Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -490,30 +490,56 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
490 |
|
491 |
def compute_cubic_roots(z, beta, z_a, y):
|
492 |
"""
|
493 |
-
Compute the roots of the cubic equation for given parameters
|
494 |
"""
|
495 |
# Apply the condition for y
|
496 |
y_effective = y if y > 1 else 1/y
|
497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
# Coefficients in the form as^3 + bs^2 + cs + d = 0
|
499 |
a = z * z_a
|
500 |
b = z * z_a + z + z_a - z_a*y_effective
|
501 |
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
502 |
d = 1
|
503 |
|
504 |
-
#
|
505 |
if abs(a) < 1e-10:
|
506 |
if abs(b) < 1e-10: # Linear case
|
507 |
-
roots = np.array([-d/c, 0, 0])
|
508 |
else: # Quadratic case
|
509 |
-
|
510 |
-
roots = np.append(
|
511 |
-
|
512 |
-
# Use high-precision computation for the cubic
|
513 |
-
coeffs = [a, b, c, d]
|
514 |
-
roots = np.roots(coeffs)
|
515 |
|
516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
def track_roots_consistently(z_values, all_roots):
|
519 |
"""
|
@@ -528,58 +554,52 @@ def track_roots_consistently(z_values, all_roots):
|
|
528 |
prev_roots = tracked_roots[i-1]
|
529 |
current_roots = all_roots[i]
|
530 |
|
531 |
-
# For each
|
|
|
532 |
assignments = np.zeros(n_roots, dtype=int)
|
|
|
533 |
for j in range(n_roots):
|
534 |
distances = np.abs(current_roots - prev_roots[j])
|
535 |
-
best_match = np.argmin(distances)
|
536 |
|
537 |
-
#
|
538 |
-
|
539 |
-
|
540 |
-
if
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
if j < len(available):
|
553 |
-
assignments[ua] = available[j]
|
554 |
-
else:
|
555 |
-
# Find the least bad assignment
|
556 |
-
all_distances = np.array([np.abs(current_roots[k] - prev_roots[ua]) for k in range(n_roots)])
|
557 |
-
assigned_indices = assignments[assignments >= 0]
|
558 |
-
mask = np.ones(n_roots, dtype=bool)
|
559 |
-
mask[assigned_indices] = False
|
560 |
-
if np.any(mask):
|
561 |
-
assignments[ua] = np.where(mask)[0][0]
|
562 |
|
563 |
# Reorder current roots based on assignments
|
564 |
-
|
565 |
-
for j in range(n_roots):
|
566 |
-
if assignments[j] >= 0:
|
567 |
-
reordered_roots[j] = current_roots[assignments[j]]
|
568 |
-
else:
|
569 |
-
# Find any unassigned root
|
570 |
-
used = np.sort([assignments[k] for k in range(n_roots) if assignments[k] >= 0])
|
571 |
-
unused = np.setdiff1d(np.arange(n_roots), used)
|
572 |
-
if len(unused) > 0:
|
573 |
-
reordered_roots[j] = current_roots[unused[0]]
|
574 |
-
assignments[j] = unused[0]
|
575 |
-
|
576 |
-
tracked_roots[i] = reordered_roots
|
577 |
|
578 |
return tracked_roots
|
579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
581 |
"""
|
582 |
-
Generate Im(s) and Re(s) vs. z plots with improved accuracy
|
583 |
"""
|
584 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
585 |
st.error("Invalid input parameters.")
|
@@ -592,35 +612,42 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
592 |
|
593 |
# Collect all roots first
|
594 |
all_roots = []
|
595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
597 |
-
|
|
|
598 |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
599 |
all_roots.append(roots)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
|
601 |
all_roots = np.array(all_roots)
|
|
|
602 |
|
603 |
-
# Track roots consistently
|
604 |
tracked_roots = track_roots_consistently(z_points, all_roots)
|
605 |
|
606 |
# Extract imaginary and real parts
|
607 |
ims = np.imag(tracked_roots)
|
608 |
res = np.real(tracked_roots)
|
609 |
|
610 |
-
# Calculate discriminant for verification
|
611 |
-
discriminants = []
|
612 |
-
for z in z_points:
|
613 |
-
a = z * z_a
|
614 |
-
b = z * z_a + z + z_a - z_a*y_effective
|
615 |
-
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
616 |
-
d = 1
|
617 |
-
|
618 |
-
# Cubic discriminant: 18abcd - 27a²d² + b²c² - 2b³d - 9ac³
|
619 |
-
disc = (18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c)
|
620 |
-
discriminants.append(disc)
|
621 |
-
|
622 |
-
discriminants = np.array(discriminants)
|
623 |
-
|
624 |
# Create figure for imaginary parts
|
625 |
fig_im = go.Figure()
|
626 |
for i in range(3):
|
@@ -702,7 +729,7 @@ def analyze_complex_root_structure(beta_values, z, z_a, y):
|
|
702 |
|
703 |
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
704 |
"""
|
705 |
-
Generate Im(s) and Re(s) vs. β plots with improved accuracy.
|
706 |
"""
|
707 |
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
708 |
st.error("Invalid input parameters.")
|
@@ -715,35 +742,42 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
|
715 |
|
716 |
# Collect all roots first
|
717 |
all_roots = []
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
720 |
-
|
|
|
721 |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
722 |
all_roots.append(roots)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 |
|
724 |
all_roots = np.array(all_roots)
|
|
|
725 |
|
726 |
-
# Track roots consistently
|
727 |
tracked_roots = track_roots_consistently(beta_points, all_roots)
|
728 |
|
729 |
# Extract imaginary and real parts
|
730 |
ims = np.imag(tracked_roots)
|
731 |
res = np.real(tracked_roots)
|
732 |
|
733 |
-
# Calculate discriminant for verification
|
734 |
-
discriminants = []
|
735 |
-
for beta in beta_points:
|
736 |
-
a = z * z_a
|
737 |
-
b = z * z_a + z + z_a - z_a*y_effective
|
738 |
-
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
739 |
-
d = 1
|
740 |
-
|
741 |
-
# Cubic discriminant
|
742 |
-
disc = (18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c)
|
743 |
-
discriminants.append(disc)
|
744 |
-
|
745 |
-
discriminants = np.array(discriminants)
|
746 |
-
|
747 |
# Create figure for imaginary parts
|
748 |
fig_im = go.Figure()
|
749 |
for i in range(3):
|
|
|
490 |
|
491 |
def compute_cubic_roots(z, beta, z_a, y):
|
492 |
"""
|
493 |
+
Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy.
|
494 |
"""
|
495 |
# Apply the condition for y
|
496 |
y_effective = y if y > 1 else 1/y
|
497 |
|
498 |
+
# Import SymPy functions
|
499 |
+
from sympy import symbols, solve, im, re, N, Poly
|
500 |
+
|
501 |
+
# Create a symbolic variable for the equation
|
502 |
+
s = symbols('s')
|
503 |
+
|
504 |
# Coefficients in the form as^3 + bs^2 + cs + d = 0
|
505 |
a = z * z_a
|
506 |
b = z * z_a + z + z_a - z_a*y_effective
|
507 |
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
508 |
d = 1
|
509 |
|
510 |
+
# Handle special cases
|
511 |
if abs(a) < 1e-10:
|
512 |
if abs(b) < 1e-10: # Linear case
|
513 |
+
roots = np.array([-d/c, 0, 0], dtype=complex)
|
514 |
else: # Quadratic case
|
515 |
+
quad_roots = np.roots([b, c, d])
|
516 |
+
roots = np.append(quad_roots, 0).astype(complex)
|
517 |
+
return roots
|
|
|
|
|
|
|
518 |
|
519 |
+
try:
|
520 |
+
# Create the cubic polynomial
|
521 |
+
cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
|
522 |
+
|
523 |
+
# Solve the equation symbolically
|
524 |
+
symbolic_roots = solve(cubic_eq, s)
|
525 |
+
|
526 |
+
# Convert symbolic roots to complex numbers with high precision
|
527 |
+
numerical_roots = []
|
528 |
+
for root in symbolic_roots:
|
529 |
+
# Use SymPy's N function with high precision
|
530 |
+
numerical_root = complex(N(root, 30))
|
531 |
+
numerical_roots.append(numerical_root)
|
532 |
+
|
533 |
+
# If we got fewer than 3 roots (due to multiplicity), pad with zeros
|
534 |
+
while len(numerical_roots) < 3:
|
535 |
+
numerical_roots.append(0j)
|
536 |
+
|
537 |
+
return np.array(numerical_roots, dtype=complex)
|
538 |
+
|
539 |
+
except Exception as e:
|
540 |
+
# Fallback to numpy if SymPy has issues
|
541 |
+
coeffs = [a, b, c, d]
|
542 |
+
return np.roots(coeffs)
|
543 |
|
544 |
def track_roots_consistently(z_values, all_roots):
|
545 |
"""
|
|
|
554 |
prev_roots = tracked_roots[i-1]
|
555 |
current_roots = all_roots[i]
|
556 |
|
557 |
+
# For each previous root, find the closest current root
|
558 |
+
assigned = np.zeros(n_roots, dtype=bool)
|
559 |
assignments = np.zeros(n_roots, dtype=int)
|
560 |
+
|
561 |
for j in range(n_roots):
|
562 |
distances = np.abs(current_roots - prev_roots[j])
|
|
|
563 |
|
564 |
+
# Find the closest unassigned root
|
565 |
+
while True:
|
566 |
+
best_idx = np.argmin(distances)
|
567 |
+
if not assigned[best_idx]:
|
568 |
+
assignments[j] = best_idx
|
569 |
+
assigned[best_idx] = True
|
570 |
+
break
|
571 |
+
else:
|
572 |
+
# Mark as infinite distance and try again
|
573 |
+
distances[best_idx] = np.inf
|
574 |
+
|
575 |
+
# Safety check if all are assigned (shouldn't happen)
|
576 |
+
if np.all(distances == np.inf):
|
577 |
+
assignments[j] = j # Default to same index
|
578 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
|
580 |
# Reorder current roots based on assignments
|
581 |
+
tracked_roots[i] = current_roots[assignments]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
|
583 |
return tracked_roots
|
584 |
|
585 |
+
def generate_cubic_discriminant(z, beta, z_a, y_effective):
|
586 |
+
"""
|
587 |
+
Calculate the cubic discriminant using the standard formula.
|
588 |
+
For a cubic ax^3 + bx^2 + cx + d:
|
589 |
+
Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
|
590 |
+
"""
|
591 |
+
a = z * z_a
|
592 |
+
b = z * z_a + z + z_a - z_a*y_effective
|
593 |
+
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
594 |
+
d = 1
|
595 |
+
|
596 |
+
# Standard formula for cubic discriminant
|
597 |
+
discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
|
598 |
+
return discriminant
|
599 |
+
|
600 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
601 |
"""
|
602 |
+
Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy.
|
603 |
"""
|
604 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
605 |
st.error("Invalid input parameters.")
|
|
|
612 |
|
613 |
# Collect all roots first
|
614 |
all_roots = []
|
615 |
+
discriminants = []
|
616 |
+
|
617 |
+
# Progress indicator
|
618 |
+
progress_bar = st.progress(0)
|
619 |
+
status_text = st.empty()
|
620 |
+
|
621 |
+
for i, z in enumerate(z_points):
|
622 |
+
# Update progress
|
623 |
+
progress_bar.progress((i + 1) / n_points)
|
624 |
+
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
|
625 |
+
|
626 |
+
# Calculate roots using SymPy
|
627 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
628 |
+
|
629 |
+
# Initial sorting to help with tracking
|
630 |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
631 |
all_roots.append(roots)
|
632 |
+
|
633 |
+
# Calculate discriminant
|
634 |
+
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
635 |
+
discriminants.append(disc)
|
636 |
+
|
637 |
+
# Clear progress indicators
|
638 |
+
progress_bar.empty()
|
639 |
+
status_text.empty()
|
640 |
|
641 |
all_roots = np.array(all_roots)
|
642 |
+
discriminants = np.array(discriminants)
|
643 |
|
644 |
+
# Track roots consistently across z values
|
645 |
tracked_roots = track_roots_consistently(z_points, all_roots)
|
646 |
|
647 |
# Extract imaginary and real parts
|
648 |
ims = np.imag(tracked_roots)
|
649 |
res = np.real(tracked_roots)
|
650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
# Create figure for imaginary parts
|
652 |
fig_im = go.Figure()
|
653 |
for i in range(3):
|
|
|
729 |
|
730 |
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
731 |
"""
|
732 |
+
Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy.
|
733 |
"""
|
734 |
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
735 |
st.error("Invalid input parameters.")
|
|
|
742 |
|
743 |
# Collect all roots first
|
744 |
all_roots = []
|
745 |
+
discriminants = []
|
746 |
+
|
747 |
+
# Progress indicator
|
748 |
+
progress_bar = st.progress(0)
|
749 |
+
status_text = st.empty()
|
750 |
+
|
751 |
+
for i, beta in enumerate(beta_points):
|
752 |
+
# Update progress
|
753 |
+
progress_bar.progress((i + 1) / n_points)
|
754 |
+
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
|
755 |
+
|
756 |
+
# Calculate roots using SymPy
|
757 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
758 |
+
|
759 |
+
# Initial sorting to help with tracking
|
760 |
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
761 |
all_roots.append(roots)
|
762 |
+
|
763 |
+
# Calculate discriminant
|
764 |
+
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
765 |
+
discriminants.append(disc)
|
766 |
+
|
767 |
+
# Clear progress indicators
|
768 |
+
progress_bar.empty()
|
769 |
+
status_text.empty()
|
770 |
|
771 |
all_roots = np.array(all_roots)
|
772 |
+
discriminants = np.array(discriminants)
|
773 |
|
774 |
+
# Track roots consistently across beta values
|
775 |
tracked_roots = track_roots_consistently(beta_points, all_roots)
|
776 |
|
777 |
# Extract imaginary and real parts
|
778 |
ims = np.imag(tracked_roots)
|
779 |
res = np.real(tracked_roots)
|
780 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
# Create figure for imaginary parts
|
782 |
fig_im = go.Figure()
|
783 |
for i in range(3):
|