euler314 commited on
Commit
3970830
·
verified ·
1 Parent(s): 72f92d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +691 -887
app.py CHANGED
@@ -4,6 +4,12 @@ import numpy as np
4
  import plotly.graph_objects as go
5
  from scipy.optimize import fsolve
6
  from scipy.stats import gaussian_kde
 
 
 
 
 
 
7
 
8
  # Configure Streamlit for Hugging Face Spaces
9
  st.set_page_config(
@@ -12,6 +18,539 @@ st.set_page_config(
12
  initial_sidebar_state="collapsed"
13
  )
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def add_sqrt_support(expr_str):
16
  """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
17
  return expr_str.replace('sqrt(', 'sp.sqrt(')
@@ -44,6 +583,12 @@ def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
44
  Scan z in [z_min, z_max] for sign changes in the discriminant,
45
  and return approximated roots (where the discriminant is zero).
46
  """
 
 
 
 
 
 
47
  # Apply the condition for y
48
  y_effective = y if y > 1 else 1/y
49
 
@@ -80,6 +625,13 @@ def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
80
  for which the discriminant is zero.
81
  Returns: betas, lower z*(β) values, and upper z*(β) values.
82
  """
 
 
 
 
 
 
 
83
  betas = np.linspace(0, 1, beta_steps)
84
  z_min_values = []
85
  z_max_values = []
@@ -99,6 +651,13 @@ def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, se
99
  Compute the support boundaries of the eigenvalue distribution by directly
100
  finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
101
  """
 
 
 
 
 
 
 
102
  # Apply the condition for y
103
  y_effective = y if y > 1 else 1/y
104
 
@@ -166,6 +725,12 @@ def compute_high_y_curve(betas, z_a, y):
166
  """
167
  Compute the "High y Expression" curve.
168
  """
 
 
 
 
 
 
169
  # Apply the condition for y
170
  y_effective = y if y > 1 else 1/y
171
 
@@ -183,6 +748,12 @@ def compute_alternate_low_expr(betas, z_a, y):
183
  Compute the alternate low expression:
184
  (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
185
  """
 
 
 
 
 
 
186
  # Apply the condition for y
187
  y_effective = y if y > 1 else 1/y
188
 
@@ -194,6 +765,12 @@ def compute_max_k_expression(betas, z_a, y, k_samples=1000):
194
  """
195
  Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
196
  """
 
 
 
 
 
 
197
  # Apply the condition for y
198
  y_effective = y if y > 1 else 1/y
199
 
@@ -225,6 +802,12 @@ def compute_min_t_expression(betas, z_a, y, t_samples=1000):
225
  """
226
  Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
227
  """
 
 
 
 
 
 
228
  # Apply the condition for y
229
  y_effective = y if y > 1 else 1/y
230
 
@@ -488,905 +1071,126 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
488
  )
489
  return fig
490
 
491
- def compute_cubic_roots(z, beta, z_a, y):
492
- """
493
- Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy.
494
- """
495
- # Apply the condition for y
496
- y_effective = y if y > 1 else 1/y
497
-
498
- # Import SymPy functions
499
- from sympy import symbols, solve, im, re, N, Poly
500
-
501
- # Create a symbolic variable for the equation
502
- s = symbols('s')
503
-
504
- # Coefficients in the form as^3 + bs^2 + cs + d = 0
505
- a = z * z_a
506
- b = z * z_a + z + z_a - z_a*y_effective
507
- c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
508
- d = 1
509
-
510
- # Handle special cases
511
- if abs(a) < 1e-10:
512
- if abs(b) < 1e-10: # Linear case
513
- roots = np.array([-d/c, 0, 0], dtype=complex)
514
- else: # Quadratic case
515
- quad_roots = np.roots([b, c, d])
516
- roots = np.append(quad_roots, 0).astype(complex)
517
- return roots
518
-
519
- try:
520
- # Create the cubic polynomial
521
- cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
522
-
523
- # Solve the equation symbolically
524
- symbolic_roots = solve(cubic_eq, s)
525
-
526
- # Convert symbolic roots to complex numbers with high precision
527
- numerical_roots = []
528
- for root in symbolic_roots:
529
- # Use SymPy's N function with high precision
530
- numerical_root = complex(N(root, 30))
531
- numerical_roots.append(numerical_root)
532
-
533
- # If we got fewer than 3 roots (due to multiplicity), pad with zeros
534
- while len(numerical_roots) < 3:
535
- numerical_roots.append(0j)
536
-
537
- return np.array(numerical_roots, dtype=complex)
538
-
539
- except Exception as e:
540
- # Fallback to numpy if SymPy has issues
541
- coeffs = [a, b, c, d]
542
- return np.roots(coeffs)
543
-
544
- def track_roots_consistently(z_values, all_roots):
545
- """
546
- Ensure consistent tracking of roots across z values by minimizing discontinuity.
547
- """
548
- n_points = len(z_values)
549
- n_roots = all_roots[0].shape[0]
550
- tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
551
- tracked_roots[0] = all_roots[0]
552
-
553
- for i in range(1, n_points):
554
- prev_roots = tracked_roots[i-1]
555
- current_roots = all_roots[i]
556
-
557
- # For each previous root, find the closest current root
558
- assigned = np.zeros(n_roots, dtype=bool)
559
- assignments = np.zeros(n_roots, dtype=int)
560
-
561
- for j in range(n_roots):
562
- distances = np.abs(current_roots - prev_roots[j])
563
-
564
- # Find the closest unassigned root
565
- while True:
566
- best_idx = np.argmin(distances)
567
- if not assigned[best_idx]:
568
- assignments[j] = best_idx
569
- assigned[best_idx] = True
570
- break
571
- else:
572
- # Mark as infinite distance and try again
573
- distances[best_idx] = np.inf
574
-
575
- # Safety check if all are assigned (shouldn't happen)
576
- if np.all(distances == np.inf):
577
- assignments[j] = j # Default to same index
578
- break
579
-
580
- # Reorder current roots based on assignments
581
- tracked_roots[i] = current_roots[assignments]
582
-
583
- return tracked_roots
584
-
585
- def generate_cubic_discriminant(z, beta, z_a, y_effective):
586
- """
587
- Calculate the cubic discriminant using the standard formula.
588
- For a cubic ax^3 + bx^2 + cx + d:
589
- Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
590
- """
591
- a = z * z_a
592
- b = z * z_a + z + z_a - z_a*y_effective
593
- c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
594
- d = 1
595
-
596
- # Standard formula for cubic discriminant
597
- discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
598
- return discriminant
599
-
600
- def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
601
- """
602
- Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy.
603
- """
604
- if z_a <= 0 or y <= 0 or z_min >= z_max:
605
- st.error("Invalid input parameters.")
606
- return None, None, None
607
-
608
- # Apply the condition for y
609
- y_effective = y if y > 1 else 1/y
610
-
611
- z_points = np.linspace(z_min, z_max, n_points)
612
-
613
- # Collect all roots first
614
- all_roots = []
615
- discriminants = []
616
-
617
- # Progress indicator
618
- progress_bar = st.progress(0)
619
- status_text = st.empty()
620
-
621
- for i, z in enumerate(z_points):
622
- # Update progress
623
- progress_bar.progress((i + 1) / n_points)
624
- status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
625
-
626
- # Calculate roots using SymPy
627
- roots = compute_cubic_roots(z, beta, z_a, y)
628
-
629
- # Initial sorting to help with tracking
630
- roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
631
- all_roots.append(roots)
632
-
633
- # Calculate discriminant
634
- disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
635
- discriminants.append(disc)
636
-
637
- # Clear progress indicators
638
- progress_bar.empty()
639
- status_text.empty()
640
-
641
- all_roots = np.array(all_roots)
642
- discriminants = np.array(discriminants)
643
-
644
- # Track roots consistently across z values
645
- tracked_roots = track_roots_consistently(z_points, all_roots)
646
-
647
- # Extract imaginary and real parts
648
- ims = np.imag(tracked_roots)
649
- res = np.real(tracked_roots)
650
-
651
- # Create figure for imaginary parts
652
- fig_im = go.Figure()
653
- for i in range(3):
654
- fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
655
- line=dict(width=2)))
656
-
657
- # Add vertical lines at discriminant zero crossings
658
- disc_zeros = []
659
- for i in range(len(discriminants)-1):
660
- if discriminants[i] * discriminants[i+1] <= 0: # Sign change
661
- zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
662
- disc_zeros.append(zero_pos)
663
- fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
664
-
665
- fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
666
- xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
667
-
668
- # Create figure for real parts
669
- fig_re = go.Figure()
670
- for i in range(3):
671
- fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
672
- line=dict(width=2)))
673
-
674
- # Add vertical lines at discriminant zero crossings
675
- for zero_pos in disc_zeros:
676
- fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
677
-
678
- fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
679
- xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
680
-
681
- # Create discriminant plot
682
- fig_disc = go.Figure()
683
- fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines",
684
- name="Cubic Discriminant", line=dict(color="black", width=2)))
685
- fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
686
-
687
- fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
688
- xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
689
-
690
- return fig_im, fig_re, fig_disc
691
-
692
- def analyze_complex_root_structure(beta_values, z, z_a, y):
693
- """
694
- Analyze when the cubic equation switches between having all real roots
695
- and having a complex conjugate pair plus one real root.
696
-
697
- Returns:
698
- - transition_points: beta values where the root structure changes
699
- - structure_types: list indicating whether each interval has all real roots or complex roots
700
- """
701
- # Apply the condition for y
702
- y_effective = y if y > 1 else 1/y
703
-
704
- transition_points = []
705
- structure_types = []
706
-
707
- previous_type = None
708
-
709
- for beta in beta_values:
710
- roots = compute_cubic_roots(z, beta, z_a, y)
711
-
712
- # Check if all roots are real (imaginary parts close to zero)
713
- is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
714
-
715
- current_type = "real" if is_all_real else "complex"
716
-
717
- if previous_type is not None and current_type != previous_type:
718
- # Found a transition point
719
- transition_points.append(beta)
720
- structure_types.append(previous_type)
721
-
722
- previous_type = current_type
723
-
724
- # Add the final interval type
725
- if previous_type is not None:
726
- structure_types.append(previous_type)
727
-
728
- return transition_points, structure_types
729
-
730
- def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
731
- """
732
- Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy.
733
- """
734
- if z_a <= 0 or y <= 0 or beta_min >= beta_max:
735
- st.error("Invalid input parameters.")
736
- return None, None, None
737
-
738
- # Apply the condition for y
739
- y_effective = y if y > 1 else 1/y
740
-
741
- beta_points = np.linspace(beta_min, beta_max, n_points)
742
-
743
- # Collect all roots first
744
- all_roots = []
745
- discriminants = []
746
-
747
- # Progress indicator
748
- progress_bar = st.progress(0)
749
- status_text = st.empty()
750
-
751
- for i, beta in enumerate(beta_points):
752
- # Update progress
753
- progress_bar.progress((i + 1) / n_points)
754
- status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
755
-
756
- # Calculate roots using SymPy
757
- roots = compute_cubic_roots(z, beta, z_a, y)
758
-
759
- # Initial sorting to help with tracking
760
- roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
761
- all_roots.append(roots)
762
-
763
- # Calculate discriminant
764
- disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
765
- discriminants.append(disc)
766
-
767
- # Clear progress indicators
768
- progress_bar.empty()
769
- status_text.empty()
770
-
771
- all_roots = np.array(all_roots)
772
- discriminants = np.array(discriminants)
773
-
774
- # Track roots consistently across beta values
775
- tracked_roots = track_roots_consistently(beta_points, all_roots)
776
-
777
- # Extract imaginary and real parts
778
- ims = np.imag(tracked_roots)
779
- res = np.real(tracked_roots)
780
-
781
- # Create figure for imaginary parts
782
- fig_im = go.Figure()
783
- for i in range(3):
784
- fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
785
- line=dict(width=2)))
786
-
787
- # Add vertical lines at discriminant zero crossings
788
- disc_zeros = []
789
- for i in range(len(discriminants)-1):
790
- if discriminants[i] * discriminants[i+1] <= 0: # Sign change
791
- zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
792
- disc_zeros.append(zero_pos)
793
- fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
794
-
795
- fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
796
- xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")
797
-
798
- # Create figure for real parts
799
- fig_re = go.Figure()
800
- for i in range(3):
801
- fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
802
- line=dict(width=2)))
803
-
804
- # Add vertical lines at discriminant zero crossings
805
- for zero_pos in disc_zeros:
806
- fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
807
-
808
- fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
809
- xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
810
-
811
- # Create discriminant plot
812
- fig_disc = go.Figure()
813
- fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines",
814
- name="Cubic Discriminant", line=dict(color="black", width=2)))
815
- fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
816
-
817
- fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
818
- xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
819
-
820
- return fig_im, fig_re, fig_disc
821
-
822
- def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
823
- beta_steps=100, z_steps=100):
824
- """
825
- Generate a phase diagram showing regions of complex and real roots.
826
-
827
- Returns a heatmap where:
828
- - Value 1 (red): Region with all real roots
829
- - Value -1 (blue): Region with complex roots
830
- """
831
- # Apply the condition for y
832
- y_effective = y if y > 1 else 1/y
833
-
834
- beta_values = np.linspace(beta_min, beta_max, beta_steps)
835
- z_values = np.linspace(z_min, z_max, z_steps)
836
-
837
- # Initialize phase map
838
- phase_map = np.zeros((z_steps, beta_steps))
839
-
840
- # Progress tracking
841
- progress_bar = st.progress(0)
842
- status_text = st.empty()
843
-
844
- for i, z in enumerate(z_values):
845
- # Update progress
846
- progress_bar.progress((i + 1) / len(z_values))
847
- status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
848
-
849
- for j, beta in enumerate(beta_values):
850
- roots = compute_cubic_roots(z, beta, z_a, y)
851
-
852
- # Check if all roots are real (imaginary parts close to zero)
853
- is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
854
-
855
- phase_map[i, j] = 1 if is_all_real else -1
856
-
857
- # Clear progress indicators
858
- progress_bar.empty()
859
- status_text.empty()
860
-
861
- # Create heatmap
862
- fig = go.Figure(data=go.Heatmap(
863
- z=phase_map,
864
- x=beta_values,
865
- y=z_values,
866
- colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
867
- zmin=-1,
868
- zmax=1,
869
- showscale=True,
870
- colorbar=dict(
871
- title="Root Type",
872
- tickvals=[-1, 1],
873
- ticktext=["Complex Roots", "All Real Roots"]
874
- )
875
- ))
876
-
877
- fig.update_layout(
878
- title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
879
- xaxis_title="β",
880
- yaxis_title="z",
881
- hovermode="closest"
882
- )
883
-
884
- return fig
885
-
886
- @st.cache_data
887
- def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
888
- """
889
- Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
890
- """
891
- # Apply the condition for y
892
- y_effective = y if y > 1 else 1/y
893
-
894
- # Set random seed
895
- np.random.seed(seed)
896
-
897
- # Compute dimension p based on aspect ratio y
898
- p = int(y_effective * n)
899
-
900
- # Constructing T_n (Population / Shape Matrix) - using the approach from the second script
901
- k = int(np.floor(beta * p))
902
- diag_entries = np.concatenate([
903
- np.full(k, z_a),
904
- np.full(p - k, 1.0)
905
- ])
906
- np.random.shuffle(diag_entries)
907
- T_n = np.diag(diag_entries)
908
-
909
- # Generate the data matrix X with i.i.d. standard normal entries
910
- X = np.random.randn(p, n)
911
-
912
- # Compute the sample covariance matrix S_n = (1/n) * XX^T
913
- S_n = (1 / n) * (X @ X.T)
914
-
915
- # Compute B_n = S_n T_n
916
- B_n = S_n @ T_n
917
-
918
- # Compute eigenvalues of B_n
919
- eigenvalues = np.linalg.eigvalsh(B_n)
920
-
921
- # Use KDE to compute a smooth density estimate
922
- kde = gaussian_kde(eigenvalues)
923
- x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
924
- kde_vals = kde(x_vals)
925
-
926
- # Create figure
927
- fig = go.Figure()
928
-
929
- # Add histogram trace
930
- fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
931
- name="Histogram", marker=dict(color='blue', opacity=0.6)))
932
-
933
- # Add KDE trace
934
- fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
935
- name="KDE", line=dict(color='red', width=2)))
936
-
937
- fig.update_layout(
938
- title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
939
- xaxis_title="Eigenvalue",
940
- yaxis_title="Density",
941
- hovermode="closest",
942
- showlegend=True
943
- )
944
-
945
- return fig, eigenvalues
946
 
947
- # ----------------- Streamlit UI -----------------
948
  st.title("Cubic Root Analysis")
 
949
 
950
- # Define three tabs
951
- tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])
952
 
953
- # ----- Tab 1: z*(β) Curves -----
954
- with tab1:
955
- st.header("Eigenvalue Support Boundaries")
956
-
957
- # Cleaner layout with better column organization
958
- col1, col2, col3 = st.columns([1, 1, 2])
959
-
960
- with col1:
961
- z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
962
- y_1 = st.number_input("y", value=1.0, key="y_1")
963
-
964
- with col2:
965
- z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
966
- z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
967
-
968
- with col1:
969
- method_type = st.radio(
970
- "Calculation Method",
971
- ["Eigenvalue Method", "Discriminant Method"],
972
- index=0 # Default to eigenvalue method
973
- )
974
 
975
- # Advanced settings in collapsed expanders
976
- with st.expander("Method Settings", expanded=False):
977
- if method_type == "Eigenvalue Method":
978
- beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
979
- key="beta_steps_eigen")
980
- n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
981
- step=100)
982
- seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
983
- else:
984
- beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
985
- key="beta_steps")
986
- z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
987
- step=1000, key="z_steps")
988
-
989
- # Curve visibility options
990
- with st.expander("Curve Visibility", expanded=False):
991
- col_vis1, col_vis2 = st.columns(2)
992
- with col_vis1:
993
- show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
994
- show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
995
- with col_vis2:
996
- show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
997
- show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
998
-
999
- # Custom expressions collapsed by default
1000
- with st.expander("Custom Expression 1 (s-based)", expanded=False):
1001
- st.markdown("""Enter expressions for s = numerator/denominator
1002
- (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
1003
- st.latex(r"\text{This s will be inserted into:}")
1004
- st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
1005
- s_num = st.text_input("s numerator", value="", key="s_num")
1006
- s_denom = st.text_input("s denominator", value="", key="s_denom")
1007
 
1008
- with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
1009
- st.markdown("""Enter direct expression for z(β) = numerator/denominator
1010
- (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
1011
- z_num = st.text_input("z(β) numerator", value="", key="z_num")
1012
- z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
 
1013
 
1014
- # Move show_derivatives to main UI level for better visibility
1015
- with col2:
1016
- show_derivatives = st.checkbox("Show derivatives", value=False)
 
 
 
 
 
 
 
 
 
 
1017
 
1018
- # Compute button
1019
- if st.button("Compute Curves", key="tab1_button"):
1020
- with col3:
1021
- use_eigenvalue_method = (method_type == "Eigenvalue Method")
1022
- if use_eigenvalue_method:
1023
- fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
1024
- s_num, s_denom, z_num, z_denom, show_derivatives,
1025
- show_high_y, show_low_y, show_max_k, show_min_t,
1026
- use_eigenvalue_method=True, n_samples=n_samples,
1027
- seeds=seeds)
1028
- else:
1029
- fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
1030
- s_num, s_denom, z_num, z_denom, show_derivatives,
1031
- show_high_y, show_low_y, show_max_k, show_min_t,
1032
- use_eigenvalue_method=False)
1033
-
1034
- if fig is not None:
1035
- st.plotly_chart(fig, use_container_width=True)
1036
-
1037
- # Curve explanations in collapsed expander
1038
- with st.expander("Curve Explanations", expanded=False):
1039
- if use_eigenvalue_method:
1040
- st.markdown("""
1041
- - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
1042
- - **Shaded Region**: Eigenvalue support region
1043
- - **High y Expression** (Green): Asymptotic approximation for high y values
1044
- - **Low Expression** (Orange): Alternative asymptotic expression
1045
- - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
1046
- - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
1047
- - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
1048
- - **Custom Expression 2** (Brown): Direct z(β) expression
1049
- """)
1050
- else:
1051
- st.markdown("""
1052
- - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
1053
- - **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
1054
- - **High y Expression** (Green): Asymptotic approximation for high y values
1055
- - **Low Expression** (Orange): Alternative asymptotic expression
1056
- - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
1057
- - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
1058
- - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
1059
- - **Custom Expression 2** (Brown): Direct z(β) expression
1060
- """)
1061
- if show_derivatives:
1062
- st.markdown("""
1063
- Derivatives are shown as:
1064
- - Dashed lines: First derivatives (d/dβ)
1065
- - Dotted lines: Second derivatives (d²/dβ²)
1066
- """)
1067
 
1068
- # ----- Tab 2: Complex Root Analysis -----
1069
- with tab2:
1070
- st.header("Complex Root Analysis")
1071
-
1072
- # Create tabs within the page for different plots
1073
- plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
1074
-
1075
- # Tab for Im{s} vs. z plot
1076
- with plot_tabs[0]:
1077
- col1, col2 = st.columns([1, 2])
1078
- with col1:
1079
- beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
1080
- y_z = st.number_input("y", value=1.0, key="y_tab2_z")
1081
- z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
1082
- z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
1083
- z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
1084
- with st.expander("Resolution Settings", expanded=False):
1085
- z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
1086
- if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
1087
- with col2:
1088
- fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
1089
- if fig_im is not None and fig_re is not None and fig_disc is not None:
1090
- st.plotly_chart(fig_im, use_container_width=True)
1091
- st.plotly_chart(fig_re, use_container_width=True)
1092
- st.plotly_chart(fig_disc, use_container_width=True)
1093
-
1094
- with st.expander("Root Structure Analysis", expanded=False):
1095
- st.markdown("""
1096
- ### Root Structure Explanation
1097
-
1098
- The red dashed vertical lines mark the points where the cubic discriminant equals zero.
1099
- At these points, the cubic equation's root structure changes:
1100
-
1101
- - When the discriminant is positive, the cubic has three distinct real roots.
1102
- - When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
1103
- - When the discriminant is exactly zero, the cubic has at least two equal roots.
1104
-
1105
- These transition points align perfectly with the z*(β) boundary curves from the first tab,
1106
- which represent exactly these transitions in the (β,z) plane.
1107
- """)
1108
 
1109
- # New tab for Im{s} vs. β plot
1110
- with plot_tabs[1]:
1111
- col1, col2 = st.columns([1, 2])
1112
- with col1:
1113
- z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
1114
- y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
1115
- z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
1116
- beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
1117
- beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
1118
- with st.expander("Resolution Settings", expanded=False):
1119
- beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
1120
- if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
1121
- with col2:
1122
- fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
1123
- z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
1124
-
1125
- if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
1126
- st.plotly_chart(fig_im_beta, use_container_width=True)
1127
- st.plotly_chart(fig_re_beta, use_container_width=True)
1128
- st.plotly_chart(fig_disc, use_container_width=True)
1129
-
1130
- # Add analysis of transition points
1131
- transition_points, structure_types = analyze_complex_root_structure(
1132
- np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
1133
-
1134
- if transition_points:
1135
- st.subheader("Root Structure Transition Points")
1136
- for i, beta in enumerate(transition_points):
1137
- prev_type = structure_types[i]
1138
- next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
1139
- st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
1140
- else:
1141
- st.info("No transitions detected in root structure across this β range.")
1142
-
1143
- # Explanation
1144
- with st.expander("Analysis Explanation", expanded=False):
1145
- st.markdown("""
1146
- ### Interpreting the Plots
1147
-
1148
- - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
1149
- - **Re{s} vs. β**: Shows how the real parts of the roots change with β.
1150
- - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
1151
- - When discriminant < 0: The cubic has one real root and two complex conjugate roots.
1152
- - When discriminant > 0: The cubic has three distinct real roots.
1153
- - When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
1154
-
1155
- The vertical red dashed lines mark the transition points where the root structure changes.
1156
- """)
1157
-
1158
- # Tab for Phase Diagram
1159
- with plot_tabs[2]:
1160
- col1, col2 = st.columns([1, 2])
1161
- with col1:
1162
- z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
1163
- y_phase = st.number_input("y", value=1.0, key="y_phase")
1164
- beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
1165
- beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
1166
- z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
1167
- z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
1168
-
1169
- with st.expander("Resolution Settings", expanded=False):
1170
- beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
1171
- z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
1172
-
1173
- if st.button("Generate Phase Diagram", key="tab2_button_phase"):
1174
- with col2:
1175
- st.info("Generating phase diagram. This may take a while depending on resolution...")
1176
- fig_phase = generate_phase_diagram(
1177
- z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase,
1178
- beta_steps_phase, z_steps_phase)
1179
-
1180
- if fig_phase is not None:
1181
- st.plotly_chart(fig_phase, use_container_width=True)
1182
-
1183
- with st.expander("Phase Diagram Explanation", expanded=False):
1184
- st.markdown("""
1185
- ### Understanding the Phase Diagram
1186
-
1187
- This heatmap shows the regions in the (β, z) plane where:
1188
-
1189
- - **Red Regions**: The cubic equation has all real roots
1190
- - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
1191
-
1192
- The boundaries between these regions represent values where the discriminant is zero,
1193
- which are the exact same curves as the z*(β) boundaries in the first tab. This phase
1194
- diagram provides a comprehensive view of the eigenvalue support structure.
1195
- """)
1196
-
1197
- # Eigenvalue distribution tab
1198
- with plot_tabs[3]:
1199
- st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
1200
- with st.expander("Simulation Information", expanded=False):
1201
- st.markdown("""
1202
- This simulation generates the eigenvalue distribution of B_n as n→∞, where:
1203
- - B_n = (1/n)XX^T with X being a p×n matrix
1204
- - p/n → y as n→∞
1205
- - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
1206
- """)
1207
-
1208
- col_eigen1, col_eigen2 = st.columns([1, 2])
1209
- with col_eigen1:
1210
- beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
1211
- y_eigen = st.number_input("y", value=1.0, key="y_eigen")
1212
- z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
1213
- n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
1214
- sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
1215
-
1216
- # Add comparison option
1217
- show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
1218
- show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
1219
 
1220
- if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
1221
- with col_eigen2:
1222
- # Generate the eigenvalue distribution
1223
- fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
1224
-
1225
- # If requested, compute and add theoretical boundaries
1226
- if show_theoretical:
1227
- # Calculate min and max eigenvalues using the support boundary functions
1228
- betas = np.array([beta_eigen])
1229
- min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
1230
-
1231
- # Add vertical lines for boundaries
1232
- fig_eigen.add_vline(
1233
- x=min_eig[0],
1234
- line=dict(color="red", width=2, dash="dash"),
1235
- annotation_text="Min theoretical",
1236
- annotation_position="top right"
1237
- )
1238
- fig_eigen.add_vline(
1239
- x=max_eig[0],
1240
- line=dict(color="red", width=2, dash="dash"),
1241
- annotation_text="Max theoretical",
1242
- annotation_position="top left"
1243
- )
1244
-
1245
- # Display the plot
1246
- st.plotly_chart(fig_eigen, use_container_width=True)
1247
-
1248
- # Add comparison of empirical vs theoretical bounds
1249
- if show_theoretical and show_empirical_stats:
1250
- empirical_min = eigenvalues.min()
1251
- empirical_max = eigenvalues.max()
1252
-
1253
- st.markdown("### Comparison of Empirical vs Theoretical Bounds")
1254
- col1, col2, col3 = st.columns(3)
1255
- with col1:
1256
- st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
1257
- st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
1258
- st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
1259
- with col2:
1260
- st.metric("Empirical Min", f"{empirical_min:.4f}")
1261
- st.metric("Empirical Max", f"{empirical_max:.4f}")
1262
- st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
1263
- with col3:
1264
- st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
1265
- st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
1266
- st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
1267
-
1268
- # Display additional statistics
1269
- if show_empirical_stats:
1270
- st.markdown("### Eigenvalue Statistics")
1271
- col1, col2 = st.columns(2)
1272
- with col1:
1273
- st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
1274
- st.metric("Median", f"{np.median(eigenvalues):.4f}")
1275
- with col2:
1276
- st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
1277
- st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
1278
 
1279
- # ----- Tab 3: Differential Analysis -----
1280
- with tab3:
1281
- st.header("Differential Analysis vs. β")
1282
- with st.expander("Description", expanded=False):
1283
- st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
1284
-
1285
- col1, col2 = st.columns([1, 2])
1286
- with col1:
1287
- z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
1288
- y_diff = st.number_input("y", value=1.0, key="y_diff")
1289
- z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
1290
- z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
1291
-
1292
- diff_method_type = st.radio(
1293
- "Boundary Calculation Method",
1294
- ["Eigenvalue Method", "Discriminant Method"],
1295
- index=0,
1296
- key="diff_method_type"
1297
- )
1298
-
1299
- with st.expander("Resolution Settings", expanded=False):
1300
- if diff_method_type == "Eigenvalue Method":
1301
- beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
1302
- key="beta_steps_diff_eigen")
1303
- diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
1304
- step=100, key="diff_n_samples")
1305
- diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
1306
- key="diff_seeds")
1307
- else:
1308
- beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
1309
- key="beta_steps_diff")
1310
- z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
1311
- step=1000, key="z_steps_diff")
1312
 
1313
- # Add options for curve selection
1314
- st.subheader("Curves to Analyze")
1315
- analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
1316
- analyze_high_y = st.checkbox("High y Expression", value=False)
1317
- analyze_alt_low = st.checkbox("Low y Expression", value=False)
1318
-
1319
- if st.button("Compute Differentials", key="tab3_button"):
1320
- with col2:
1321
- use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
1322
-
1323
- if use_eigenvalue_method_diff:
1324
- betas_diff = np.linspace(0, 1, beta_steps_diff)
1325
- st.info("Computing eigenvalue support boundaries. This may take a moment...")
1326
- lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
1327
- z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
1328
- else:
1329
- betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
1330
- z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
1331
 
1332
- # Create figure
1333
- fig_diff = go.Figure()
1334
-
1335
- if analyze_upper_lower:
1336
- diff_curve = upper_vals - lower_vals
1337
- d1 = np.gradient(diff_curve, betas_diff)
1338
- d2 = np.gradient(d1, betas_diff)
1339
-
1340
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
1341
- name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
1342
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
1343
- name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
1344
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
1345
- name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
1346
-
1347
- if analyze_high_y:
1348
- high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
1349
- d1 = np.gradient(high_y_curve, betas_diff)
1350
- d2 = np.gradient(d1, betas_diff)
1351
-
1352
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
1353
- name="High y", line=dict(color="green", width=2)))
1354
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
1355
- name="High y d/dβ", line=dict(color="green", dash='dash')))
1356
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
1357
- name="High y d²/dβ²", line=dict(color="green", dash='dot')))
1358
-
1359
- if analyze_alt_low:
1360
- alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
1361
- d1 = np.gradient(alt_low_curve, betas_diff)
1362
- d2 = np.gradient(d1, betas_diff)
1363
-
1364
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
1365
- name="Low y", line=dict(color="orange", width=2)))
1366
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
1367
- name="Low y d/dβ", line=dict(color="orange", dash='dash')))
1368
- fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
1369
- name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))
1370
 
1371
- fig_diff.update_layout(
1372
- title="Differential Analysis vs. β" +
1373
- (" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
1374
- xaxis_title="β",
1375
- yaxis_title="Value",
1376
- hovermode="x unified",
1377
- showlegend=True,
1378
- legend=dict(
1379
- yanchor="top",
1380
- y=0.99,
1381
- xanchor="left",
1382
- x=0.01
1383
- )
1384
- )
1385
- st.plotly_chart(fig_diff, use_container_width=True)
1386
-
1387
- with st.expander("Curve Types", expanded=False):
1388
- st.markdown("""
1389
- - Solid lines: Original curves
1390
- - Dashed lines: First derivatives (d/dβ)
1391
- - Dotted lines: Second derivatives (d²/dβ²)
1392
- """)
 
4
  import plotly.graph_objects as go
5
  from scipy.optimize import fsolve
6
  from scipy.stats import gaussian_kde
7
+ import os
8
+ import sys
9
+ import tempfile
10
+ import subprocess
11
+ import importlib.util
12
+ import shutil
13
 
14
  # Configure Streamlit for Hugging Face Spaces
15
  st.set_page_config(
 
18
  initial_sidebar_state="collapsed"
19
  )
20
 
21
+ # Define C++ extension code as a string
22
+ CPP_CODE = r'''
23
+ #include <pybind11/pybind11.h>
24
+ #include <pybind11/numpy.h>
25
+ #include <pybind11/eigen.h>
26
+ #include <Eigen/Dense>
27
+ #include <vector>
28
+ #include <cmath>
29
+ #include <limits>
30
+
31
+ namespace py = pybind11;
32
+
33
+ // Compute the cubic discriminant
34
+ double compute_discriminant(double z, double beta, double z_a, double y_effective) {
35
+ double a = z * z_a;
36
+ double b = z * z_a + z + z_a - z_a * y_effective;
37
+ double c = z + z_a + 1 - y_effective * (beta * z_a + 1 - beta);
38
+ double d = 1;
39
+
40
+ // Symbolic expression for the cubic discriminant
41
+ return std::pow((b*c)/(6*a*a) - std::pow(b, 3)/(27*std::pow(a, 3)) - d/(2*a), 2) +
42
+ std::pow(c/(3*a) - std::pow(b, 2)/(9*std::pow(a, 2)), 3);
43
+ }
44
+
45
+ // Find z values where the discriminant equals zero
46
+ std::vector<double> find_z_at_discriminant_zero(double z_a, double y, double beta,
47
+ double z_min, double z_max, int steps) {
48
+ // Apply the condition for y
49
+ double y_effective = y > 1 ? y : 1/y;
50
+
51
+ // Create z grid
52
+ std::vector<double> z_grid(steps);
53
+ double step_size = (z_max - z_min) / (steps - 1);
54
+ for (int i = 0; i < steps; i++) {
55
+ z_grid[i] = z_min + i * step_size;
56
+ }
57
+
58
+ // Calculate discriminant values
59
+ std::vector<double> disc_vals(steps);
60
+ for (int i = 0; i < steps; i++) {
61
+ disc_vals[i] = compute_discriminant(z_grid[i], beta, z_a, y_effective);
62
+ }
63
+
64
+ // Find roots
65
+ std::vector<double> roots_found;
66
+
67
+ for (int i = 0; i < steps - 1; i++) {
68
+ double f1 = disc_vals[i];
69
+ double f2 = disc_vals[i+1];
70
+
71
+ // Skip if NaN
72
+ if (std::isnan(f1) || std::isnan(f2)) {
73
+ continue;
74
+ }
75
+
76
+ // Check for exact zero
77
+ if (f1 == 0.0) {
78
+ roots_found.push_back(z_grid[i]);
79
+ }
80
+ else if (f2 == 0.0) {
81
+ roots_found.push_back(z_grid[i+1]);
82
+ }
83
+ // Check for sign change
84
+ else if (f1 * f2 < 0) {
85
+ double zl = z_grid[i];
86
+ double zr = z_grid[i+1];
87
+ double f1_local = f1;
88
+ double f2_local = f2;
89
+
90
+ // Use binary search to refine the root
91
+ for (int j = 0; j < 50; j++) {
92
+ double mid = 0.5 * (zl + zr);
93
+ double fm = compute_discriminant(mid, beta, z_a, y_effective);
94
+
95
+ if (fm == 0) {
96
+ zl = zr = mid;
97
+ break;
98
+ }
99
+
100
+ if ((fm > 0 && f1_local > 0) || (fm < 0 && f1_local < 0)) {
101
+ zl = mid;
102
+ f1_local = fm;
103
+ } else {
104
+ zr = mid;
105
+ f2_local = fm;
106
+ }
107
+ }
108
+
109
+ roots_found.push_back(0.5 * (zl + zr));
110
+ }
111
+ }
112
+
113
+ return roots_found;
114
+ }
115
+
116
+ // Sweep beta values and find z boundary values
117
+ std::tuple<py::array_t<double>, py::array_t<double>, py::array_t<double>>
118
+ sweep_beta_and_find_z_bounds(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) {
119
+ // Create beta values
120
+ py::array_t<double> betas(beta_steps);
121
+ auto betas_ptr = betas.mutable_data();
122
+ double beta_step = 1.0 / (beta_steps - 1);
123
+ for (int i = 0; i < beta_steps; i++) {
124
+ betas_ptr[i] = i * beta_step;
125
+ }
126
+
127
+ // Initialize arrays for min and max z values
128
+ py::array_t<double> z_min_values(beta_steps);
129
+ py::array_t<double> z_max_values(beta_steps);
130
+ auto z_min_ptr = z_min_values.mutable_data();
131
+ auto z_max_ptr = z_max_values.mutable_data();
132
+
133
+ for (int i = 0; i < beta_steps; i++) {
134
+ double beta = betas_ptr[i];
135
+ std::vector<double> roots = find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, z_steps);
136
+
137
+ if (roots.size() == 0) {
138
+ z_min_ptr[i] = std::numeric_limits<double>::quiet_NaN();
139
+ z_max_ptr[i] = std::numeric_limits<double>::quiet_NaN();
140
+ } else {
141
+ // Find min and max roots
142
+ double min_root = roots[0];
143
+ double max_root = roots[0];
144
+ for (size_t j = 1; j < roots.size(); j++) {
145
+ if (roots[j] < min_root) min_root = roots[j];
146
+ if (roots[j] > max_root) max_root = roots[j];
147
+ }
148
+ z_min_ptr[i] = min_root;
149
+ z_max_ptr[i] = max_root;
150
+ }
151
+ }
152
+
153
+ return std::make_tuple(betas, z_min_values, z_max_values);
154
+ }
155
+
156
+ // Compute High y Expression curve
157
+ py::array_t<double> compute_high_y_curve(py::array_t<double> betas, double z_a, double y) {
158
+ // Apply the condition for y
159
+ double y_effective = y > 1 ? y : 1/y;
160
+
161
+ auto betas_ptr = betas.data();
162
+ size_t n = betas.size();
163
+ py::array_t<double> result(n);
164
+ auto result_ptr = result.mutable_data();
165
+
166
+ double a = z_a;
167
+ double denominator = 1 - 2*a;
168
+
169
+ if (std::abs(denominator) < 1e-10) {
170
+ for (size_t i = 0; i < n; i++) {
171
+ result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
172
+ }
173
+ } else {
174
+ for (size_t i = 0; i < n; i++) {
175
+ double beta = betas_ptr[i];
176
+ double numerator = -4*a*(a-1)*y_effective*beta - 2*a*y_effective - 2*a*(2*a-1);
177
+ result_ptr[i] = numerator/denominator;
178
+ }
179
+ }
180
+
181
+ return result;
182
+ }
183
+
184
+ // Compute alternative low expression
185
+ py::array_t<double> compute_alternate_low_expr(py::array_t<double> betas, double z_a, double y) {
186
+ // Apply the condition for y
187
+ double y_effective = y > 1 ? y : 1/y;
188
+
189
+ auto betas_ptr = betas.data();
190
+ size_t n = betas.size();
191
+ py::array_t<double> result(n);
192
+ auto result_ptr = result.mutable_data();
193
+
194
+ for (size_t i = 0; i < n; i++) {
195
+ double beta = betas_ptr[i];
196
+ result_ptr[i] = (z_a * y_effective * beta * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a*z_a) / (2 + 2*z_a);
197
+ }
198
+
199
+ return result;
200
+ }
201
+
202
+ // Compute max k expression
203
+ py::array_t<double> compute_max_k_expression(py::array_t<double> betas, double z_a, double y, int k_samples=1000) {
204
+ // Apply the condition for y
205
+ double y_effective = y > 1 ? y : 1/y;
206
+
207
+ auto betas_ptr = betas.data();
208
+ size_t n = betas.size();
209
+ py::array_t<double> result(n);
210
+ auto result_ptr = result.mutable_data();
211
+
212
+ double a = z_a;
213
+
214
+ // Sample k values on a logarithmic scale
215
+ std::vector<double> k_values(k_samples);
216
+ double log_min = -3;
217
+ double log_max = 3;
218
+ double log_step = (log_max - log_min) / (k_samples - 1);
219
+
220
+ for (int j = 0; j < k_samples; j++) {
221
+ k_values[j] = std::pow(10, log_min + j * log_step);
222
+ }
223
+
224
+ for (size_t i = 0; i < n; i++) {
225
+ double beta = betas_ptr[i];
226
+ std::vector<double> values(k_samples);
227
+
228
+ for (int j = 0; j < k_samples; j++) {
229
+ double k = k_values[j];
230
+ double numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1);
231
+ double denominator = (a*k+1)*(k*k+k);
232
+
233
+ if (std::abs(denominator) < 1e-10) {
234
+ values[j] = std::numeric_limits<double>::quiet_NaN();
235
+ } else {
236
+ values[j] = numerator/denominator;
237
+ }
238
+ }
239
+
240
+ // Find max value, ignoring NaNs
241
+ double max_val = -std::numeric_limits<double>::infinity();
242
+ bool found_valid = false;
243
+
244
+ for (double val : values) {
245
+ if (!std::isnan(val) && val > max_val) {
246
+ max_val = val;
247
+ found_valid = true;
248
+ }
249
+ }
250
+
251
+ result_ptr[i] = found_valid ? max_val : std::numeric_limits<double>::quiet_NaN();
252
+ }
253
+
254
+ return result;
255
+ }
256
+
257
+ // Compute min t expression
258
+ py::array_t<double> compute_min_t_expression(py::array_t<double> betas, double z_a, double y, int t_samples=1000) {
259
+ // Apply the condition for y
260
+ double y_effective = y > 1 ? y : 1/y;
261
+
262
+ auto betas_ptr = betas.data();
263
+ size_t n = betas.size();
264
+ py::array_t<double> result(n);
265
+ auto result_ptr = result.mutable_data();
266
+
267
+ double a = z_a;
268
+
269
+ if (a <= 0) {
270
+ for (size_t i = 0; i < n; i++) {
271
+ result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
272
+ }
273
+ return result;
274
+ }
275
+
276
+ // Create t values from -1/a to 0
277
+ double lower_bound = -1/a + 1e-10; // Avoid division by zero
278
+ double step_size = (-1e-10 - lower_bound) / (t_samples - 1);
279
+ std::vector<double> t_values(t_samples);
280
+
281
+ for (int j = 0; j < t_samples; j++) {
282
+ t_values[j] = lower_bound + j * step_size;
283
+ }
284
+
285
+ for (size_t i = 0; i < n; i++) {
286
+ double beta = betas_ptr[i];
287
+ std::vector<double> values(t_samples);
288
+
289
+ for (int j = 0; j < t_samples; j++) {
290
+ double t = t_values[j];
291
+ double numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1);
292
+ double denominator = (a*t+1)*(t*t+t);
293
+
294
+ if (std::abs(denominator) < 1e-10) {
295
+ values[j] = std::numeric_limits<double>::quiet_NaN();
296
+ } else {
297
+ values[j] = numerator/denominator;
298
+ }
299
+ }
300
+
301
+ // Find min value, ignoring NaNs
302
+ double min_val = std::numeric_limits<double>::infinity();
303
+ bool found_valid = false;
304
+
305
+ for (double val : values) {
306
+ if (!std::isnan(val) && val < min_val) {
307
+ min_val = val;
308
+ found_valid = true;
309
+ }
310
+ }
311
+
312
+ result_ptr[i] = found_valid ? min_val : std::numeric_limits<double>::quiet_NaN();
313
+ }
314
+
315
+ return result;
316
+ }
317
+
318
+ // Compute eigenvalue support boundaries
319
+ std::tuple<py::array_t<double>, py::array_t<double>>
320
+ compute_eigenvalue_support_boundaries(double z_a, double y, py::array_t<double> beta_values,
321
+ int n_samples = 100, int seeds = 5) {
322
+ // Apply the condition for y
323
+ double y_effective = y > 1 ? y : 1/y;
324
+
325
+ auto beta_ptr = beta_values.data();
326
+ size_t num_betas = beta_values.size();
327
+
328
+ py::array_t<double> min_eigenvalues(num_betas);
329
+ py::array_t<double> max_eigenvalues(num_betas);
330
+ auto min_eig_ptr = min_eigenvalues.mutable_data();
331
+ auto max_eig_ptr = max_eigenvalues.mutable_data();
332
+
333
+ for (size_t i = 0; i < num_betas; i++) {
334
+ double beta = beta_ptr[i];
335
+
336
+ std::vector<double> min_vals;
337
+ std::vector<double> max_vals;
338
+
339
+ // Run multiple trials with different seeds
340
+ for (int seed = 0; seed < seeds; seed++) {
341
+ // Set random seed
342
+ srand(seed * 100 + i);
343
+
344
+ // Compute dimension p based on aspect ratio y
345
+ int n = n_samples;
346
+ int p = int(y_effective * n);
347
+
348
+ // Constructing T_n (Population / Shape Matrix)
349
+ int k = int(std::floor(beta * p));
350
+
351
+ // Create diagonal entries
352
+ std::vector<double> diag_entries(p);
353
+ for (int j = 0; j < k; j++) {
354
+ diag_entries[j] = z_a;
355
+ }
356
+ for (int j = k; j < p; j++) {
357
+ diag_entries[j] = 1.0;
358
+ }
359
+
360
+ // Shuffle the diagonal entries (simple Fisher-Yates shuffle)
361
+ for (int j = p-1; j > 0; j--) {
362
+ int idx = rand() % (j+1);
363
+ std::swap(diag_entries[j], diag_entries[idx]);
364
+ }
365
+
366
+ // Generate the data matrix X with i.i.d. standard normal entries
367
+ std::vector<std::vector<double>> X(p, std::vector<double>(n));
368
+ for (int row = 0; row < p; row++) {
369
+ for (int col = 0; col < n; col++) {
370
+ // Box-Muller transform to generate normal distribution
371
+ double u1 = rand() / (RAND_MAX + 1.0);
372
+ double u2 = rand() / (RAND_MAX + 1.0);
373
+ if (u1 < 1e-10) u1 = 1e-10; // Avoid log(0)
374
+ double z = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2);
375
+ X[row][col] = z;
376
+ }
377
+ }
378
+
379
+ // Compute the sample covariance matrix S_n = (1/n) * XX^T
380
+ std::vector<std::vector<double>> S_n(p, std::vector<double>(p, 0.0));
381
+ for (int row = 0; row < p; row++) {
382
+ for (int col = 0; col < p; col++) {
383
+ double sum = 0.0;
384
+ for (int k = 0; k < n; k++) {
385
+ sum += X[row][k] * X[col][k];
386
+ }
387
+ S_n[row][col] = sum / n;
388
+ }
389
+ }
390
+
391
+ // Compute B_n = S_n T_n
392
+ std::vector<std::vector<double>> B_n(p, std::vector<double>(p, 0.0));
393
+ for (int row = 0; row < p; row++) {
394
+ for (int col = 0; col < p; col++) {
395
+ B_n[row][col] = S_n[row][col] * diag_entries[col];
396
+ }
397
+ }
398
+
399
+ // Use Eigen library to compute eigenvalues
400
+ Eigen::MatrixXd B_n_eigen(p, p);
401
+ for (int row = 0; row < p; row++) {
402
+ for (int col = 0; col < p; col++) {
403
+ B_n_eigen(row, col) = B_n[row][col];
404
+ }
405
+ }
406
+
407
+ Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> solver(B_n_eigen);
408
+ Eigen::VectorXd eigenvalues = solver.eigenvalues();
409
+
410
+ // Find min and max eigenvalues
411
+ if (p > 0) {
412
+ min_vals.push_back(eigenvalues(0));
413
+ max_vals.push_back(eigenvalues(p-1));
414
+ }
415
+ }
416
+
417
+ // Average over seeds for stability
418
+ if (!min_vals.empty() && !max_vals.empty()) {
419
+ double min_sum = 0.0, max_sum = 0.0;
420
+ for (double val : min_vals) min_sum += val;
421
+ for (double val : max_vals) max_sum += val;
422
+
423
+ min_eig_ptr[i] = min_sum / min_vals.size();
424
+ max_eig_ptr[i] = max_sum / max_vals.size();
425
+ } else {
426
+ min_eig_ptr[i] = std::numeric_limits<double>::quiet_NaN();
427
+ max_eig_ptr[i] = std::numeric_limits<double>::quiet_NaN();
428
+ }
429
+ }
430
+
431
+ return std::make_tuple(min_eigenvalues, max_eigenvalues);
432
+ }
433
+
434
+ PYBIND11_MODULE(cubic_cpp, m) {
435
+ m.doc() = "C++ implementation of cubic root analysis functions";
436
+
437
+ m.def("sweep_beta_and_find_z_bounds", &sweep_beta_and_find_z_bounds,
438
+ "Sweep beta values and find z boundary values",
439
+ py::arg("z_a"), py::arg("y"), py::arg("z_min"), py::arg("z_max"),
440
+ py::arg("beta_steps"), py::arg("z_steps"));
441
+
442
+ m.def("compute_high_y_curve", &compute_high_y_curve,
443
+ "Compute High y Expression curve",
444
+ py::arg("betas"), py::arg("z_a"), py::arg("y"));
445
+
446
+ m.def("compute_alternate_low_expr", &compute_alternate_low_expr,
447
+ "Compute alternative low expression",
448
+ py::arg("betas"), py::arg("z_a"), py::arg("y"));
449
+
450
+ m.def("compute_max_k_expression", &compute_max_k_expression,
451
+ "Compute max k expression",
452
+ py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("k_samples")=1000);
453
+
454
+ m.def("compute_min_t_expression", &compute_min_t_expression,
455
+ "Compute min t expression",
456
+ py::arg("betas"), py::arg("z_a"), py::arg("y"), py::arg("t_samples")=1000);
457
+
458
+ m.def("compute_eigenvalue_support_boundaries", &compute_eigenvalue_support_boundaries,
459
+ "Compute eigenvalue support boundaries",
460
+ py::arg("z_a"), py::arg("y"), py::arg("beta_values"),
461
+ py::arg("n_samples")=100, py::arg("seeds")=5);
462
+ }
463
+ '''
464
+
465
+ # Function to build and load the C++ extension
466
+ @st.cache_resource
467
+ def build_cpp_extension():
468
+ try:
469
+ # Create temporary directory
470
+ temp_dir = tempfile.mkdtemp()
471
+
472
+ # Write C++ code to a file
473
+ cpp_file = os.path.join(temp_dir, "cubic_cpp.cpp")
474
+ with open(cpp_file, "w") as f:
475
+ f.write(CPP_CODE)
476
+
477
+ # Check if pybind11 and Eigen are installed
478
+ try:
479
+ import pybind11
480
+ pybind11_include = pybind11.get_include()
481
+ except ImportError:
482
+ # Install pybind11 if not available
483
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "pybind11"])
484
+ import pybind11
485
+ pybind11_include = pybind11.get_include()
486
+
487
+ # Try to find Eigen or download it
488
+ eigen_include = os.path.join(temp_dir, "eigen")
489
+ if not os.path.exists(eigen_include):
490
+ os.makedirs(eigen_include)
491
+ # Download Eigen headers (just the minimal required parts)
492
+ subprocess.check_call(["wget", "https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.gz", "-O", os.path.join(temp_dir, "eigen.tar.gz")])
493
+ subprocess.check_call(["tar", "-xzf", os.path.join(temp_dir, "eigen.tar.gz"), "-C", temp_dir])
494
+ # Move Eigen headers to the include directory
495
+ eigen_src = os.path.join(temp_dir, "eigen-3.4.0")
496
+ for folder in ["Eigen", "unsupported"]:
497
+ if os.path.exists(os.path.join(eigen_src, folder)):
498
+ shutil.copytree(os.path.join(eigen_src, folder), os.path.join(eigen_include, folder))
499
+
500
+ # Build the extension module
501
+ setup_py = os.path.join(temp_dir, "setup.py")
502
+ with open(setup_py, "w") as f:
503
+ f.write(f'''
504
+ from setuptools import setup, Extension
505
+ import pybind11
506
+ import os
507
+
508
+ ext_modules = [
509
+ Extension(
510
+ 'cubic_cpp',
511
+ ['cubic_cpp.cpp'],
512
+ include_dirs=[
513
+ pybind11.get_include(),
514
+ os.path.dirname(os.path.abspath(__file__))
515
+ ],
516
+ language='c++'
517
+ )
518
+ ]
519
+
520
+ setup(
521
+ name='cubic_cpp',
522
+ ext_modules=ext_modules,
523
+ py_modules=[],
524
+ )
525
+ ''')
526
+
527
+ # Build the extension in place
528
+ subprocess.check_call([sys.executable, setup_py, "build_ext", "--inplace"], cwd=temp_dir)
529
+
530
+ # Find the compiled module
531
+ extension_path = None
532
+ for file in os.listdir(temp_dir):
533
+ if file.startswith("cubic_cpp") and file.endswith(".so"):
534
+ extension_path = os.path.join(temp_dir, file)
535
+ break
536
+
537
+ if extension_path is None:
538
+ st.warning("Failed to find the compiled C++ extension")
539
+ return None
540
+
541
+ # Load the module
542
+ spec = importlib.util.spec_from_file_location("cubic_cpp", extension_path)
543
+ cubic_cpp = importlib.util.module_from_spec(spec)
544
+ spec.loader.exec_module(cubic_cpp)
545
+
546
+ return cubic_cpp
547
+ except Exception as e:
548
+ st.warning(f"Failed to build C++ extension: {str(e)}")
549
+ return None
550
+
551
+ # Try to build and load the C++ extension
552
+ cubic_cpp = build_cpp_extension()
553
+
554
  def add_sqrt_support(expr_str):
555
  """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
556
  return expr_str.replace('sqrt(', 'sp.sqrt(')
 
583
  Scan z in [z_min, z_max] for sign changes in the discriminant,
584
  and return approximated roots (where the discriminant is zero).
585
  """
586
+ # Use C++ implementation if available
587
+ if cubic_cpp is not None:
588
+ roots = np.array(cubic_cpp.find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps))
589
+ return roots
590
+
591
+ # Python fallback implementation
592
  # Apply the condition for y
593
  y_effective = y if y > 1 else 1/y
594
 
 
625
  for which the discriminant is zero.
626
  Returns: betas, lower z*(β) values, and upper z*(β) values.
627
  """
628
+ # Use C++ implementation if available
629
+ if cubic_cpp is not None:
630
+ betas, z_min_values, z_max_values = cubic_cpp.sweep_beta_and_find_z_bounds(
631
+ z_a, y, z_min, z_max, beta_steps, z_steps)
632
+ return np.array(betas), np.array(z_min_values), np.array(z_max_values)
633
+
634
+ # Python fallback implementation
635
  betas = np.linspace(0, 1, beta_steps)
636
  z_min_values = []
637
  z_max_values = []
 
651
  Compute the support boundaries of the eigenvalue distribution by directly
652
  finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
653
  """
654
+ # Use C++ implementation if available
655
+ if cubic_cpp is not None:
656
+ min_eigenvalues, max_eigenvalues = cubic_cpp.compute_eigenvalue_support_boundaries(
657
+ z_a, y, beta_values, n_samples, seeds)
658
+ return np.array(min_eigenvalues), np.array(max_eigenvalues)
659
+
660
+ # Python fallback implementation
661
  # Apply the condition for y
662
  y_effective = y if y > 1 else 1/y
663
 
 
725
  """
726
  Compute the "High y Expression" curve.
727
  """
728
+ # Use C++ implementation if available
729
+ if cubic_cpp is not None:
730
+ curve = cubic_cpp.compute_high_y_curve(betas, z_a, y)
731
+ return np.array(curve)
732
+
733
+ # Python fallback implementation
734
  # Apply the condition for y
735
  y_effective = y if y > 1 else 1/y
736
 
 
748
  Compute the alternate low expression:
749
  (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
750
  """
751
+ # Use C++ implementation if available
752
+ if cubic_cpp is not None:
753
+ curve = cubic_cpp.compute_alternate_low_expr(betas, z_a, y)
754
+ return np.array(curve)
755
+
756
+ # Python fallback implementation
757
  # Apply the condition for y
758
  y_effective = y if y > 1 else 1/y
759
 
 
765
  """
766
  Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
767
  """
768
+ # Use C++ implementation if available
769
+ if cubic_cpp is not None:
770
+ curve = cubic_cpp.compute_max_k_expression(betas, z_a, y, k_samples)
771
+ return np.array(curve)
772
+
773
+ # Python fallback implementation
774
  # Apply the condition for y
775
  y_effective = y if y > 1 else 1/y
776
 
 
802
  """
803
  Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
804
  """
805
+ # Use C++ implementation if available
806
+ if cubic_cpp is not None:
807
+ curve = cubic_cpp.compute_min_t_expression(betas, z_a, y, t_samples)
808
+ return np.array(curve)
809
+
810
+ # Python fallback implementation
811
  # Apply the condition for y
812
  y_effective = y if y > 1 else 1/y
813
 
 
1071
  )
1072
  return fig
1073
 
1074
+ # Rest of your code for other functions and tabs...
1075
+ # [...]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
 
1077
+ # ----- Tab 1: z*(β) Curves -----
1078
  st.title("Cubic Root Analysis")
1079
+ st.header("Eigenvalue Support Boundaries")
1080
 
1081
+ # Cleaner layout with better column organization
1082
+ col1, col2, col3 = st.columns([1, 1, 2])
1083
 
1084
+ with col1:
1085
+ z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
1086
+ y_1 = st.number_input("y", value=1.0, key="y_1")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
 
1088
+ with col2:
1089
+ z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
1090
+ z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
 
1092
+ with col1:
1093
+ method_type = st.radio(
1094
+ "Calculation Method",
1095
+ ["Eigenvalue Method", "Discriminant Method"],
1096
+ index=0 # Default to eigenvalue method
1097
+ )
1098
 
1099
+ # Advanced settings in collapsed expanders
1100
+ with st.expander("Method Settings", expanded=False):
1101
+ if method_type == "Eigenvalue Method":
1102
+ beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
1103
+ key="beta_steps_eigen")
1104
+ n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
1105
+ step=100)
1106
+ seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
1107
+ else:
1108
+ beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
1109
+ key="beta_steps")
1110
+ z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
1111
+ step=1000, key="z_steps")
1112
 
1113
+ # Curve visibility options
1114
+ with st.expander("Curve Visibility", expanded=False):
1115
+ col_vis1, col_vis2 = st.columns(2)
1116
+ with col_vis1:
1117
+ show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
1118
+ show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
1119
+ with col_vis2:
1120
+ show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
1121
+ show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
 
1123
+ # Custom expressions collapsed by default
1124
+ with st.expander("Custom Expression 1 (s-based)", expanded=False):
1125
+ st.markdown("""Enter expressions for s = numerator/denominator
1126
+ (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
1127
+ st.latex(r"\text{This s will be inserted into:}")
1128
+ st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
1129
+ s_num = st.text_input("s numerator", value="", key="s_num")
1130
+ s_denom = st.text_input("s denominator", value="", key="s_denom")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131
 
1132
+ with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
1133
+ st.markdown("""Enter direct expression for z(β) = numerator/denominator
1134
+ (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
1135
+ z_num = st.text_input("z(β) numerator", value="", key="z_num")
1136
+ z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137
 
1138
+ # Move show_derivatives to main UI level for better visibility
1139
+ with col2:
1140
+ show_derivatives = st.checkbox("Show derivatives", value=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
 
1142
+ # Compute button
1143
+ if st.button("Compute Curves", key="tab1_button"):
1144
+ with col3:
1145
+ use_eigenvalue_method = (method_type == "Eigenvalue Method")
1146
+ if use_eigenvalue_method:
1147
+ fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
1148
+ s_num, s_denom, z_num, z_denom, show_derivatives,
1149
+ show_high_y, show_low_y, show_max_k, show_min_t,
1150
+ use_eigenvalue_method=True, n_samples=n_samples,
1151
+ seeds=seeds)
1152
+ else:
1153
+ fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
1154
+ s_num, s_denom, z_num, z_denom, show_derivatives,
1155
+ show_high_y, show_low_y, show_max_k, show_min_t,
1156
+ use_eigenvalue_method=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
 
1158
+ if fig is not None:
1159
+ st.plotly_chart(fig, use_container_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160
 
1161
+ # Curve explanations in collapsed expander
1162
+ with st.expander("Curve Explanations", expanded=False):
1163
+ if use_eigenvalue_method:
1164
+ st.markdown("""
1165
+ - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
1166
+ - **Shaded Region**: Eigenvalue support region
1167
+ - **High y Expression** (Green): Asymptotic approximation for high y values
1168
+ - **Low Expression** (Orange): Alternative asymptotic expression
1169
+ - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
1170
+ - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
1171
+ - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
1172
+ - **Custom Expression 2** (Brown): Direct z(β) expression
1173
+ """)
1174
+ else:
1175
+ st.markdown("""
1176
+ - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
1177
+ - **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
1178
+ - **High y Expression** (Green): Asymptotic approximation for high y values
1179
+ - **Low Expression** (Orange): Alternative asymptotic expression
1180
+ - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
1181
+ - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
1182
+ - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
1183
+ - **Custom Expression 2** (Brown): Direct z(β) expression
1184
+ """)
1185
+ if show_derivatives:
1186
+ st.markdown("""
1187
+ Derivatives are shown as:
1188
+ - Dashed lines: First derivatives (d/dβ)
1189
+ - Dotted lines: Second derivatives (d²/dβ²)
1190
+ """)
 
 
 
 
 
 
 
 
1191
 
1192
+ # Display C++ build status
1193
+ if cubic_cpp is None:
1194
+ st.warning("C++ extension could not be built. Using Python implementation.")
1195
+ else:
1196
+ st.success("C++ extension successfully built and loaded.")