Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,12 @@ import numpy as np
|
|
4 |
import plotly.graph_objects as go
|
5 |
from scipy.optimize import fsolve
|
6 |
from scipy.stats import gaussian_kde
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Configure Streamlit for Hugging Face Spaces
|
9 |
st.set_page_config(
|
@@ -12,6 +18,539 @@ st.set_page_config(
|
|
12 |
initial_sidebar_state="collapsed"
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def add_sqrt_support(expr_str):
|
16 |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
|
17 |
return expr_str.replace('sqrt(', 'sp.sqrt(')
|
@@ -44,6 +583,12 @@ def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
|
44 |
Scan z in [z_min, z_max] for sign changes in the discriminant,
|
45 |
and return approximated roots (where the discriminant is zero).
|
46 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Apply the condition for y
|
48 |
y_effective = y if y > 1 else 1/y
|
49 |
|
@@ -80,6 +625,13 @@ def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
|
80 |
for which the discriminant is zero.
|
81 |
Returns: betas, lower z*(β) values, and upper z*(β) values.
|
82 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
betas = np.linspace(0, 1, beta_steps)
|
84 |
z_min_values = []
|
85 |
z_max_values = []
|
@@ -99,6 +651,13 @@ def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, se
|
|
99 |
Compute the support boundaries of the eigenvalue distribution by directly
|
100 |
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
|
101 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Apply the condition for y
|
103 |
y_effective = y if y > 1 else 1/y
|
104 |
|
@@ -166,6 +725,12 @@ def compute_high_y_curve(betas, z_a, y):
|
|
166 |
"""
|
167 |
Compute the "High y Expression" curve.
|
168 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
# Apply the condition for y
|
170 |
y_effective = y if y > 1 else 1/y
|
171 |
|
@@ -183,6 +748,12 @@ def compute_alternate_low_expr(betas, z_a, y):
|
|
183 |
Compute the alternate low expression:
|
184 |
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
|
185 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
# Apply the condition for y
|
187 |
y_effective = y if y > 1 else 1/y
|
188 |
|
@@ -194,6 +765,12 @@ def compute_max_k_expression(betas, z_a, y, k_samples=1000):
|
|
194 |
"""
|
195 |
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
|
196 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
# Apply the condition for y
|
198 |
y_effective = y if y > 1 else 1/y
|
199 |
|
@@ -225,6 +802,12 @@ def compute_min_t_expression(betas, z_a, y, t_samples=1000):
|
|
225 |
"""
|
226 |
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
|
227 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
# Apply the condition for y
|
229 |
y_effective = y if y > 1 else 1/y
|
230 |
|
@@ -488,905 +1071,126 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
488 |
)
|
489 |
return fig
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy.
|
494 |
-
"""
|
495 |
-
# Apply the condition for y
|
496 |
-
y_effective = y if y > 1 else 1/y
|
497 |
-
|
498 |
-
# Import SymPy functions
|
499 |
-
from sympy import symbols, solve, im, re, N, Poly
|
500 |
-
|
501 |
-
# Create a symbolic variable for the equation
|
502 |
-
s = symbols('s')
|
503 |
-
|
504 |
-
# Coefficients in the form as^3 + bs^2 + cs + d = 0
|
505 |
-
a = z * z_a
|
506 |
-
b = z * z_a + z + z_a - z_a*y_effective
|
507 |
-
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
508 |
-
d = 1
|
509 |
-
|
510 |
-
# Handle special cases
|
511 |
-
if abs(a) < 1e-10:
|
512 |
-
if abs(b) < 1e-10: # Linear case
|
513 |
-
roots = np.array([-d/c, 0, 0], dtype=complex)
|
514 |
-
else: # Quadratic case
|
515 |
-
quad_roots = np.roots([b, c, d])
|
516 |
-
roots = np.append(quad_roots, 0).astype(complex)
|
517 |
-
return roots
|
518 |
-
|
519 |
-
try:
|
520 |
-
# Create the cubic polynomial
|
521 |
-
cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
|
522 |
-
|
523 |
-
# Solve the equation symbolically
|
524 |
-
symbolic_roots = solve(cubic_eq, s)
|
525 |
-
|
526 |
-
# Convert symbolic roots to complex numbers with high precision
|
527 |
-
numerical_roots = []
|
528 |
-
for root in symbolic_roots:
|
529 |
-
# Use SymPy's N function with high precision
|
530 |
-
numerical_root = complex(N(root, 30))
|
531 |
-
numerical_roots.append(numerical_root)
|
532 |
-
|
533 |
-
# If we got fewer than 3 roots (due to multiplicity), pad with zeros
|
534 |
-
while len(numerical_roots) < 3:
|
535 |
-
numerical_roots.append(0j)
|
536 |
-
|
537 |
-
return np.array(numerical_roots, dtype=complex)
|
538 |
-
|
539 |
-
except Exception as e:
|
540 |
-
# Fallback to numpy if SymPy has issues
|
541 |
-
coeffs = [a, b, c, d]
|
542 |
-
return np.roots(coeffs)
|
543 |
-
|
544 |
-
def track_roots_consistently(z_values, all_roots):
|
545 |
-
"""
|
546 |
-
Ensure consistent tracking of roots across z values by minimizing discontinuity.
|
547 |
-
"""
|
548 |
-
n_points = len(z_values)
|
549 |
-
n_roots = all_roots[0].shape[0]
|
550 |
-
tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
|
551 |
-
tracked_roots[0] = all_roots[0]
|
552 |
-
|
553 |
-
for i in range(1, n_points):
|
554 |
-
prev_roots = tracked_roots[i-1]
|
555 |
-
current_roots = all_roots[i]
|
556 |
-
|
557 |
-
# For each previous root, find the closest current root
|
558 |
-
assigned = np.zeros(n_roots, dtype=bool)
|
559 |
-
assignments = np.zeros(n_roots, dtype=int)
|
560 |
-
|
561 |
-
for j in range(n_roots):
|
562 |
-
distances = np.abs(current_roots - prev_roots[j])
|
563 |
-
|
564 |
-
# Find the closest unassigned root
|
565 |
-
while True:
|
566 |
-
best_idx = np.argmin(distances)
|
567 |
-
if not assigned[best_idx]:
|
568 |
-
assignments[j] = best_idx
|
569 |
-
assigned[best_idx] = True
|
570 |
-
break
|
571 |
-
else:
|
572 |
-
# Mark as infinite distance and try again
|
573 |
-
distances[best_idx] = np.inf
|
574 |
-
|
575 |
-
# Safety check if all are assigned (shouldn't happen)
|
576 |
-
if np.all(distances == np.inf):
|
577 |
-
assignments[j] = j # Default to same index
|
578 |
-
break
|
579 |
-
|
580 |
-
# Reorder current roots based on assignments
|
581 |
-
tracked_roots[i] = current_roots[assignments]
|
582 |
-
|
583 |
-
return tracked_roots
|
584 |
-
|
585 |
-
def generate_cubic_discriminant(z, beta, z_a, y_effective):
|
586 |
-
"""
|
587 |
-
Calculate the cubic discriminant using the standard formula.
|
588 |
-
For a cubic ax^3 + bx^2 + cx + d:
|
589 |
-
Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
|
590 |
-
"""
|
591 |
-
a = z * z_a
|
592 |
-
b = z * z_a + z + z_a - z_a*y_effective
|
593 |
-
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
594 |
-
d = 1
|
595 |
-
|
596 |
-
# Standard formula for cubic discriminant
|
597 |
-
discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
|
598 |
-
return discriminant
|
599 |
-
|
600 |
-
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
601 |
-
"""
|
602 |
-
Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy.
|
603 |
-
"""
|
604 |
-
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
605 |
-
st.error("Invalid input parameters.")
|
606 |
-
return None, None, None
|
607 |
-
|
608 |
-
# Apply the condition for y
|
609 |
-
y_effective = y if y > 1 else 1/y
|
610 |
-
|
611 |
-
z_points = np.linspace(z_min, z_max, n_points)
|
612 |
-
|
613 |
-
# Collect all roots first
|
614 |
-
all_roots = []
|
615 |
-
discriminants = []
|
616 |
-
|
617 |
-
# Progress indicator
|
618 |
-
progress_bar = st.progress(0)
|
619 |
-
status_text = st.empty()
|
620 |
-
|
621 |
-
for i, z in enumerate(z_points):
|
622 |
-
# Update progress
|
623 |
-
progress_bar.progress((i + 1) / n_points)
|
624 |
-
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
|
625 |
-
|
626 |
-
# Calculate roots using SymPy
|
627 |
-
roots = compute_cubic_roots(z, beta, z_a, y)
|
628 |
-
|
629 |
-
# Initial sorting to help with tracking
|
630 |
-
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
631 |
-
all_roots.append(roots)
|
632 |
-
|
633 |
-
# Calculate discriminant
|
634 |
-
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
635 |
-
discriminants.append(disc)
|
636 |
-
|
637 |
-
# Clear progress indicators
|
638 |
-
progress_bar.empty()
|
639 |
-
status_text.empty()
|
640 |
-
|
641 |
-
all_roots = np.array(all_roots)
|
642 |
-
discriminants = np.array(discriminants)
|
643 |
-
|
644 |
-
# Track roots consistently across z values
|
645 |
-
tracked_roots = track_roots_consistently(z_points, all_roots)
|
646 |
-
|
647 |
-
# Extract imaginary and real parts
|
648 |
-
ims = np.imag(tracked_roots)
|
649 |
-
res = np.real(tracked_roots)
|
650 |
-
|
651 |
-
# Create figure for imaginary parts
|
652 |
-
fig_im = go.Figure()
|
653 |
-
for i in range(3):
|
654 |
-
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
|
655 |
-
line=dict(width=2)))
|
656 |
-
|
657 |
-
# Add vertical lines at discriminant zero crossings
|
658 |
-
disc_zeros = []
|
659 |
-
for i in range(len(discriminants)-1):
|
660 |
-
if discriminants[i] * discriminants[i+1] <= 0: # Sign change
|
661 |
-
zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
|
662 |
-
disc_zeros.append(zero_pos)
|
663 |
-
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
664 |
-
|
665 |
-
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
666 |
-
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
|
667 |
-
|
668 |
-
# Create figure for real parts
|
669 |
-
fig_re = go.Figure()
|
670 |
-
for i in range(3):
|
671 |
-
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
|
672 |
-
line=dict(width=2)))
|
673 |
-
|
674 |
-
# Add vertical lines at discriminant zero crossings
|
675 |
-
for zero_pos in disc_zeros:
|
676 |
-
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
677 |
-
|
678 |
-
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
679 |
-
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
|
680 |
-
|
681 |
-
# Create discriminant plot
|
682 |
-
fig_disc = go.Figure()
|
683 |
-
fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines",
|
684 |
-
name="Cubic Discriminant", line=dict(color="black", width=2)))
|
685 |
-
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
|
686 |
-
|
687 |
-
fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
688 |
-
xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
|
689 |
-
|
690 |
-
return fig_im, fig_re, fig_disc
|
691 |
-
|
692 |
-
def analyze_complex_root_structure(beta_values, z, z_a, y):
|
693 |
-
"""
|
694 |
-
Analyze when the cubic equation switches between having all real roots
|
695 |
-
and having a complex conjugate pair plus one real root.
|
696 |
-
|
697 |
-
Returns:
|
698 |
-
- transition_points: beta values where the root structure changes
|
699 |
-
- structure_types: list indicating whether each interval has all real roots or complex roots
|
700 |
-
"""
|
701 |
-
# Apply the condition for y
|
702 |
-
y_effective = y if y > 1 else 1/y
|
703 |
-
|
704 |
-
transition_points = []
|
705 |
-
structure_types = []
|
706 |
-
|
707 |
-
previous_type = None
|
708 |
-
|
709 |
-
for beta in beta_values:
|
710 |
-
roots = compute_cubic_roots(z, beta, z_a, y)
|
711 |
-
|
712 |
-
# Check if all roots are real (imaginary parts close to zero)
|
713 |
-
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
714 |
-
|
715 |
-
current_type = "real" if is_all_real else "complex"
|
716 |
-
|
717 |
-
if previous_type is not None and current_type != previous_type:
|
718 |
-
# Found a transition point
|
719 |
-
transition_points.append(beta)
|
720 |
-
structure_types.append(previous_type)
|
721 |
-
|
722 |
-
previous_type = current_type
|
723 |
-
|
724 |
-
# Add the final interval type
|
725 |
-
if previous_type is not None:
|
726 |
-
structure_types.append(previous_type)
|
727 |
-
|
728 |
-
return transition_points, structure_types
|
729 |
-
|
730 |
-
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
731 |
-
"""
|
732 |
-
Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy.
|
733 |
-
"""
|
734 |
-
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
735 |
-
st.error("Invalid input parameters.")
|
736 |
-
return None, None, None
|
737 |
-
|
738 |
-
# Apply the condition for y
|
739 |
-
y_effective = y if y > 1 else 1/y
|
740 |
-
|
741 |
-
beta_points = np.linspace(beta_min, beta_max, n_points)
|
742 |
-
|
743 |
-
# Collect all roots first
|
744 |
-
all_roots = []
|
745 |
-
discriminants = []
|
746 |
-
|
747 |
-
# Progress indicator
|
748 |
-
progress_bar = st.progress(0)
|
749 |
-
status_text = st.empty()
|
750 |
-
|
751 |
-
for i, beta in enumerate(beta_points):
|
752 |
-
# Update progress
|
753 |
-
progress_bar.progress((i + 1) / n_points)
|
754 |
-
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
|
755 |
-
|
756 |
-
# Calculate roots using SymPy
|
757 |
-
roots = compute_cubic_roots(z, beta, z_a, y)
|
758 |
-
|
759 |
-
# Initial sorting to help with tracking
|
760 |
-
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
761 |
-
all_roots.append(roots)
|
762 |
-
|
763 |
-
# Calculate discriminant
|
764 |
-
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
765 |
-
discriminants.append(disc)
|
766 |
-
|
767 |
-
# Clear progress indicators
|
768 |
-
progress_bar.empty()
|
769 |
-
status_text.empty()
|
770 |
-
|
771 |
-
all_roots = np.array(all_roots)
|
772 |
-
discriminants = np.array(discriminants)
|
773 |
-
|
774 |
-
# Track roots consistently across beta values
|
775 |
-
tracked_roots = track_roots_consistently(beta_points, all_roots)
|
776 |
-
|
777 |
-
# Extract imaginary and real parts
|
778 |
-
ims = np.imag(tracked_roots)
|
779 |
-
res = np.real(tracked_roots)
|
780 |
-
|
781 |
-
# Create figure for imaginary parts
|
782 |
-
fig_im = go.Figure()
|
783 |
-
for i in range(3):
|
784 |
-
fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
|
785 |
-
line=dict(width=2)))
|
786 |
-
|
787 |
-
# Add vertical lines at discriminant zero crossings
|
788 |
-
disc_zeros = []
|
789 |
-
for i in range(len(discriminants)-1):
|
790 |
-
if discriminants[i] * discriminants[i+1] <= 0: # Sign change
|
791 |
-
zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
|
792 |
-
disc_zeros.append(zero_pos)
|
793 |
-
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
794 |
-
|
795 |
-
fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
796 |
-
xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")
|
797 |
-
|
798 |
-
# Create figure for real parts
|
799 |
-
fig_re = go.Figure()
|
800 |
-
for i in range(3):
|
801 |
-
fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
|
802 |
-
line=dict(width=2)))
|
803 |
-
|
804 |
-
# Add vertical lines at discriminant zero crossings
|
805 |
-
for zero_pos in disc_zeros:
|
806 |
-
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
807 |
-
|
808 |
-
fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
809 |
-
xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
|
810 |
-
|
811 |
-
# Create discriminant plot
|
812 |
-
fig_disc = go.Figure()
|
813 |
-
fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines",
|
814 |
-
name="Cubic Discriminant", line=dict(color="black", width=2)))
|
815 |
-
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
|
816 |
-
|
817 |
-
fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
818 |
-
xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
|
819 |
-
|
820 |
-
return fig_im, fig_re, fig_disc
|
821 |
-
|
822 |
-
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
|
823 |
-
beta_steps=100, z_steps=100):
|
824 |
-
"""
|
825 |
-
Generate a phase diagram showing regions of complex and real roots.
|
826 |
-
|
827 |
-
Returns a heatmap where:
|
828 |
-
- Value 1 (red): Region with all real roots
|
829 |
-
- Value -1 (blue): Region with complex roots
|
830 |
-
"""
|
831 |
-
# Apply the condition for y
|
832 |
-
y_effective = y if y > 1 else 1/y
|
833 |
-
|
834 |
-
beta_values = np.linspace(beta_min, beta_max, beta_steps)
|
835 |
-
z_values = np.linspace(z_min, z_max, z_steps)
|
836 |
-
|
837 |
-
# Initialize phase map
|
838 |
-
phase_map = np.zeros((z_steps, beta_steps))
|
839 |
-
|
840 |
-
# Progress tracking
|
841 |
-
progress_bar = st.progress(0)
|
842 |
-
status_text = st.empty()
|
843 |
-
|
844 |
-
for i, z in enumerate(z_values):
|
845 |
-
# Update progress
|
846 |
-
progress_bar.progress((i + 1) / len(z_values))
|
847 |
-
status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
|
848 |
-
|
849 |
-
for j, beta in enumerate(beta_values):
|
850 |
-
roots = compute_cubic_roots(z, beta, z_a, y)
|
851 |
-
|
852 |
-
# Check if all roots are real (imaginary parts close to zero)
|
853 |
-
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
854 |
-
|
855 |
-
phase_map[i, j] = 1 if is_all_real else -1
|
856 |
-
|
857 |
-
# Clear progress indicators
|
858 |
-
progress_bar.empty()
|
859 |
-
status_text.empty()
|
860 |
-
|
861 |
-
# Create heatmap
|
862 |
-
fig = go.Figure(data=go.Heatmap(
|
863 |
-
z=phase_map,
|
864 |
-
x=beta_values,
|
865 |
-
y=z_values,
|
866 |
-
colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
|
867 |
-
zmin=-1,
|
868 |
-
zmax=1,
|
869 |
-
showscale=True,
|
870 |
-
colorbar=dict(
|
871 |
-
title="Root Type",
|
872 |
-
tickvals=[-1, 1],
|
873 |
-
ticktext=["Complex Roots", "All Real Roots"]
|
874 |
-
)
|
875 |
-
))
|
876 |
-
|
877 |
-
fig.update_layout(
|
878 |
-
title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
|
879 |
-
xaxis_title="β",
|
880 |
-
yaxis_title="z",
|
881 |
-
hovermode="closest"
|
882 |
-
)
|
883 |
-
|
884 |
-
return fig
|
885 |
-
|
886 |
-
@st.cache_data
|
887 |
-
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
888 |
-
"""
|
889 |
-
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
|
890 |
-
"""
|
891 |
-
# Apply the condition for y
|
892 |
-
y_effective = y if y > 1 else 1/y
|
893 |
-
|
894 |
-
# Set random seed
|
895 |
-
np.random.seed(seed)
|
896 |
-
|
897 |
-
# Compute dimension p based on aspect ratio y
|
898 |
-
p = int(y_effective * n)
|
899 |
-
|
900 |
-
# Constructing T_n (Population / Shape Matrix) - using the approach from the second script
|
901 |
-
k = int(np.floor(beta * p))
|
902 |
-
diag_entries = np.concatenate([
|
903 |
-
np.full(k, z_a),
|
904 |
-
np.full(p - k, 1.0)
|
905 |
-
])
|
906 |
-
np.random.shuffle(diag_entries)
|
907 |
-
T_n = np.diag(diag_entries)
|
908 |
-
|
909 |
-
# Generate the data matrix X with i.i.d. standard normal entries
|
910 |
-
X = np.random.randn(p, n)
|
911 |
-
|
912 |
-
# Compute the sample covariance matrix S_n = (1/n) * XX^T
|
913 |
-
S_n = (1 / n) * (X @ X.T)
|
914 |
-
|
915 |
-
# Compute B_n = S_n T_n
|
916 |
-
B_n = S_n @ T_n
|
917 |
-
|
918 |
-
# Compute eigenvalues of B_n
|
919 |
-
eigenvalues = np.linalg.eigvalsh(B_n)
|
920 |
-
|
921 |
-
# Use KDE to compute a smooth density estimate
|
922 |
-
kde = gaussian_kde(eigenvalues)
|
923 |
-
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
|
924 |
-
kde_vals = kde(x_vals)
|
925 |
-
|
926 |
-
# Create figure
|
927 |
-
fig = go.Figure()
|
928 |
-
|
929 |
-
# Add histogram trace
|
930 |
-
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
|
931 |
-
name="Histogram", marker=dict(color='blue', opacity=0.6)))
|
932 |
-
|
933 |
-
# Add KDE trace
|
934 |
-
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
|
935 |
-
name="KDE", line=dict(color='red', width=2)))
|
936 |
-
|
937 |
-
fig.update_layout(
|
938 |
-
title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
|
939 |
-
xaxis_title="Eigenvalue",
|
940 |
-
yaxis_title="Density",
|
941 |
-
hovermode="closest",
|
942 |
-
showlegend=True
|
943 |
-
)
|
944 |
-
|
945 |
-
return fig, eigenvalues
|
946 |
|
947 |
-
#
|
948 |
st.title("Cubic Root Analysis")
|
|
|
949 |
|
950 |
-
#
|
951 |
-
|
952 |
|
953 |
-
|
954 |
-
|
955 |
-
st.
|
956 |
-
|
957 |
-
# Cleaner layout with better column organization
|
958 |
-
col1, col2, col3 = st.columns([1, 1, 2])
|
959 |
-
|
960 |
-
with col1:
|
961 |
-
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
|
962 |
-
y_1 = st.number_input("y", value=1.0, key="y_1")
|
963 |
-
|
964 |
-
with col2:
|
965 |
-
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
|
966 |
-
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
|
967 |
-
|
968 |
-
with col1:
|
969 |
-
method_type = st.radio(
|
970 |
-
"Calculation Method",
|
971 |
-
["Eigenvalue Method", "Discriminant Method"],
|
972 |
-
index=0 # Default to eigenvalue method
|
973 |
-
)
|
974 |
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
979 |
-
key="beta_steps_eigen")
|
980 |
-
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
981 |
-
step=100)
|
982 |
-
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
|
983 |
-
else:
|
984 |
-
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
985 |
-
key="beta_steps")
|
986 |
-
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
987 |
-
step=1000, key="z_steps")
|
988 |
-
|
989 |
-
# Curve visibility options
|
990 |
-
with st.expander("Curve Visibility", expanded=False):
|
991 |
-
col_vis1, col_vis2 = st.columns(2)
|
992 |
-
with col_vis1:
|
993 |
-
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
|
994 |
-
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
|
995 |
-
with col_vis2:
|
996 |
-
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
|
997 |
-
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
|
998 |
-
|
999 |
-
# Custom expressions collapsed by default
|
1000 |
-
with st.expander("Custom Expression 1 (s-based)", expanded=False):
|
1001 |
-
st.markdown("""Enter expressions for s = numerator/denominator
|
1002 |
-
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
1003 |
-
st.latex(r"\text{This s will be inserted into:}")
|
1004 |
-
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
|
1005 |
-
s_num = st.text_input("s numerator", value="", key="s_num")
|
1006 |
-
s_denom = st.text_input("s denominator", value="", key="s_denom")
|
1007 |
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
|
|
1013 |
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1017 |
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
seeds=seeds)
|
1028 |
-
else:
|
1029 |
-
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
|
1030 |
-
s_num, s_denom, z_num, z_denom, show_derivatives,
|
1031 |
-
show_high_y, show_low_y, show_max_k, show_min_t,
|
1032 |
-
use_eigenvalue_method=False)
|
1033 |
-
|
1034 |
-
if fig is not None:
|
1035 |
-
st.plotly_chart(fig, use_container_width=True)
|
1036 |
-
|
1037 |
-
# Curve explanations in collapsed expander
|
1038 |
-
with st.expander("Curve Explanations", expanded=False):
|
1039 |
-
if use_eigenvalue_method:
|
1040 |
-
st.markdown("""
|
1041 |
-
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
|
1042 |
-
- **Shaded Region**: Eigenvalue support region
|
1043 |
-
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1044 |
-
- **Low Expression** (Orange): Alternative asymptotic expression
|
1045 |
-
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1046 |
-
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1047 |
-
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1048 |
-
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1049 |
-
""")
|
1050 |
-
else:
|
1051 |
-
st.markdown("""
|
1052 |
-
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
1053 |
-
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
|
1054 |
-
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1055 |
-
- **Low Expression** (Orange): Alternative asymptotic expression
|
1056 |
-
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1057 |
-
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1058 |
-
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1059 |
-
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1060 |
-
""")
|
1061 |
-
if show_derivatives:
|
1062 |
-
st.markdown("""
|
1063 |
-
Derivatives are shown as:
|
1064 |
-
- Dashed lines: First derivatives (d/dβ)
|
1065 |
-
- Dotted lines: Second derivatives (d²/dβ²)
|
1066 |
-
""")
|
1067 |
|
1068 |
-
#
|
1069 |
-
with
|
1070 |
-
st.
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
with plot_tabs[0]:
|
1077 |
-
col1, col2 = st.columns([1, 2])
|
1078 |
-
with col1:
|
1079 |
-
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
|
1080 |
-
y_z = st.number_input("y", value=1.0, key="y_tab2_z")
|
1081 |
-
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
|
1082 |
-
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
|
1083 |
-
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
|
1084 |
-
with st.expander("Resolution Settings", expanded=False):
|
1085 |
-
z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
|
1086 |
-
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
|
1087 |
-
with col2:
|
1088 |
-
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
|
1089 |
-
if fig_im is not None and fig_re is not None and fig_disc is not None:
|
1090 |
-
st.plotly_chart(fig_im, use_container_width=True)
|
1091 |
-
st.plotly_chart(fig_re, use_container_width=True)
|
1092 |
-
st.plotly_chart(fig_disc, use_container_width=True)
|
1093 |
-
|
1094 |
-
with st.expander("Root Structure Analysis", expanded=False):
|
1095 |
-
st.markdown("""
|
1096 |
-
### Root Structure Explanation
|
1097 |
-
|
1098 |
-
The red dashed vertical lines mark the points where the cubic discriminant equals zero.
|
1099 |
-
At these points, the cubic equation's root structure changes:
|
1100 |
-
|
1101 |
-
- When the discriminant is positive, the cubic has three distinct real roots.
|
1102 |
-
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
|
1103 |
-
- When the discriminant is exactly zero, the cubic has at least two equal roots.
|
1104 |
-
|
1105 |
-
These transition points align perfectly with the z*(β) boundary curves from the first tab,
|
1106 |
-
which represent exactly these transitions in the (β,z) plane.
|
1107 |
-
""")
|
1108 |
|
1109 |
-
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
|
1115 |
-
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
|
1116 |
-
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
|
1117 |
-
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
|
1118 |
-
with st.expander("Resolution Settings", expanded=False):
|
1119 |
-
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
|
1120 |
-
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
|
1121 |
-
with col2:
|
1122 |
-
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
|
1123 |
-
z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
|
1124 |
-
|
1125 |
-
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
|
1126 |
-
st.plotly_chart(fig_im_beta, use_container_width=True)
|
1127 |
-
st.plotly_chart(fig_re_beta, use_container_width=True)
|
1128 |
-
st.plotly_chart(fig_disc, use_container_width=True)
|
1129 |
-
|
1130 |
-
# Add analysis of transition points
|
1131 |
-
transition_points, structure_types = analyze_complex_root_structure(
|
1132 |
-
np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
|
1133 |
-
|
1134 |
-
if transition_points:
|
1135 |
-
st.subheader("Root Structure Transition Points")
|
1136 |
-
for i, beta in enumerate(transition_points):
|
1137 |
-
prev_type = structure_types[i]
|
1138 |
-
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
|
1139 |
-
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
|
1140 |
-
else:
|
1141 |
-
st.info("No transitions detected in root structure across this β range.")
|
1142 |
-
|
1143 |
-
# Explanation
|
1144 |
-
with st.expander("Analysis Explanation", expanded=False):
|
1145 |
-
st.markdown("""
|
1146 |
-
### Interpreting the Plots
|
1147 |
-
|
1148 |
-
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
|
1149 |
-
- **Re{s} vs. β**: Shows how the real parts of the roots change with β.
|
1150 |
-
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
|
1151 |
-
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
|
1152 |
-
- When discriminant > 0: The cubic has three distinct real roots.
|
1153 |
-
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
|
1154 |
-
|
1155 |
-
The vertical red dashed lines mark the transition points where the root structure changes.
|
1156 |
-
""")
|
1157 |
-
|
1158 |
-
# Tab for Phase Diagram
|
1159 |
-
with plot_tabs[2]:
|
1160 |
-
col1, col2 = st.columns([1, 2])
|
1161 |
-
with col1:
|
1162 |
-
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
|
1163 |
-
y_phase = st.number_input("y", value=1.0, key="y_phase")
|
1164 |
-
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
|
1165 |
-
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
|
1166 |
-
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
|
1167 |
-
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
|
1168 |
-
|
1169 |
-
with st.expander("Resolution Settings", expanded=False):
|
1170 |
-
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
|
1171 |
-
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
|
1172 |
-
|
1173 |
-
if st.button("Generate Phase Diagram", key="tab2_button_phase"):
|
1174 |
-
with col2:
|
1175 |
-
st.info("Generating phase diagram. This may take a while depending on resolution...")
|
1176 |
-
fig_phase = generate_phase_diagram(
|
1177 |
-
z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase,
|
1178 |
-
beta_steps_phase, z_steps_phase)
|
1179 |
-
|
1180 |
-
if fig_phase is not None:
|
1181 |
-
st.plotly_chart(fig_phase, use_container_width=True)
|
1182 |
-
|
1183 |
-
with st.expander("Phase Diagram Explanation", expanded=False):
|
1184 |
-
st.markdown("""
|
1185 |
-
### Understanding the Phase Diagram
|
1186 |
-
|
1187 |
-
This heatmap shows the regions in the (β, z) plane where:
|
1188 |
-
|
1189 |
-
- **Red Regions**: The cubic equation has all real roots
|
1190 |
-
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
|
1191 |
-
|
1192 |
-
The boundaries between these regions represent values where the discriminant is zero,
|
1193 |
-
which are the exact same curves as the z*(β) boundaries in the first tab. This phase
|
1194 |
-
diagram provides a comprehensive view of the eigenvalue support structure.
|
1195 |
-
""")
|
1196 |
-
|
1197 |
-
# Eigenvalue distribution tab
|
1198 |
-
with plot_tabs[3]:
|
1199 |
-
st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
|
1200 |
-
with st.expander("Simulation Information", expanded=False):
|
1201 |
-
st.markdown("""
|
1202 |
-
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
|
1203 |
-
- B_n = (1/n)XX^T with X being a p×n matrix
|
1204 |
-
- p/n → y as n→∞
|
1205 |
-
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
|
1206 |
-
""")
|
1207 |
-
|
1208 |
-
col_eigen1, col_eigen2 = st.columns([1, 2])
|
1209 |
-
with col_eigen1:
|
1210 |
-
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
|
1211 |
-
y_eigen = st.number_input("y", value=1.0, key="y_eigen")
|
1212 |
-
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
|
1213 |
-
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
|
1214 |
-
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
|
1215 |
-
|
1216 |
-
# Add comparison option
|
1217 |
-
show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
|
1218 |
-
show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
|
1219 |
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
|
1224 |
-
|
1225 |
-
# If requested, compute and add theoretical boundaries
|
1226 |
-
if show_theoretical:
|
1227 |
-
# Calculate min and max eigenvalues using the support boundary functions
|
1228 |
-
betas = np.array([beta_eigen])
|
1229 |
-
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
|
1230 |
-
|
1231 |
-
# Add vertical lines for boundaries
|
1232 |
-
fig_eigen.add_vline(
|
1233 |
-
x=min_eig[0],
|
1234 |
-
line=dict(color="red", width=2, dash="dash"),
|
1235 |
-
annotation_text="Min theoretical",
|
1236 |
-
annotation_position="top right"
|
1237 |
-
)
|
1238 |
-
fig_eigen.add_vline(
|
1239 |
-
x=max_eig[0],
|
1240 |
-
line=dict(color="red", width=2, dash="dash"),
|
1241 |
-
annotation_text="Max theoretical",
|
1242 |
-
annotation_position="top left"
|
1243 |
-
)
|
1244 |
-
|
1245 |
-
# Display the plot
|
1246 |
-
st.plotly_chart(fig_eigen, use_container_width=True)
|
1247 |
-
|
1248 |
-
# Add comparison of empirical vs theoretical bounds
|
1249 |
-
if show_theoretical and show_empirical_stats:
|
1250 |
-
empirical_min = eigenvalues.min()
|
1251 |
-
empirical_max = eigenvalues.max()
|
1252 |
-
|
1253 |
-
st.markdown("### Comparison of Empirical vs Theoretical Bounds")
|
1254 |
-
col1, col2, col3 = st.columns(3)
|
1255 |
-
with col1:
|
1256 |
-
st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
|
1257 |
-
st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
|
1258 |
-
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
|
1259 |
-
with col2:
|
1260 |
-
st.metric("Empirical Min", f"{empirical_min:.4f}")
|
1261 |
-
st.metric("Empirical Max", f"{empirical_max:.4f}")
|
1262 |
-
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
|
1263 |
-
with col3:
|
1264 |
-
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
|
1265 |
-
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
|
1266 |
-
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
|
1267 |
-
|
1268 |
-
# Display additional statistics
|
1269 |
-
if show_empirical_stats:
|
1270 |
-
st.markdown("### Eigenvalue Statistics")
|
1271 |
-
col1, col2 = st.columns(2)
|
1272 |
-
with col1:
|
1273 |
-
st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
|
1274 |
-
st.metric("Median", f"{np.median(eigenvalues):.4f}")
|
1275 |
-
with col2:
|
1276 |
-
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
|
1277 |
-
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
|
1278 |
|
1279 |
-
#
|
1280 |
-
|
1281 |
-
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
|
1293 |
-
|
1294 |
-
["Eigenvalue Method", "Discriminant Method"],
|
1295 |
-
index=0,
|
1296 |
-
key="diff_method_type"
|
1297 |
-
)
|
1298 |
-
|
1299 |
-
with st.expander("Resolution Settings", expanded=False):
|
1300 |
-
if diff_method_type == "Eigenvalue Method":
|
1301 |
-
beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
1302 |
-
key="beta_steps_diff_eigen")
|
1303 |
-
diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
1304 |
-
step=100, key="diff_n_samples")
|
1305 |
-
diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
|
1306 |
-
key="diff_seeds")
|
1307 |
-
else:
|
1308 |
-
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
1309 |
-
key="beta_steps_diff")
|
1310 |
-
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
1311 |
-
step=1000, key="z_steps_diff")
|
1312 |
|
1313 |
-
|
1314 |
-
|
1315 |
-
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
|
1316 |
-
analyze_high_y = st.checkbox("High y Expression", value=False)
|
1317 |
-
analyze_alt_low = st.checkbox("Low y Expression", value=False)
|
1318 |
-
|
1319 |
-
if st.button("Compute Differentials", key="tab3_button"):
|
1320 |
-
with col2:
|
1321 |
-
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
|
1322 |
-
|
1323 |
-
if use_eigenvalue_method_diff:
|
1324 |
-
betas_diff = np.linspace(0, 1, beta_steps_diff)
|
1325 |
-
st.info("Computing eigenvalue support boundaries. This may take a moment...")
|
1326 |
-
lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
|
1327 |
-
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
|
1328 |
-
else:
|
1329 |
-
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
|
1330 |
-
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
|
1331 |
|
1332 |
-
#
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
d2 = np.gradient(d1, betas_diff)
|
1363 |
-
|
1364 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
|
1365 |
-
name="Low y", line=dict(color="orange", width=2)))
|
1366 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1367 |
-
name="Low y d/dβ", line=dict(color="orange", dash='dash')))
|
1368 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1369 |
-
name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))
|
1370 |
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
hovermode="x unified",
|
1377 |
-
showlegend=True,
|
1378 |
-
legend=dict(
|
1379 |
-
yanchor="top",
|
1380 |
-
y=0.99,
|
1381 |
-
xanchor="left",
|
1382 |
-
x=0.01
|
1383 |
-
)
|
1384 |
-
)
|
1385 |
-
st.plotly_chart(fig_diff, use_container_width=True)
|
1386 |
-
|
1387 |
-
with st.expander("Curve Types", expanded=False):
|
1388 |
-
st.markdown("""
|
1389 |
-
- Solid lines: Original curves
|
1390 |
-
- Dashed lines: First derivatives (d/dβ)
|
1391 |
-
- Dotted lines: Second derivatives (d²/dβ²)
|
1392 |
-
""")
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
from scipy.optimize import fsolve
|
6 |
from scipy.stats import gaussian_kde
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import tempfile
|
10 |
+
import subprocess
|
11 |
+
import importlib.util
|
12 |
+
import shutil
|
13 |
|
14 |
# Configure Streamlit for Hugging Face Spaces
|
15 |
st.set_page_config(
|
|
|
18 |
initial_sidebar_state="collapsed"
|
19 |
)
|
20 |
|
21 |
+
# Define C++ extension code as a string
|
22 |
+
CPP_CODE = r'''
|
23 |
+
#include <pybind11/pybind11.h>
|
24 |
+
#include <pybind11/numpy.h>
|
25 |
+
#include <pybind11/eigen.h>
|
26 |
+
#include <Eigen/Dense>
|
27 |
+
#include <vector>
|
28 |
+
#include <cmath>
|
29 |
+
#include <limits>
|
30 |
+
|
31 |
+
namespace py = pybind11;
|
32 |
+
|
33 |
+
// Compute the cubic discriminant
|
34 |
+
double compute_discriminant(double z, double beta, double z_a, double y_effective) {
|
35 |
+
double a = z * z_a;
|
36 |
+
double b = z * z_a + z + z_a - z_a * y_effective;
|
37 |
+
double c = z + z_a + 1 - y_effective * (beta * z_a + 1 - beta);
|
38 |
+
double d = 1;
|
39 |
+
|
40 |
+
// Symbolic expression for the cubic discriminant
|
41 |
+
return std::pow((b*c)/(6*a*a) - std::pow(b, 3)/(27*std::pow(a, 3)) - d/(2*a), 2) +
|
42 |
+
std::pow(c/(3*a) - std::pow(b, 2)/(9*std::pow(a, 2)), 3);
|
43 |
+
}
|
44 |
+
|
45 |
+
// Find z values where the discriminant equals zero
|
46 |
+
std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta,
|
47 |
+
double z_min, double z_max, int steps) {
|
48 |
+
// Apply the condition for y
|
49 |
+
double y_effective = y > 1 ? y : 1/y;
|
50 |
+
|
51 |
+
// Create z grid
|
52 |
+
std::vector<double> z_grid(steps);
|
53 |
+
double step_size = (z_max - z_min) / (steps - 1);
|
54 |
+
for (int i = 0; i < steps; i++) {
|
55 |
+
z_grid[i] = z_min + i * step_size;
|
56 |
+
}
|
57 |
+
|
58 |
+
// Calculate discriminant values
|
59 |
+
std::vector<double> disc_vals(steps);
|
60 |
+
for (int i = 0; i < steps; i++) {
|
61 |
+
disc_vals[i] = compute_discriminant(z_grid[i], beta, z_a, y_effective);
|
62 |
+
}
|
63 |
+
|
64 |
+
// Find roots
|
65 |
+
std::vector<double> roots_found;
|
66 |
+
|
67 |
+
for (int i = 0; i < steps - 1; i++) {
|
68 |
+
double f1 = disc_vals[i];
|
69 |
+
double f2 = disc_vals[i+1];
|
70 |
+
|
71 |
+
// Skip if NaN
|
72 |
+
if (std::isnan(f1) || std::isnan(f2)) {
|
73 |
+
continue;
|
74 |
+
}
|
75 |
+
|
76 |
+
// Check for exact zero
|
77 |
+
if (f1 == 0.0) {
|
78 |
+
roots_found.push_back(z_grid[i]);
|
79 |
+
}
|
80 |
+
else if (f2 == 0.0) {
|
81 |
+
roots_found.push_back(z_grid[i+1]);
|
82 |
+
}
|
83 |
+
// Check for sign change
|
84 |
+
else if (f1 * f2 < 0) {
|
85 |
+
double zl = z_grid[i];
|
86 |
+
double zr = z_grid[i+1];
|
87 |
+
double f1_local = f1;
|
88 |
+
double f2_local = f2;
|
89 |
+
|
90 |
+
// Use binary search to refine the root
|
91 |
+
for (int j = 0; j < 50; j++) {
|
92 |
+
double mid = 0.5 * (zl + zr);
|
93 |
+
double fm = compute_discriminant(mid, beta, z_a, y_effective);
|
94 |
+
|
95 |
+
if (fm == 0) {
|
96 |
+
zl = zr = mid;
|
97 |
+
break;
|
98 |
+
}
|
99 |
+
|
100 |
+
if ((fm > 0 && f1_local > 0) || (fm < 0 && f1_local < 0)) {
|
101 |
+
zl = mid;
|
102 |
+
f1_local = fm;
|
103 |
+
} else {
|
104 |
+
zr = mid;
|
105 |
+
f2_local = fm;
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
roots_found.push_back(0.5 * (zl + zr));
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
return roots_found;
|
114 |
+
}
|
115 |
+
|
116 |
+
// Sweep beta values and find z boundary values
|
117 |
+
std::tuple<py::array_t<double>, py::array_t<double>, py::array_t<double>>
|
118 |
+
sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) {
|
119 |
+
// Create beta values
|
120 |
+
py::array_t<double> betas(beta_steps);
|
121 |
+
auto betas_ptr = betas.mutable_data();
|
122 |
+
double beta_step = 1.0 / (beta_steps - 1);
|
123 |
+
for (int i = 0; i < beta_steps; i++) {
|
124 |
+
betas_ptr[i] = i * beta_step;
|
125 |
+
}
|
126 |
+
|
127 |
+
// Initialize arrays for min and max z values
|
128 |
+
py::array_t<double> z_min_values(beta_steps);
|
129 |
+
py::array_t<double> z_max_values(beta_steps);
|
130 |
+
auto z_min_ptr = z_min_values.mutable_data();
|
131 |
+
auto z_max_ptr = z_max_values.mutable_data();
|
132 |
+
|
133 |
+
for (int i = 0; i < beta_steps; i++) {
|
134 |
+
double beta = betas_ptr[i];
|
135 |
+
std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, z_steps);
|
136 |
+
|
137 |
+
if (roots.size() == 0) {
|
138 |
+
z_min_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
139 |
+
z_max_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
140 |
+
} else {
|
141 |
+
// Find min and max roots
|
142 |
+
double min_root = roots[0];
|
143 |
+
double max_root = roots[0];
|
144 |
+
for (size_t j = 1; j < roots.size(); j++) {
|
145 |
+
if (roots[j] < min_root) min_root = roots[j];
|
146 |
+
if (roots[j] > max_root) max_root = roots[j];
|
147 |
+
}
|
148 |
+
z_min_ptr[i] = min_root;
|
149 |
+
z_max_ptr[i] = max_root;
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
return std::make_tuple(betas, z_min_values, z_max_values);
|
154 |
+
}
|
155 |
+
|
156 |
+
// Compute High y Expression curve
|
157 |
+
py::array_t<double> compute_high_y_curve(py::array_t<double> betas, double z_a, double y) {
|
158 |
+
// Apply the condition for y
|
159 |
+
double y_effective = y > 1 ? y : 1/y;
|
160 |
+
|
161 |
+
auto betas_ptr = betas.data();
|
162 |
+
size_t n = betas.size();
|
163 |
+
py::array_t<double> result(n);
|
164 |
+
auto result_ptr = result.mutable_data();
|
165 |
+
|
166 |
+
double a = z_a;
|
167 |
+
double denominator = 1 - 2*a;
|
168 |
+
|
169 |
+
if (std::abs(denominator) < 1e-10) {
|
170 |
+
for (size_t i = 0; i < n; i++) {
|
171 |
+
result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
172 |
+
}
|
173 |
+
} else {
|
174 |
+
for (size_t i = 0; i < n; i++) {
|
175 |
+
double beta = betas_ptr[i];
|
176 |
+
double numerator = -4*a*(a-1)*y_effective*beta - 2*a*y_effective - 2*a*(2*a-1);
|
177 |
+
result_ptr[i] = numerator/denominator;
|
178 |
+
}
|
179 |
+
}
|
180 |
+
|
181 |
+
return result;
|
182 |
+
}
|
183 |
+
|
184 |
+
// Compute alternative low expression
|
185 |
+
py::array_t<double> compute_alternate_low_expr(py::array_t<double> betas, double z_a, double y) {
|
186 |
+
// Apply the condition for y
|
187 |
+
double y_effective = y > 1 ? y : 1/y;
|
188 |
+
|
189 |
+
auto betas_ptr = betas.data();
|
190 |
+
size_t n = betas.size();
|
191 |
+
py::array_t<double> result(n);
|
192 |
+
auto result_ptr = result.mutable_data();
|
193 |
+
|
194 |
+
for (size_t i = 0; i < n; i++) {
|
195 |
+
double beta = betas_ptr[i];
|
196 |
+
result_ptr[i] = (z_a * y_effective * beta * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a*z_a) / (2 + 2*z_a);
|
197 |
+
}
|
198 |
+
|
199 |
+
return result;
|
200 |
+
}
|
201 |
+
|
202 |
+
// Compute max k expression
|
203 |
+
py::array_t<double> compute_max_k_expression(py::array_t<double> betas, double z_a, double y, int k_samples=1000) {
|
204 |
+
// Apply the condition for y
|
205 |
+
double y_effective = y > 1 ? y : 1/y;
|
206 |
+
|
207 |
+
auto betas_ptr = betas.data();
|
208 |
+
size_t n = betas.size();
|
209 |
+
py::array_t<double> result(n);
|
210 |
+
auto result_ptr = result.mutable_data();
|
211 |
+
|
212 |
+
double a = z_a;
|
213 |
+
|
214 |
+
// Sample k values on a logarithmic scale
|
215 |
+
std::vector<double> k_values(k_samples);
|
216 |
+
double log_min = -3;
|
217 |
+
double log_max = 3;
|
218 |
+
double log_step = (log_max - log_min) / (k_samples - 1);
|
219 |
+
|
220 |
+
for (int j = 0; j < k_samples; j++) {
|
221 |
+
k_values[j] = std::pow(10, log_min + j * log_step);
|
222 |
+
}
|
223 |
+
|
224 |
+
for (size_t i = 0; i < n; i++) {
|
225 |
+
double beta = betas_ptr[i];
|
226 |
+
std::vector<double> values(k_samples);
|
227 |
+
|
228 |
+
for (int j = 0; j < k_samples; j++) {
|
229 |
+
double k = k_values[j];
|
230 |
+
double numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1);
|
231 |
+
double denominator = (a*k+1)*(k*k+k);
|
232 |
+
|
233 |
+
if (std::abs(denominator) < 1e-10) {
|
234 |
+
values[j] = std::numeric_limits<double>::quiet_NaN();
|
235 |
+
} else {
|
236 |
+
values[j] = numerator/denominator;
|
237 |
+
}
|
238 |
+
}
|
239 |
+
|
240 |
+
// Find max value, ignoring NaNs
|
241 |
+
double max_val = -std::numeric_limits<double>::infinity();
|
242 |
+
bool found_valid = false;
|
243 |
+
|
244 |
+
for (double val : values) {
|
245 |
+
if (!std::isnan(val) && val > max_val) {
|
246 |
+
max_val = val;
|
247 |
+
found_valid = true;
|
248 |
+
}
|
249 |
+
}
|
250 |
+
|
251 |
+
result_ptr[i] = found_valid ? max_val : std::numeric_limits<double>::quiet_NaN();
|
252 |
+
}
|
253 |
+
|
254 |
+
return result;
|
255 |
+
}
|
256 |
+
|
257 |
+
// Compute min t expression
|
258 |
+
py::array_t<double> compute_min_t_expression(py::array_t<double> betas, double z_a, double y, int t_samples=1000) {
|
259 |
+
// Apply the condition for y
|
260 |
+
double y_effective = y > 1 ? y : 1/y;
|
261 |
+
|
262 |
+
auto betas_ptr = betas.data();
|
263 |
+
size_t n = betas.size();
|
264 |
+
py::array_t<double> result(n);
|
265 |
+
auto result_ptr = result.mutable_data();
|
266 |
+
|
267 |
+
double a = z_a;
|
268 |
+
|
269 |
+
if (a <= 0) {
|
270 |
+
for (size_t i = 0; i < n; i++) {
|
271 |
+
result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
272 |
+
}
|
273 |
+
return result;
|
274 |
+
}
|
275 |
+
|
276 |
+
// Create t values from -1/a to 0
|
277 |
+
double lower_bound = -1/a + 1e-10; // Avoid division by zero
|
278 |
+
double step_size = (-1e-10 - lower_bound) / (t_samples - 1);
|
279 |
+
std::vector<double> t_values(t_samples);
|
280 |
+
|
281 |
+
for (int j = 0; j < t_samples; j++) {
|
282 |
+
t_values[j] = lower_bound + j * step_size;
|
283 |
+
}
|
284 |
+
|
285 |
+
for (size_t i = 0; i < n; i++) {
|
286 |
+
double beta = betas_ptr[i];
|
287 |
+
std::vector<double> values(t_samples);
|
288 |
+
|
289 |
+
for (int j = 0; j < t_samples; j++) {
|
290 |
+
double t = t_values[j];
|
291 |
+
double numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1);
|
292 |
+
double denominator = (a*t+1)*(t*t+t);
|
293 |
+
|
294 |
+
if (std::abs(denominator) < 1e-10) {
|
295 |
+
values[j] = std::numeric_limits<double>::quiet_NaN();
|
296 |
+
} else {
|
297 |
+
values[j] = numerator/denominator;
|
298 |
+
}
|
299 |
+
}
|
300 |
+
|
301 |
+
// Find min value, ignoring NaNs
|
302 |
+
double min_val = std::numeric_limits<double>::infinity();
|
303 |
+
bool found_valid = false;
|
304 |
+
|
305 |
+
for (double val : values) {
|
306 |
+
if (!std::isnan(val) && val < min_val) {
|
307 |
+
min_val = val;
|
308 |
+
found_valid = true;
|
309 |
+
}
|
310 |
+
}
|
311 |
+
|
312 |
+
result_ptr[i] = found_valid ? min_val : std::numeric_limits<double>::quiet_NaN();
|
313 |
+
}
|
314 |
+
|
315 |
+
return result;
|
316 |
+
}
|
317 |
+
|
318 |
+
// Compute eigenvalue support boundaries
|
319 |
+
std::tuple<py::array_t<double>, py::array_t<double>>
|
320 |
+
compute_eigenvalue_support_boundaries(double z_a, double y, py::array_t<double> beta_values,
|
321 |
+
int n_samples = 100, int seeds = 5) {
|
322 |
+
// Apply the condition for y
|
323 |
+
double y_effective = y > 1 ? y : 1/y;
|
324 |
+
|
325 |
+
auto beta_ptr = beta_values.data();
|
326 |
+
size_t num_betas = beta_values.size();
|
327 |
+
|
328 |
+
py::array_t<double> min_eigenvalues(num_betas);
|
329 |
+
py::array_t<double> max_eigenvalues(num_betas);
|
330 |
+
auto min_eig_ptr = min_eigenvalues.mutable_data();
|
331 |
+
auto max_eig_ptr = max_eigenvalues.mutable_data();
|
332 |
+
|
333 |
+
for (size_t i = 0; i < num_betas; i++) {
|
334 |
+
double beta = beta_ptr[i];
|
335 |
+
|
336 |
+
std::vector<double> min_vals;
|
337 |
+
std::vector<double> max_vals;
|
338 |
+
|
339 |
+
// Run multiple trials with different seeds
|
340 |
+
for (int seed = 0; seed < seeds; seed++) {
|
341 |
+
// Set random seed
|
342 |
+
srand(seed * 100 + i);
|
343 |
+
|
344 |
+
// Compute dimension p based on aspect ratio y
|
345 |
+
int n = n_samples;
|
346 |
+
int p = int(y_effective * n);
|
347 |
+
|
348 |
+
// Constructing T_n (Population / Shape Matrix)
|
349 |
+
int k = int(std::floor(beta * p));
|
350 |
+
|
351 |
+
// Create diagonal entries
|
352 |
+
std::vector<double> diag_entries(p);
|
353 |
+
for (int j = 0; j < k; j++) {
|
354 |
+
diag_entries[j] = z_a;
|
355 |
+
}
|
356 |
+
for (int j = k; j < p; j++) {
|
357 |
+
diag_entries[j] = 1.0;
|
358 |
+
}
|
359 |
+
|
360 |
+
// Shuffle the diagonal entries (simple Fisher-Yates shuffle)
|
361 |
+
for (int j = p-1; j > 0; j--) {
|
362 |
+
int idx = rand() % (j+1);
|
363 |
+
std::swap(diag_entries[j], diag_entries[idx]);
|
364 |
+
}
|
365 |
+
|
366 |
+
// Generate the data matrix X with i.i.d. standard normal entries
|
367 |
+
std::vector<std::vector<double>> X(p, std::vector<double>(n));
|
368 |
+
for (int row = 0; row < p; row++) {
|
369 |
+
for (int col = 0; col < n; col++) {
|
370 |
+
// Box-Muller transform to generate normal distribution
|
371 |
+
double u1 = rand() / (RAND_MAX + 1.0);
|
372 |
+
double u2 = rand() / (RAND_MAX + 1.0);
|
373 |
+
if (u1 < 1e-10) u1 = 1e-10; // Avoid log(0)
|
374 |
+
double z = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2);
|
375 |
+
X[row][col] = z;
|
376 |
+
}
|
377 |
+
}
|
378 |
+
|
379 |
+
// Compute the sample covariance matrix S_n = (1/n) * XX^T
|
380 |
+
std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
|
381 |
+
for (int row = 0; row < p; row++) {
|
382 |
+
for (int col = 0; col < p; col++) {
|
383 |
+
double sum = 0.0;
|
384 |
+
for (int k = 0; k < n; k++) {
|
385 |
+
sum += X[row][k] * X[col][k];
|
386 |
+
}
|
387 |
+
S_n[row][col] = sum / n;
|
388 |
+
}
|
389 |
+
}
|
390 |
+
|
391 |
+
// Compute B_n = S_n T_n
|
392 |
+
std::vector<std::vector<double>> B_n(p, std::vector<double>(p, 0.0));
|
393 |
+
for (int row = 0; row < p; row++) {
|
394 |
+
for (int col = 0; col < p; col++) {
|
395 |
+
B_n[row][col] = S_n[row][col] * diag_entries[col];
|
396 |
+
}
|
397 |
+
}
|
398 |
+
|
399 |
+
// Use Eigen library to compute eigenvalues
|
400 |
+
Eigen::MatrixXd B_n_eigen(p, p);
|
401 |
+
for (int row = 0; row < p; row++) {
|
402 |
+
for (int col = 0; col < p; col++) {
|
403 |
+
B_n_eigen(row, col) = B_n[row][col];
|
404 |
+
}
|
405 |
+
}
|
406 |
+
|
407 |
+
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> solver(B_n_eigen);
|
408 |
+
Eigen::VectorXd eigenvalues = solver.eigenvalues();
|
409 |
+
|
410 |
+
// Find min and max eigenvalues
|
411 |
+
if (p > 0) {
|
412 |
+
min_vals.push_back(eigenvalues(0));
|
413 |
+
max_vals.push_back(eigenvalues(p-1));
|
414 |
+
}
|
415 |
+
}
|
416 |
+
|
417 |
+
// Average over seeds for stability
|
418 |
+
if (!min_vals.empty() && !max_vals.empty()) {
|
419 |
+
double min_sum = 0.0, max_sum = 0.0;
|
420 |
+
for (double val : min_vals) min_sum += val;
|
421 |
+
for (double val : max_vals) max_sum += val;
|
422 |
+
|
423 |
+
min_eig_ptr[i] = min_sum / min_vals.size();
|
424 |
+
max_eig_ptr[i] = max_sum / max_vals.size();
|
425 |
+
} else {
|
426 |
+
min_eig_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
427 |
+
max_eig_ptr[i] = std::numeric_limits<double>::quiet_NaN();
|
428 |
+
}
|
429 |
+
}
|
430 |
+
|
431 |
+
return std::make_tuple(min_eigenvalues, max_eigenvalues);
|
432 |
+
}
|
433 |
+
|
434 |
+
PYBIND11_MODULE(cubic_cpp, m) {
|
435 |
+
m.doc() = "C++ implementation of cubic root analysis functions";
|
436 |
+
|
437 |
+
m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
|
438 |
+
"Sweep beta values and find z boundary values",
|
439 |
+
py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"),
|
440 |
+
py::arg("beta_steps"), py::arg("z_steps"));
|
441 |
+
|
442 |
+
m.def("compute_high_y_curve", &compute_high_y_curve,
|
443 |
+
"Compute High y Expression curve",
|
444 |
+
py::arg("betas"), py::arg("z_a"), py::arg("y"));
|
445 |
+
|
446 |
+
m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
|
447 |
+
"Compute alternative low expression",
|
448 |
+
py::arg("betas"), py::arg("z_a"), py::arg("y"));
|
449 |
+
|
450 |
+
m.def("compute_max_k_expression", &compute_max_k_expression,
|
451 |
+
"Compute max k expression",
|
452 |
+
py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("k_samples")=1000);
|
453 |
+
|
454 |
+
m.def("compute_min_t_expression", &compute_min_t_expression,
|
455 |
+
"Compute min t expression",
|
456 |
+
py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("t_samples")=1000);
|
457 |
+
|
458 |
+
m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
|
459 |
+
"Compute eigenvalue support boundaries",
|
460 |
+
py::arg("z_a"), py::arg("y"), py::arg("beta_values"),
|
461 |
+
py::arg("n_samples")=100, py::arg("seeds")=5);
|
462 |
+
}
|
463 |
+
'''
|
464 |
+
|
465 |
+
# Function to build and load the C++ extension
|
466 |
+
@st.cache_resource
|
467 |
+
def build_cpp_extension():
|
468 |
+
try:
|
469 |
+
# Create temporary directory
|
470 |
+
temp_dir = tempfile.mkdtemp()
|
471 |
+
|
472 |
+
# Write C++ code to a file
|
473 |
+
cpp_file = os.path.join(temp_dir, "cubic_cpp.cpp")
|
474 |
+
with open(cpp_file, "w") as f:
|
475 |
+
f.write(CPP_CODE)
|
476 |
+
|
477 |
+
# Check if pybind11 and Eigen are installed
|
478 |
+
try:
|
479 |
+
import pybind11
|
480 |
+
pybind11_include = pybind11.get_include()
|
481 |
+
except ImportError:
|
482 |
+
# Install pybind11 if not available
|
483 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "pybind11"])
|
484 |
+
import pybind11
|
485 |
+
pybind11_include = pybind11.get_include()
|
486 |
+
|
487 |
+
# Try to find Eigen or download it
|
488 |
+
eigen_include = os.path.join(temp_dir, "eigen")
|
489 |
+
if not os.path.exists(eigen_include):
|
490 |
+
os.makedirs(eigen_include)
|
491 |
+
# Download Eigen headers (just the minimal required parts)
|
492 |
+
subprocess.check_call(["wget", "https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.gz", "-O", os.path.join(temp_dir, "eigen.tar.gz")])
|
493 |
+
subprocess.check_call(["tar", "-xzf", os.path.join(temp_dir, "eigen.tar.gz"), "-C", temp_dir])
|
494 |
+
# Move Eigen headers to the include directory
|
495 |
+
eigen_src = os.path.join(temp_dir, "eigen-3.4.0")
|
496 |
+
for folder in ["Eigen", "unsupported"]:
|
497 |
+
if os.path.exists(os.path.join(eigen_src, folder)):
|
498 |
+
shutil.copytree(os.path.join(eigen_src, folder), os.path.join(eigen_include, folder))
|
499 |
+
|
500 |
+
# Build the extension module
|
501 |
+
setup_py = os.path.join(temp_dir, "setup.py")
|
502 |
+
with open(setup_py, "w") as f:
|
503 |
+
f.write(f'''
|
504 |
+
from setuptools import setup, Extension
|
505 |
+
import pybind11
|
506 |
+
import os
|
507 |
+
|
508 |
+
ext_modules = [
|
509 |
+
Extension(
|
510 |
+
'cubic_cpp',
|
511 |
+
['cubic_cpp.cpp'],
|
512 |
+
include_dirs=[
|
513 |
+
pybind11.get_include(),
|
514 |
+
os.path.dirname(os.path.abspath(__file__))
|
515 |
+
],
|
516 |
+
language='c++'
|
517 |
+
)
|
518 |
+
]
|
519 |
+
|
520 |
+
setup(
|
521 |
+
name='cubic_cpp',
|
522 |
+
ext_modules=ext_modules,
|
523 |
+
py_modules=[],
|
524 |
+
)
|
525 |
+
''')
|
526 |
+
|
527 |
+
# Build the extension in place
|
528 |
+
subprocess.check_call([sys.executable, setup_py, "build_ext", "--inplace"], cwd=temp_dir)
|
529 |
+
|
530 |
+
# Find the compiled module
|
531 |
+
extension_path = None
|
532 |
+
for file in os.listdir(temp_dir):
|
533 |
+
if file.startswith("cubic_cpp") and file.endswith(".so"):
|
534 |
+
extension_path = os.path.join(temp_dir, file)
|
535 |
+
break
|
536 |
+
|
537 |
+
if extension_path is None:
|
538 |
+
st.warning("Failed to find the compiled C++ extension")
|
539 |
+
return None
|
540 |
+
|
541 |
+
# Load the module
|
542 |
+
spec = importlib.util.spec_from_file_location("cubic_cpp", extension_path)
|
543 |
+
cubic_cpp = importlib.util.module_from_spec(spec)
|
544 |
+
spec.loader.exec_module(cubic_cpp)
|
545 |
+
|
546 |
+
return cubic_cpp
|
547 |
+
except Exception as e:
|
548 |
+
st.warning(f"Failed to build C++ extension: {str(e)}")
|
549 |
+
return None
|
550 |
+
|
551 |
+
# Try to build and load the C++ extension
|
552 |
+
cubic_cpp = build_cpp_extension()
|
553 |
+
|
554 |
def add_sqrt_support(expr_str):
|
555 |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
|
556 |
return expr_str.replace('sqrt(', 'sp.sqrt(')
|
|
|
583 |
Scan z in [z_min, z_max] for sign changes in the discriminant,
|
584 |
and return approximated roots (where the discriminant is zero).
|
585 |
"""
|
586 |
+
# Use C++ implementation if available
|
587 |
+
if cubic_cpp is not None:
|
588 |
+
roots = np.array(cubic_cpp.find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps))
|
589 |
+
return roots
|
590 |
+
|
591 |
+
# Python fallback implementation
|
592 |
# Apply the condition for y
|
593 |
y_effective = y if y > 1 else 1/y
|
594 |
|
|
|
625 |
for which the discriminant is zero.
|
626 |
Returns: betas, lower z*(β) values, and upper z*(β) values.
|
627 |
"""
|
628 |
+
# Use C++ implementation if available
|
629 |
+
if cubic_cpp is not None:
|
630 |
+
betas, z_min_values, z_max_values = cubic_cpp.sweep_beta_and_find_z_bounds(
|
631 |
+
z_a, y, z_min, z_max, beta_steps, z_steps)
|
632 |
+
return np.array(betas), np.array(z_min_values), np.array(z_max_values)
|
633 |
+
|
634 |
+
# Python fallback implementation
|
635 |
betas = np.linspace(0, 1, beta_steps)
|
636 |
z_min_values = []
|
637 |
z_max_values = []
|
|
|
651 |
Compute the support boundaries of the eigenvalue distribution by directly
|
652 |
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
|
653 |
"""
|
654 |
+
# Use C++ implementation if available
|
655 |
+
if cubic_cpp is not None:
|
656 |
+
min_eigenvalues, max_eigenvalues = cubic_cpp.compute_eigenvalue_support_boundaries(
|
657 |
+
z_a, y, beta_values, n_samples, seeds)
|
658 |
+
return np.array(min_eigenvalues), np.array(max_eigenvalues)
|
659 |
+
|
660 |
+
# Python fallback implementation
|
661 |
# Apply the condition for y
|
662 |
y_effective = y if y > 1 else 1/y
|
663 |
|
|
|
725 |
"""
|
726 |
Compute the "High y Expression" curve.
|
727 |
"""
|
728 |
+
# Use C++ implementation if available
|
729 |
+
if cubic_cpp is not None:
|
730 |
+
curve = cubic_cpp.compute_high_y_curve(betas, z_a, y)
|
731 |
+
return np.array(curve)
|
732 |
+
|
733 |
+
# Python fallback implementation
|
734 |
# Apply the condition for y
|
735 |
y_effective = y if y > 1 else 1/y
|
736 |
|
|
|
748 |
Compute the alternate low expression:
|
749 |
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
|
750 |
"""
|
751 |
+
# Use C++ implementation if available
|
752 |
+
if cubic_cpp is not None:
|
753 |
+
curve = cubic_cpp.compute_alternate_low_expr(betas, z_a, y)
|
754 |
+
return np.array(curve)
|
755 |
+
|
756 |
+
# Python fallback implementation
|
757 |
# Apply the condition for y
|
758 |
y_effective = y if y > 1 else 1/y
|
759 |
|
|
|
765 |
"""
|
766 |
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
|
767 |
"""
|
768 |
+
# Use C++ implementation if available
|
769 |
+
if cubic_cpp is not None:
|
770 |
+
curve = cubic_cpp.compute_max_k_expression(betas, z_a, y, k_samples)
|
771 |
+
return np.array(curve)
|
772 |
+
|
773 |
+
# Python fallback implementation
|
774 |
# Apply the condition for y
|
775 |
y_effective = y if y > 1 else 1/y
|
776 |
|
|
|
802 |
"""
|
803 |
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
|
804 |
"""
|
805 |
+
# Use C++ implementation if available
|
806 |
+
if cubic_cpp is not None:
|
807 |
+
curve = cubic_cpp.compute_min_t_expression(betas, z_a, y, t_samples)
|
808 |
+
return np.array(curve)
|
809 |
+
|
810 |
+
# Python fallback implementation
|
811 |
# Apply the condition for y
|
812 |
y_effective = y if y > 1 else 1/y
|
813 |
|
|
|
1071 |
)
|
1072 |
return fig
|
1073 |
|
1074 |
+
# Rest of your code for other functions and tabs...
|
1075 |
+
# [...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1076 |
|
1077 |
+
# ----- Tab 1: z*(β) Curves -----
|
1078 |
st.title("Cubic Root Analysis")
|
1079 |
+
st.header("Eigenvalue Support Boundaries")
|
1080 |
|
1081 |
+
# Cleaner layout with better column organization
|
1082 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
1083 |
|
1084 |
+
with col1:
|
1085 |
+
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
|
1086 |
+
y_1 = st.number_input("y", value=1.0, key="y_1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1087 |
|
1088 |
+
with col2:
|
1089 |
+
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
|
1090 |
+
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1091 |
|
1092 |
+
with col1:
|
1093 |
+
method_type = st.radio(
|
1094 |
+
"Calculation Method",
|
1095 |
+
["Eigenvalue Method", "Discriminant Method"],
|
1096 |
+
index=0 # Default to eigenvalue method
|
1097 |
+
)
|
1098 |
|
1099 |
+
# Advanced settings in collapsed expanders
|
1100 |
+
with st.expander("Method Settings", expanded=False):
|
1101 |
+
if method_type == "Eigenvalue Method":
|
1102 |
+
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
1103 |
+
key="beta_steps_eigen")
|
1104 |
+
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
1105 |
+
step=100)
|
1106 |
+
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
|
1107 |
+
else:
|
1108 |
+
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
1109 |
+
key="beta_steps")
|
1110 |
+
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
1111 |
+
step=1000, key="z_steps")
|
1112 |
|
1113 |
+
# Curve visibility options
|
1114 |
+
with st.expander("Curve Visibility", expanded=False):
|
1115 |
+
col_vis1, col_vis2 = st.columns(2)
|
1116 |
+
with col_vis1:
|
1117 |
+
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
|
1118 |
+
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
|
1119 |
+
with col_vis2:
|
1120 |
+
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
|
1121 |
+
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
|
1123 |
+
# Custom expressions collapsed by default
|
1124 |
+
with st.expander("Custom Expression 1 (s-based)", expanded=False):
|
1125 |
+
st.markdown("""Enter expressions for s = numerator/denominator
|
1126 |
+
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
1127 |
+
st.latex(r"\text{This s will be inserted into:}")
|
1128 |
+
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
|
1129 |
+
s_num = st.text_input("s numerator", value="", key="s_num")
|
1130 |
+
s_denom = st.text_input("s denominator", value="", key="s_denom")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1131 |
|
1132 |
+
with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
|
1133 |
+
st.markdown("""Enter direct expression for z(β) = numerator/denominator
|
1134 |
+
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
1135 |
+
z_num = st.text_input("z(β) numerator", value="", key="z_num")
|
1136 |
+
z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1137 |
|
1138 |
+
# Move show_derivatives to main UI level for better visibility
|
1139 |
+
with col2:
|
1140 |
+
show_derivatives = st.checkbox("Show derivatives", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1141 |
|
1142 |
+
# Compute button
|
1143 |
+
if st.button("Compute Curves", key="tab1_button"):
|
1144 |
+
with col3:
|
1145 |
+
use_eigenvalue_method = (method_type == "Eigenvalue Method")
|
1146 |
+
if use_eigenvalue_method:
|
1147 |
+
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
|
1148 |
+
s_num, s_denom, z_num, z_denom, show_derivatives,
|
1149 |
+
show_high_y, show_low_y, show_max_k, show_min_t,
|
1150 |
+
use_eigenvalue_method=True, n_samples=n_samples,
|
1151 |
+
seeds=seeds)
|
1152 |
+
else:
|
1153 |
+
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
|
1154 |
+
s_num, s_denom, z_num, z_denom, show_derivatives,
|
1155 |
+
show_high_y, show_low_y, show_max_k, show_min_t,
|
1156 |
+
use_eigenvalue_method=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1157 |
|
1158 |
+
if fig is not None:
|
1159 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1160 |
|
1161 |
+
# Curve explanations in collapsed expander
|
1162 |
+
with st.expander("Curve Explanations", expanded=False):
|
1163 |
+
if use_eigenvalue_method:
|
1164 |
+
st.markdown("""
|
1165 |
+
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
|
1166 |
+
- **Shaded Region**: Eigenvalue support region
|
1167 |
+
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1168 |
+
- **Low Expression** (Orange): Alternative asymptotic expression
|
1169 |
+
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1170 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1171 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1172 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1173 |
+
""")
|
1174 |
+
else:
|
1175 |
+
st.markdown("""
|
1176 |
+
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
1177 |
+
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
|
1178 |
+
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1179 |
+
- **Low Expression** (Orange): Alternative asymptotic expression
|
1180 |
+
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1181 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1182 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1183 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1184 |
+
""")
|
1185 |
+
if show_derivatives:
|
1186 |
+
st.markdown("""
|
1187 |
+
Derivatives are shown as:
|
1188 |
+
- Dashed lines: First derivatives (d/dβ)
|
1189 |
+
- Dotted lines: Second derivatives (d²/dβ²)
|
1190 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1191 |
|
1192 |
+
# Display C++ build status
|
1193 |
+
if cubic_cpp is None:
|
1194 |
+
st.warning("C++ extension could not be built. Using Python implementation.")
|
1195 |
+
else:
|
1196 |
+
st.success("C++ extension successfully built and loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|