random_matrix_ESD / cubic_cpp.cpp
euler314's picture
Update cubic_cpp.cpp
fefe0f9 verified
raw
history blame
18.1 kB
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <pybind11/eigen.h>
#include <Eigen/Dense>
#include <vector>
#include <cmath>
#include <algorithm>
#include <random>
namespace py = pybind11;
// Apply the condition for y
double apply_y_condition(double y) {
return y > 1.0 ? y : 1.0 / y;
}
// Discriminant calculation
double discriminant_func(double z, double beta, double z_a, double y) {
double y_effective = apply_y_condition(y);
// Coefficients
double a = z * z_a;
double b = z * z_a + z + z_a - z_a * y_effective;
double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta);
double d = 1.0;
// Simple formula for cubic discriminant
return std::pow((b*c)/(6.0*a*a) - std::pow(b, 3)/(27.0*std::pow(a, 3)) - d/(2.0*a), 2) +
std::pow(c/(3.0*a) - std::pow(b, 2)/(9.0*std::pow(a, 2)), 3);
}
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k) * y);
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = 200;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
const double tolerance = 1e-10;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t) * y);
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = 200;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
const double tolerance = 1e-10;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
return f((a_gs + b_gs) / 2.0);
}
// Compute eigenvalues for a given beta value
std::tuple<double, double> compute_eigenvalues_for_beta(double z_a, double y, double beta, int n, int seed) {
// Apply the condition for y
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X
Eigen::MatrixXd X(p, n);
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X(i, j) = norm(gen);
}
}
// Compute sample covariance matrix S_n = (1/n) * X * X^T
Eigen::MatrixXd S_n = (X * X.transpose()) / static_cast<double>(n);
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Create T_n and its square root
Eigen::MatrixXd T_n = Eigen::MatrixXd::Zero(p, p);
Eigen::MatrixXd T_sqrt = Eigen::MatrixXd::Zero(p, p);
for (int i = 0; i < p; i++) {
double v = diags[i];
T_n(i, i) = v;
T_sqrt(i, i) = std::sqrt(v);
}
// Form B = T_sqrt * S_n * T_sqrt (symmetric)
Eigen::MatrixXd B = T_sqrt * S_n * T_sqrt;
// Compute eigenvalues of B
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> solver(B);
Eigen::VectorXd eigenvalues = solver.eigenvalues();
// Return min and max eigenvalues
double min_eigenvalue = eigenvalues(0);
double max_eigenvalue = eigenvalues(p-1);
return std::make_tuple(min_eigenvalue, max_eigenvalue);
}
// Compute eigenvalue support boundaries
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>, std::vector<double>>
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values,
int n_samples, int seeds) {
size_t num_betas = beta_values.size();
std::vector<double> min_eigenvalues(num_betas, 0.0);
std::vector<double> max_eigenvalues(num_betas, 0.0);
std::vector<double> theoretical_min_values(num_betas, 0.0);
std::vector<double> theoretical_max_values(num_betas, 0.0);
for (size_t i = 0; i < num_betas; i++) {
double beta = beta_values[i];
// Calculate theoretical values
theoretical_max_values[i] = compute_theoretical_max(z_a, y, beta);
theoretical_min_values[i] = compute_theoretical_min(z_a, y, beta);
std::vector<double> min_vals;
std::vector<double> max_vals;
// Run multiple trials with different seeds
for (int seed = 0; seed < seeds; seed++) {
auto [min_eig, max_eig] = compute_eigenvalues_for_beta(z_a, y, beta, n_samples, seed);
min_vals.push_back(min_eig);
max_vals.push_back(max_eig);
}
// Average over seeds
double min_sum = 0.0, max_sum = 0.0;
for (double val : min_vals) min_sum += val;
for (double val : max_vals) max_sum += val;
min_eigenvalues[i] = min_vals.empty() ? 0.0 : min_sum / min_vals.size();
max_eigenvalues[i] = max_vals.empty() ? 0.0 : max_sum / max_vals.size();
}
return std::make_tuple(min_eigenvalues, max_eigenvalues, theoretical_min_values, theoretical_max_values);
}
// Find zeros of discriminant
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta,
double z_min, double z_max, int steps) {
std::vector<double> roots_found;
double y_effective = apply_y_condition(y);
// Create z grid
std::vector<double> z_grid(steps);
double step_size = (z_max - z_min) / (steps - 1);
for (int i = 0; i < steps; i++) {
z_grid[i] = z_min + i * step_size;
}
// Evaluate discriminant at each grid point
std::vector<double> disc_vals(steps);
for (int i = 0; i < steps; i++) {
disc_vals[i] = discriminant_func(z_grid[i], beta, z_a, y_effective);
}
// Find sign changes (zeros)
for (int i = 0; i < steps - 1; i++) {
double f1 = disc_vals[i];
double f2 = disc_vals[i+1];
if (std::isnan(f1) || std::isnan(f2)) {
continue;
}
if (f1 == 0.0) {
roots_found.push_back(z_grid[i]);
} else if (f2 == 0.0) {
roots_found.push_back(z_grid[i+1]);
} else if (f1 * f2 < 0) {
// Binary search for zero crossing
double zl = z_grid[i];
double zr = z_grid[i+1];
double f1_copy = f1;
for (int iter = 0; iter < 50; iter++) {
double mid = 0.5 * (zl + zr);
double fm = discriminant_func(mid, beta, z_a, y_effective);
if (fm == 0.0) {
zl = zr = mid;
break;
}
if ((fm < 0 && f1_copy < 0) || (fm > 0 && f1_copy > 0)) {
zl = mid;
f1_copy = fm;
} else {
zr = mid;
}
}
roots_found.push_back(0.5 * (zl + zr));
}
}
return roots_found;
}
// Sweep beta and find z bounds
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>>
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max,
int beta_steps, int z_steps) {
std::vector<double> betas(beta_steps);
std::vector<double> z_min_values(beta_steps);
std::vector<double> z_max_values(beta_steps);
double beta_step = 1.0 / (beta_steps - 1);
for (int i = 0; i < beta_steps; i++) {
betas[i] = i * beta_step;
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, z_steps);
if (roots.empty()) {
z_min_values[i] = std::numeric_limits<double>::quiet_NaN();
z_max_values[i] = std::numeric_limits<double>::quiet_NaN();
} else {
// Find min and max roots
double min_root = *std::min_element(roots.begin(), roots.end());
double max_root = *std::max_element(roots.begin(), roots.end());
z_min_values[i] = min_root;
z_max_values[i] = max_root;
}
}
return std::make_tuple(betas, z_min_values, z_max_values);
}
// Compute high y curve
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
double a = z_a;
double denominator = 1.0 - 2.0 * a;
if (std::abs(denominator) < 1e-10) {
// Handle division by zero
std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN());
return result;
}
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
double numerator = -4.0 * a * (a - 1.0) * y_effective * beta - 2.0 * a * y_effective - 2.0 * a * (2.0 * a - 1.0);
result[i] = numerator / denominator;
}
return result;
}
// Compute alternate low expression
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) {
double y_effective = apply_y_condition(y);
size_t n = betas.size();
std::vector<double> result(n);
for (size_t i = 0; i < n; i++) {
double beta = betas[i];
result[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0 * z_a * (1.0 - y_effective) - 2.0 * z_a * z_a) / (2.0 + 2.0 * z_a);
}
return result;
}
// Compute max k expression over a range of betas
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_max(z_a, y, betas[i]);
}
return result;
}
// Compute min t expression over a range of betas
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y) {
size_t n = betas.size();
std::vector<double> result(n);
for (size_t i = 0; i < n; i++) {
result[i] = compute_theoretical_min(z_a, y, betas[i]);
}
return result;
}
// Compute derivatives
std::tuple<std::vector<double>, std::vector<double>>
compute_derivatives(const std::vector<double>& curve, const std::vector<double>& betas) {
size_t n = betas.size();
std::vector<double> d1(n, 0.0);
std::vector<double> d2(n, 0.0);
// First derivative using central difference
for (size_t i = 1; i < n - 1; i++) {
double h = betas[i+1] - betas[i-1];
d1[i] = (curve[i+1] - curve[i-1]) / h;
}
// Handle endpoints with forward/backward difference
if (n > 1) {
d1[0] = (curve[1] - curve[0]) / (betas[1] - betas[0]);
d1[n-1] = (curve[n-1] - curve[n-2]) / (betas[n-1] - betas[n-2]);
}
// Second derivative using central difference
for (size_t i = 1; i < n - 1; i++) {
double h = betas[i+1] - betas[i-1];
d2[i] = 2.0 * (curve[i+1] - 2.0 * curve[i] + curve[i-1]) / (h * h);
}
// Handle endpoints
if (n > 2) {
d2[0] = d2[1];
d2[n-1] = d2[n-2];
}
return std::make_tuple(d1, d2);
}
// Generate eigenvalue distribution for a specific beta
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) {
// Apply the condition for y
double y_effective = apply_y_condition(y);
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> norm(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Generate random matrix X
Eigen::MatrixXd X(p, n);
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
X(i, j) = norm(gen);
}
}
// Compute sample covariance matrix S_n = (1/n) * X * X^T
Eigen::MatrixXd S_n = (X * X.transpose()) / static_cast<double>(n);
// Build T_n diagonal matrix
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p);
std::fill_n(diags.begin(), k, z_a);
std::fill_n(diags.begin() + k, p - k, 1.0);
// Shuffle diagonal entries
std::shuffle(diags.begin(), diags.end(), gen);
// Create T_n
Eigen::MatrixXd T_n = Eigen::MatrixXd::Zero(p, p);
for (int i = 0; i < p; i++) {
T_n(i, i) = diags[i];
}
// Compute B_n = S_n * T_n
Eigen::MatrixXd B_n = S_n * T_n;
// Compute eigenvalues
Eigen::EigenSolver<Eigen::MatrixXd> solver(B_n);
// Extract and return real parts of eigenvalues
std::vector<double> eigenvalues(p);
for (int i = 0; i < p; i++) {
eigenvalues[i] = solver.eigenvalues()(i).real();
}
std::sort(eigenvalues.begin(), eigenvalues.end());
return eigenvalues;
}
// Python module definition
PYBIND11_MODULE(cubic_cpp, m) {
m.doc() = "C++ accelerated functions for cubic root analysis";
m.def("discriminant_func", &discriminant_func,
"Calculate cubic discriminant",
py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y"));
m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero,
"Find zeros of discriminant",
py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"),
py::arg("z_max"), py::arg("steps"));
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
"Compute support boundaries by sweeping beta",
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"),
py::arg("beta_steps"), py::arg("z_steps"));
m.def("compute_theoretical_max", &compute_theoretical_max,
"Compute theoretical maximum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_theoretical_min", &compute_theoretical_min,
"Compute theoretical minimum function value",
py::arg("a"), py::arg("y"), py::arg("beta"));
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
"Compute empirical and theoretical eigenvalue support boundaries",
py::arg("z_a"), py::arg("y"), py::arg("beta_values"),
py::arg("n_samples"), py::arg("seeds"));
m.def("compute_high_y_curve", &compute_high_y_curve,
"Compute high y expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
"Compute alternate low expression curve",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_max_k_expression", &compute_max_k_expression,
"Compute max k expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_min_t_expression", &compute_min_t_expression,
"Compute min t expression for multiple beta values",
py::arg("betas"), py::arg("z_a"), py::arg("y"));
m.def("compute_derivatives", &compute_derivatives,
"Compute first and second derivatives",
py::arg("curve"), py::arg("betas"));
m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution,
"Generate eigenvalue distribution for a specific beta",
py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed"));
}