("Calculation Settings"):
st.write(f"Beta points: {fineness}")
st.write(f"Theoretical grid points: {theory_grid_points}")
st.write(f"Theoretical tolerance: {theory_tolerance:.1e}")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Show example plot on startup or previous results
example_file = os.path.join(output_dir, "eigenvalue_analysis.png")
if os.path.exists(example_file):
# Show the most recent plot by default
st.subheader("Current Plot")
img = Image.open(example_file)
st.image(img, use_column_width=True)
else:
st.info("👈 Set parameters and click 'Generate Plot' to create a visualization.")
# Add information about the analysis
with st.expander("About Eigenvalue Analysis"):
st.markdown("""
## Theory
This application visualizes the relationship between empirical and theoretical eigenvalues for matrices with specific properties.
The analysis examines:
- **Empirical Max/Min Eigenvalues**: The maximum and minimum eigenvalues calculated from the generated matrices
- **Theoretical Max/Min Functions**: The theoretical bounds derived from mathematical analysis
### Key Parameters
- **n**: Sample size
- **p**: Dimension
- **a**: Value > 1 that affects the distribution of eigenvalues
- **y**: Value calculated as p/n that affects scaling
### Calculation Controls
- **Beta points**: Number of points calculated along the β range (0 to 1)
- **Theoretical grid points**: Number of points in initial grid search for finding theoretical max/min
- **Theoretical tolerance**: Convergence tolerance for golden section search algorithm
### Mathematical Formulas
Max Function:
max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]
Min Function:
min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]
""")