Spaces:
Running
Running
namespace py = pybind11; | |
// Apply the condition for y | |
double apply_y_condition(double y) { | |
return y > 1.0 ? y : 1.0 / y; | |
} | |
// Discriminant calculation | |
double discriminant_func(double z, double beta, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
// Coefficients | |
double a = z * z_a; | |
double b = z * z_a + z + z_a - z_a * y_effective; | |
double c = z + z_a + 1.0 - y_effective * (beta * z_a + 1.0 - beta); | |
double d = 1.0; | |
// Simple formula for cubic discriminant | |
return std::pow((b*c)/(6.0*a*a) - std::pow(b, 3)/(27.0*std::pow(a, 3)) - d/(2.0*a), 2) + | |
std::pow(c/(3.0*a) - std::pow(b, 2)/(9.0*std::pow(a, 2)), 3); | |
} | |
// Function to compute the theoretical max value | |
double compute_theoretical_max(double a, double y, double beta) { | |
auto f = [a, y, beta](double k) -> double { | |
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / | |
((a * k + 1) * (k * k + k) * y); | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial grid search over a wide range | |
const int num_grid_points = 200; | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
const double tolerance = 1e-10; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) > f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to compute the theoretical min value | |
double compute_theoretical_min(double a, double y, double beta) { | |
auto f = [a, y, beta](double t) -> double { | |
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / | |
((a * t + 1) * (t * t + t) * y); | |
}; | |
// Use numerical optimization to find the minimum | |
// Grid search followed by golden section search | |
double best_t = -0.5 / a; // Midpoint of (-1/a, 0) | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = 200; | |
for (int i = 1; i < num_grid_points; ++i) { | |
// From slightly above -1/a to slightly below 0 | |
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = -0.999/a; // Slightly above -1/a | |
double b_gs = -0.001/a; // Slightly below 0 | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
const double tolerance = 1e-10; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) < f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Compute eigenvalues for a given beta value | |
std::tuple<double, double> compute_eigenvalues_for_beta(double z_a, double y, double beta, int n, int seed) { | |
// Apply the condition for y | |
double y_effective = apply_y_condition(y); | |
// Set random seed | |
std::mt19937 gen(seed); | |
std::normal_distribution<double> norm(0.0, 1.0); | |
// Compute dimension p based on aspect ratio y | |
int p = static_cast<int>(y_effective * n); | |
// Generate random matrix X | |
Eigen::MatrixXd X(p, n); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < n; j++) { | |
X(i, j) = norm(gen); | |
} | |
} | |
// Compute sample covariance matrix S_n = (1/n) * X * X^T | |
Eigen::MatrixXd S_n = (X * X.transpose()) / static_cast<double>(n); | |
// Build T_n diagonal matrix | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, z_a); | |
std::fill_n(diags.begin() + k, p - k, 1.0); | |
// Shuffle diagonal entries | |
std::shuffle(diags.begin(), diags.end(), gen); | |
// Create T_n and its square root | |
Eigen::MatrixXd T_n = Eigen::MatrixXd::Zero(p, p); | |
Eigen::MatrixXd T_sqrt = Eigen::MatrixXd::Zero(p, p); | |
for (int i = 0; i < p; i++) { | |
double v = diags[i]; | |
T_n(i, i) = v; | |
T_sqrt(i, i) = std::sqrt(v); | |
} | |
// Form B = T_sqrt * S_n * T_sqrt (symmetric) | |
Eigen::MatrixXd B = T_sqrt * S_n * T_sqrt; | |
// Compute eigenvalues of B | |
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> solver(B); | |
Eigen::VectorXd eigenvalues = solver.eigenvalues(); | |
// Return min and max eigenvalues | |
double min_eigenvalue = eigenvalues(0); | |
double max_eigenvalue = eigenvalues(p-1); | |
return std::make_tuple(min_eigenvalue, max_eigenvalue); | |
} | |
// Compute eigenvalue support boundaries | |
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>, std::vector<double>> | |
compute_eigenvalue_support_boundaries(double z_a, double y, const std::vector<double>& beta_values, | |
int n_samples, int seeds) { | |
size_t num_betas = beta_values.size(); | |
std::vector<double> min_eigenvalues(num_betas, 0.0); | |
std::vector<double> max_eigenvalues(num_betas, 0.0); | |
std::vector<double> theoretical_min_values(num_betas, 0.0); | |
std::vector<double> theoretical_max_values(num_betas, 0.0); | |
for (size_t i = 0; i < num_betas; i++) { | |
double beta = beta_values[i]; | |
// Calculate theoretical values | |
theoretical_max_values[i] = compute_theoretical_max(z_a, y, beta); | |
theoretical_min_values[i] = compute_theoretical_min(z_a, y, beta); | |
std::vector<double> min_vals; | |
std::vector<double> max_vals; | |
// Run multiple trials with different seeds | |
for (int seed = 0; seed < seeds; seed++) { | |
auto [min_eig, max_eig] = compute_eigenvalues_for_beta(z_a, y, beta, n_samples, seed); | |
min_vals.push_back(min_eig); | |
max_vals.push_back(max_eig); | |
} | |
// Average over seeds | |
double min_sum = 0.0, max_sum = 0.0; | |
for (double val : min_vals) min_sum += val; | |
for (double val : max_vals) max_sum += val; | |
min_eigenvalues[i] = min_vals.empty() ? 0.0 : min_sum / min_vals.size(); | |
max_eigenvalues[i] = max_vals.empty() ? 0.0 : max_sum / max_vals.size(); | |
} | |
return std::make_tuple(min_eigenvalues, max_eigenvalues, theoretical_min_values, theoretical_max_values); | |
} | |
// Find zeros of discriminant | |
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta, | |
double z_min, double z_max, int steps) { | |
std::vector<double> roots_found; | |
double y_effective = apply_y_condition(y); | |
// Create z grid | |
std::vector<double> z_grid(steps); | |
double step_size = (z_max - z_min) / (steps - 1); | |
for (int i = 0; i < steps; i++) { | |
z_grid[i] = z_min + i * step_size; | |
} | |
// Evaluate discriminant at each grid point | |
std::vector<double> disc_vals(steps); | |
for (int i = 0; i < steps; i++) { | |
disc_vals[i] = discriminant_func(z_grid[i], beta, z_a, y_effective); | |
} | |
// Find sign changes (zeros) | |
for (int i = 0; i < steps - 1; i++) { | |
double f1 = disc_vals[i]; | |
double f2 = disc_vals[i+1]; | |
if (std::isnan(f1) || std::isnan(f2)) { | |
continue; | |
} | |
if (f1 == 0.0) { | |
roots_found.push_back(z_grid[i]); | |
} else if (f2 == 0.0) { | |
roots_found.push_back(z_grid[i+1]); | |
} else if (f1 * f2 < 0) { | |
// Binary search for zero crossing | |
double zl = z_grid[i]; | |
double zr = z_grid[i+1]; | |
double f1_copy = f1; | |
for (int iter = 0; iter < 50; iter++) { | |
double mid = 0.5 * (zl + zr); | |
double fm = discriminant_func(mid, beta, z_a, y_effective); | |
if (fm == 0.0) { | |
zl = zr = mid; | |
break; | |
} | |
if ((fm < 0 && f1_copy < 0) || (fm > 0 && f1_copy > 0)) { | |
zl = mid; | |
f1_copy = fm; | |
} else { | |
zr = mid; | |
} | |
} | |
roots_found.push_back(0.5 * (zl + zr)); | |
} | |
} | |
return roots_found; | |
} | |
// Sweep beta and find z bounds | |
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> | |
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max, | |
int beta_steps, int z_steps) { | |
std::vector<double> betas(beta_steps); | |
std::vector<double> z_min_values(beta_steps); | |
std::vector<double> z_max_values(beta_steps); | |
double beta_step = 1.0 / (beta_steps - 1); | |
for (int i = 0; i < beta_steps; i++) { | |
betas[i] = i * beta_step; | |
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, betas[i], z_min, z_max, z_steps); | |
if (roots.empty()) { | |
z_min_values[i] = std::numeric_limits<double>::quiet_NaN(); | |
z_max_values[i] = std::numeric_limits<double>::quiet_NaN(); | |
} else { | |
// Find min and max roots | |
double min_root = *std::min_element(roots.begin(), roots.end()); | |
double max_root = *std::max_element(roots.begin(), roots.end()); | |
z_min_values[i] = min_root; | |
z_max_values[i] = max_root; | |
} | |
} | |
return std::make_tuple(betas, z_min_values, z_max_values); | |
} | |
// Compute high y curve | |
std::vector<double> compute_high_y_curve(const std::vector<double>& betas, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
double a = z_a; | |
double denominator = 1.0 - 2.0 * a; | |
if (std::abs(denominator) < 1e-10) { | |
// Handle division by zero | |
std::fill(result.begin(), result.end(), std::numeric_limits<double>::quiet_NaN()); | |
return result; | |
} | |
for (size_t i = 0; i < n; i++) { | |
double beta = betas[i]; | |
double numerator = -4.0 * a * (a - 1.0) * y_effective * beta - 2.0 * a * y_effective - 2.0 * a * (2.0 * a - 1.0); | |
result[i] = numerator / denominator; | |
} | |
return result; | |
} | |
// Compute alternate low expression | |
std::vector<double> compute_alternate_low_expr(const std::vector<double>& betas, double z_a, double y) { | |
double y_effective = apply_y_condition(y); | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
for (size_t i = 0; i < n; i++) { | |
double beta = betas[i]; | |
result[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0 * z_a * (1.0 - y_effective) - 2.0 * z_a * z_a) / (2.0 + 2.0 * z_a); | |
} | |
return result; | |
} | |
// Compute max k expression over a range of betas | |
std::vector<double> compute_max_k_expression(const std::vector<double>& betas, double z_a, double y) { | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
for (size_t i = 0; i < n; i++) { | |
result[i] = compute_theoretical_max(z_a, y, betas[i]); | |
} | |
return result; | |
} | |
// Compute min t expression over a range of betas | |
std::vector<double> compute_min_t_expression(const std::vector<double>& betas, double z_a, double y) { | |
size_t n = betas.size(); | |
std::vector<double> result(n); | |
for (size_t i = 0; i < n; i++) { | |
result[i] = compute_theoretical_min(z_a, y, betas[i]); | |
} | |
return result; | |
} | |
// Compute derivatives | |
std::tuple<std::vector<double>, std::vector<double>> | |
compute_derivatives(const std::vector<double>& curve, const std::vector<double>& betas) { | |
size_t n = betas.size(); | |
std::vector<double> d1(n, 0.0); | |
std::vector<double> d2(n, 0.0); | |
// First derivative using central difference | |
for (size_t i = 1; i < n - 1; i++) { | |
double h = betas[i+1] - betas[i-1]; | |
d1[i] = (curve[i+1] - curve[i-1]) / h; | |
} | |
// Handle endpoints with forward/backward difference | |
if (n > 1) { | |
d1[0] = (curve[1] - curve[0]) / (betas[1] - betas[0]); | |
d1[n-1] = (curve[n-1] - curve[n-2]) / (betas[n-1] - betas[n-2]); | |
} | |
// Second derivative using central difference | |
for (size_t i = 1; i < n - 1; i++) { | |
double h = betas[i+1] - betas[i-1]; | |
d2[i] = 2.0 * (curve[i+1] - 2.0 * curve[i] + curve[i-1]) / (h * h); | |
} | |
// Handle endpoints | |
if (n > 2) { | |
d2[0] = d2[1]; | |
d2[n-1] = d2[n-2]; | |
} | |
return std::make_tuple(d1, d2); | |
} | |
// Generate eigenvalue distribution for a specific beta | |
std::vector<double> generate_eigenvalue_distribution(double beta, double y, double z_a, int n, int seed) { | |
// Apply the condition for y | |
double y_effective = apply_y_condition(y); | |
// Set random seed | |
std::mt19937 gen(seed); | |
std::normal_distribution<double> norm(0.0, 1.0); | |
// Compute dimension p based on aspect ratio y | |
int p = static_cast<int>(y_effective * n); | |
// Generate random matrix X | |
Eigen::MatrixXd X(p, n); | |
for (int i = 0; i < p; i++) { | |
for (int j = 0; j < n; j++) { | |
X(i, j) = norm(gen); | |
} | |
} | |
// Compute sample covariance matrix S_n = (1/n) * X * X^T | |
Eigen::MatrixXd S_n = (X * X.transpose()) / static_cast<double>(n); | |
// Build T_n diagonal matrix | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, z_a); | |
std::fill_n(diags.begin() + k, p - k, 1.0); | |
// Shuffle diagonal entries | |
std::shuffle(diags.begin(), diags.end(), gen); | |
// Create T_n | |
Eigen::MatrixXd T_n = Eigen::MatrixXd::Zero(p, p); | |
for (int i = 0; i < p; i++) { | |
T_n(i, i) = diags[i]; | |
} | |
// Compute B_n = S_n * T_n | |
Eigen::MatrixXd B_n = S_n * T_n; | |
// Compute eigenvalues | |
Eigen::EigenSolver<Eigen::MatrixXd> solver(B_n); | |
// Extract and return real parts of eigenvalues | |
std::vector<double> eigenvalues(p); | |
for (int i = 0; i < p; i++) { | |
eigenvalues[i] = solver.eigenvalues()(i).real(); | |
} | |
std::sort(eigenvalues.begin(), eigenvalues.end()); | |
return eigenvalues; | |
} | |
// Python module definition | |
PYBIND11_MODULE(cubic_cpp, m) { | |
m.doc() = "C++ accelerated functions for cubic root analysis"; | |
m.def("discriminant_func", &discriminant_func, | |
"Calculate cubic discriminant", | |
py::arg("z"), py::arg("beta"), py::arg("z_a"), py::arg("y")); | |
m.def("find_z_at_discriminant_zero", &find_z_at_discriminant_zero, | |
"Find zeros of discriminant", | |
py::arg("z_a"), py::arg("y"), py::arg("beta"), py::arg("z_min"), | |
py::arg("z_max"), py::arg("steps")); | |
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds, | |
"Compute support boundaries by sweeping beta", | |
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"), | |
py::arg("beta_steps"), py::arg("z_steps")); | |
m.def("compute_theoretical_max", &compute_theoretical_max, | |
"Compute theoretical maximum function value", | |
py::arg("a"), py::arg("y"), py::arg("beta")); | |
m.def("compute_theoretical_min", &compute_theoretical_min, | |
"Compute theoretical minimum function value", | |
py::arg("a"), py::arg("y"), py::arg("beta")); | |
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries, | |
"Compute empirical and theoretical eigenvalue support boundaries", | |
py::arg("z_a"), py::arg("y"), py::arg("beta_values"), | |
py::arg("n_samples"), py::arg("seeds")); | |
m.def("compute_high_y_curve", &compute_high_y_curve, | |
"Compute high y expression curve", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_alternate_low_expr", &compute_alternate_low_expr, | |
"Compute alternate low expression curve", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_max_k_expression", &compute_max_k_expression, | |
"Compute max k expression for multiple beta values", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_min_t_expression", &compute_min_t_expression, | |
"Compute min t expression for multiple beta values", | |
py::arg("betas"), py::arg("z_a"), py::arg("y")); | |
m.def("compute_derivatives", &compute_derivatives, | |
"Compute first and second derivatives", | |
py::arg("curve"), py::arg("betas")); | |
m.def("generate_eigenvalue_distribution", &generate_eigenvalue_distribution, | |
"Generate eigenvalue distribution for a specific beta", | |
py::arg("beta"), py::arg("y"), py::arg("z_a"), py::arg("n"), py::arg("seed")); | |
} |