Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -44,8 +44,11 @@ def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
|
44 |
Scan z in [z_min, z_max] for sign changes in the discriminant,
|
45 |
and return approximated roots (where the discriminant is zero).
|
46 |
"""
|
|
|
|
|
|
|
47 |
z_grid = np.linspace(z_min, z_max, steps)
|
48 |
-
disc_vals = discriminant_func(z_grid, beta, z_a,
|
49 |
roots_found = []
|
50 |
for i in range(len(z_grid) - 1):
|
51 |
f1, f2 = disc_vals[i], disc_vals[i+1]
|
@@ -59,7 +62,7 @@ def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
|
59 |
zl, zr = z_grid[i], z_grid[i+1]
|
60 |
for _ in range(50):
|
61 |
mid = 0.5 * (zl + zr)
|
62 |
-
fm = discriminant_func(mid, beta, z_a,
|
63 |
if fm == 0:
|
64 |
zl = zr = mid
|
65 |
break
|
@@ -174,6 +177,7 @@ def compute_high_y_curve(betas, z_a, y):
|
|
174 |
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
|
175 |
return numerator/denominator
|
176 |
|
|
|
177 |
def compute_alternate_low_expr(betas, z_a, y):
|
178 |
"""
|
179 |
Compute the alternate low expression:
|
@@ -413,7 +417,7 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
413 |
# Add Low Expression only if selected
|
414 |
if show_low_y and alt_low_expr is not None:
|
415 |
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
|
416 |
-
name="Low Expression", line=dict(color='
|
417 |
|
418 |
# Add the max/min curves if selected
|
419 |
if show_max_k and max_k_curve is not None:
|
@@ -422,14 +426,14 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
422 |
|
423 |
if show_min_t and min_t_curve is not None:
|
424 |
fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines",
|
425 |
-
name="Min t Expression", line=dict(color='
|
426 |
|
427 |
if custom_curve1 is not None:
|
428 |
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
|
429 |
-
name="Custom 1 (s-based)", line=dict(color='
|
430 |
if custom_curve2 is not None:
|
431 |
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
|
432 |
-
name="Custom 2 (direct)", line=dict(color='
|
433 |
|
434 |
if show_derivatives:
|
435 |
# First derivatives
|
@@ -444,9 +448,9 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
444 |
curve_info.append(('alt_low', 'Alt Low', 'orange'))
|
445 |
|
446 |
if custom_curve1 is not None:
|
447 |
-
curve_info.append(('custom1', 'Custom 1', '
|
448 |
if custom_curve2 is not None:
|
449 |
-
curve_info.append(('custom2', 'Custom 2', '
|
450 |
|
451 |
for key, name, color in curve_info:
|
452 |
if key in derivatives:
|
@@ -464,9 +468,9 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
464 |
|
465 |
if show_min_t and min_t_curve is not None:
|
466 |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines",
|
467 |
-
name="Min t d/dβ", line=dict(color='
|
468 |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines",
|
469 |
-
name="Min t d²/dβ²", line=dict(color='
|
470 |
|
471 |
fig.update_layout(
|
472 |
title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method
|
@@ -507,6 +511,9 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
507 |
st.error("Invalid input parameters.")
|
508 |
return None, None
|
509 |
|
|
|
|
|
|
|
510 |
z_points = np.linspace(z_min, z_max, n_points)
|
511 |
ims, res = [], []
|
512 |
for z in z_points:
|
@@ -532,6 +539,129 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
532 |
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
|
533 |
return fig_im, fig_re
|
534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
@st.cache_data
|
536 |
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
537 |
"""
|
@@ -591,13 +721,77 @@ def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
|
591 |
showlegend=True
|
592 |
)
|
593 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
return fig
|
595 |
|
596 |
# ----------------- Streamlit UI -----------------
|
597 |
st.title("Cubic Root Analysis")
|
598 |
|
599 |
-
# Define three tabs
|
600 |
-
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "
|
601 |
|
602 |
# ----- Tab 1: z*(β) Curves -----
|
603 |
with tab1:
|
@@ -692,20 +886,20 @@ with tab1:
|
|
692 |
- **High y Expression** (Green): Asymptotic approximation for high y values
|
693 |
- **Low Expression** (Orange): Alternative asymptotic expression
|
694 |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
695 |
-
- **Min t Expression** (
|
696 |
-
- **Custom Expression 1** (
|
697 |
-
- **Custom Expression 2** (
|
698 |
""")
|
699 |
else:
|
700 |
st.markdown("""
|
701 |
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
702 |
-
- **Lower z*(β)** (
|
703 |
- **High y Expression** (Green): Asymptotic approximation for high y values
|
704 |
- **Low Expression** (Orange): Alternative asymptotic expression
|
705 |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
706 |
-
- **Min t Expression** (
|
707 |
-
- **Custom Expression 1** (
|
708 |
-
- **Custom Expression 2** (
|
709 |
""")
|
710 |
if show_derivatives:
|
711 |
st.markdown("""
|
@@ -714,48 +908,200 @@ with tab1:
|
|
714 |
- Dotted lines: Second derivatives (d²/dβ²)
|
715 |
""")
|
716 |
|
717 |
-
# ----- Tab 2:
|
718 |
with tab2:
|
719 |
-
st.header("
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
with
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
st.
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
st.plotly_chart(fig_eigen, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
759 |
|
760 |
# ----- Tab 3: Differential Analysis -----
|
761 |
with tab3:
|
@@ -795,7 +1141,7 @@ with tab3:
|
|
795 |
st.subheader("Curves to Analyze")
|
796 |
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
|
797 |
analyze_high_y = st.checkbox("High y Expression", value=False)
|
798 |
-
analyze_alt_low = st.checkbox("
|
799 |
|
800 |
if st.button("Compute Differentials", key="tab3_button"):
|
801 |
with col2:
|
@@ -843,11 +1189,11 @@ with tab3:
|
|
843 |
d2 = np.gradient(d1, betas_diff)
|
844 |
|
845 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
|
846 |
-
name="
|
847 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
848 |
-
name="
|
849 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
850 |
-
name="
|
851 |
|
852 |
fig_diff.update_layout(
|
853 |
title="Differential Analysis vs. β" +
|
|
|
44 |
Scan z in [z_min, z_max] for sign changes in the discriminant,
|
45 |
and return approximated roots (where the discriminant is zero).
|
46 |
"""
|
47 |
+
# Apply the condition for y
|
48 |
+
y_effective = y if y > 1 else 1/y
|
49 |
+
|
50 |
z_grid = np.linspace(z_min, z_max, steps)
|
51 |
+
disc_vals = discriminant_func(z_grid, beta, z_a, y_effective)
|
52 |
roots_found = []
|
53 |
for i in range(len(z_grid) - 1):
|
54 |
f1, f2 = disc_vals[i], disc_vals[i+1]
|
|
|
62 |
zl, zr = z_grid[i], z_grid[i+1]
|
63 |
for _ in range(50):
|
64 |
mid = 0.5 * (zl + zr)
|
65 |
+
fm = discriminant_func(mid, beta, z_a, y_effective)
|
66 |
if fm == 0:
|
67 |
zl = zr = mid
|
68 |
break
|
|
|
177 |
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
|
178 |
return numerator/denominator
|
179 |
|
180 |
+
@st.cache_data
|
181 |
def compute_alternate_low_expr(betas, z_a, y):
|
182 |
"""
|
183 |
Compute the alternate low expression:
|
|
|
417 |
# Add Low Expression only if selected
|
418 |
if show_low_y and alt_low_expr is not None:
|
419 |
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
|
420 |
+
name="Low Expression", line=dict(color='orange')))
|
421 |
|
422 |
# Add the max/min curves if selected
|
423 |
if show_max_k and max_k_curve is not None:
|
|
|
426 |
|
427 |
if show_min_t and min_t_curve is not None:
|
428 |
fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines",
|
429 |
+
name="Min t Expression", line=dict(color='purple', width=2)))
|
430 |
|
431 |
if custom_curve1 is not None:
|
432 |
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
|
433 |
+
name="Custom 1 (s-based)", line=dict(color='magenta')))
|
434 |
if custom_curve2 is not None:
|
435 |
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
|
436 |
+
name="Custom 2 (direct)", line=dict(color='brown')))
|
437 |
|
438 |
if show_derivatives:
|
439 |
# First derivatives
|
|
|
448 |
curve_info.append(('alt_low', 'Alt Low', 'orange'))
|
449 |
|
450 |
if custom_curve1 is not None:
|
451 |
+
curve_info.append(('custom1', 'Custom 1', 'magenta'))
|
452 |
if custom_curve2 is not None:
|
453 |
+
curve_info.append(('custom2', 'Custom 2', 'brown'))
|
454 |
|
455 |
for key, name, color in curve_info:
|
456 |
if key in derivatives:
|
|
|
468 |
|
469 |
if show_min_t and min_t_curve is not None:
|
470 |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines",
|
471 |
+
name="Min t d/dβ", line=dict(color='purple', dash='dash')))
|
472 |
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines",
|
473 |
+
name="Min t d²/dβ²", line=dict(color='purple', dash='dot')))
|
474 |
|
475 |
fig.update_layout(
|
476 |
title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method
|
|
|
511 |
st.error("Invalid input parameters.")
|
512 |
return None, None
|
513 |
|
514 |
+
# Apply the condition for y
|
515 |
+
y_effective = y if y > 1 else 1/y
|
516 |
+
|
517 |
z_points = np.linspace(z_min, z_max, n_points)
|
518 |
ims, res = [], []
|
519 |
for z in z_points:
|
|
|
539 |
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
|
540 |
return fig_im, fig_re
|
541 |
|
542 |
+
def analyze_complex_root_structure(beta_values, z, z_a, y):
|
543 |
+
"""
|
544 |
+
Analyze when the cubic equation switches between having all real roots
|
545 |
+
and having a complex conjugate pair plus one real root.
|
546 |
+
|
547 |
+
Returns:
|
548 |
+
- transition_points: beta values where the root structure changes
|
549 |
+
- structure_types: list indicating whether each interval has all real roots or complex roots
|
550 |
+
"""
|
551 |
+
# Apply the condition for y
|
552 |
+
y_effective = y if y > 1 else 1/y
|
553 |
+
|
554 |
+
transition_points = []
|
555 |
+
structure_types = []
|
556 |
+
|
557 |
+
previous_type = None
|
558 |
+
|
559 |
+
for beta in beta_values:
|
560 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
561 |
+
|
562 |
+
# Check if all roots are real (imaginary parts close to zero)
|
563 |
+
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
564 |
+
|
565 |
+
current_type = "real" if is_all_real else "complex"
|
566 |
+
|
567 |
+
if previous_type is not None and current_type != previous_type:
|
568 |
+
# Found a transition point
|
569 |
+
transition_points.append(beta)
|
570 |
+
structure_types.append(previous_type)
|
571 |
+
|
572 |
+
previous_type = current_type
|
573 |
+
|
574 |
+
# Add the final interval type
|
575 |
+
if previous_type is not None:
|
576 |
+
structure_types.append(previous_type)
|
577 |
+
|
578 |
+
return transition_points, structure_types
|
579 |
+
|
580 |
+
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
581 |
+
"""
|
582 |
+
Generate Im(s) and Re(s) vs. β plots.
|
583 |
+
"""
|
584 |
+
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
585 |
+
st.error("Invalid input parameters.")
|
586 |
+
return None, None, None
|
587 |
+
|
588 |
+
# Apply the condition for y
|
589 |
+
y_effective = y if y > 1 else 1/y
|
590 |
+
|
591 |
+
beta_points = np.linspace(beta_min, beta_max, n_points)
|
592 |
+
ims, res = [], []
|
593 |
+
for beta in beta_points:
|
594 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
595 |
+
roots = sorted(roots, key=lambda x: abs(x.imag))
|
596 |
+
ims.append([root.imag for root in roots])
|
597 |
+
res.append([root.real for root in roots])
|
598 |
+
ims = np.array(ims)
|
599 |
+
res = np.array(res)
|
600 |
+
|
601 |
+
# Find transition points in root structure
|
602 |
+
transition_points, structure_types = analyze_complex_root_structure(beta_points, z, z_a, y)
|
603 |
+
|
604 |
+
# Create traces for imaginary parts
|
605 |
+
fig_im = go.Figure()
|
606 |
+
for i in range(3):
|
607 |
+
fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
|
608 |
+
line=dict(width=2)))
|
609 |
+
|
610 |
+
# Add vertical lines at transition points
|
611 |
+
for beta in transition_points:
|
612 |
+
fig_im.add_vline(x=beta, line=dict(color="red", width=1, dash="dash"))
|
613 |
+
|
614 |
+
fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
615 |
+
xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")
|
616 |
+
|
617 |
+
# Create traces for real parts
|
618 |
+
fig_re = go.Figure()
|
619 |
+
for i in range(3):
|
620 |
+
fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
|
621 |
+
line=dict(width=2)))
|
622 |
+
|
623 |
+
# Add vertical lines at transition points
|
624 |
+
for beta in transition_points:
|
625 |
+
fig_re.add_vline(x=beta, line=dict(color="red", width=1, dash="dash"))
|
626 |
+
|
627 |
+
fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
628 |
+
xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
|
629 |
+
|
630 |
+
# Create a plot showing the discriminant
|
631 |
+
fig_disc = go.Figure()
|
632 |
+
|
633 |
+
# Calculate discriminant as a function of beta
|
634 |
+
discriminant_values = []
|
635 |
+
for beta in beta_points:
|
636 |
+
# For cubic ax^3 + bx^2 + cx + d, the discriminant is:
|
637 |
+
# Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
|
638 |
+
|
639 |
+
a = z * z_a
|
640 |
+
b = z * z_a + z + z_a - z_a*y_effective
|
641 |
+
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
642 |
+
d = 1
|
643 |
+
|
644 |
+
delta0 = b*b - 3*a*c
|
645 |
+
delta1 = 2*b*b*b - 9*a*b*c + 27*a*a*d
|
646 |
+
discriminant = delta1*delta1 - 4*delta0*delta0*delta0
|
647 |
+
|
648 |
+
discriminant_values.append(discriminant)
|
649 |
+
|
650 |
+
fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminant_values, mode="lines",
|
651 |
+
name="Discriminant", line=dict(width=2, color="black")))
|
652 |
+
|
653 |
+
# Add horizontal line at y=0
|
654 |
+
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
|
655 |
+
|
656 |
+
# Add vertical lines at transition points
|
657 |
+
for beta in transition_points:
|
658 |
+
fig_disc.add_vline(x=beta, line=dict(color="red", width=1, dash="dash"))
|
659 |
+
|
660 |
+
fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
661 |
+
xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
|
662 |
+
|
663 |
+
return fig_im, fig_re, fig_disc
|
664 |
+
|
665 |
@st.cache_data
|
666 |
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
667 |
"""
|
|
|
721 |
showlegend=True
|
722 |
)
|
723 |
|
724 |
+
return fig, eigenvalues
|
725 |
+
|
726 |
+
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
|
727 |
+
beta_steps=100, z_steps=100):
|
728 |
+
"""
|
729 |
+
Generate a phase diagram showing regions of complex and real roots.
|
730 |
+
|
731 |
+
Returns a heatmap where:
|
732 |
+
- Value 1 (red): Region with all real roots
|
733 |
+
- Value -1 (blue): Region with complex roots
|
734 |
+
"""
|
735 |
+
# Apply the condition for y
|
736 |
+
y_effective = y if y > 1 else 1/y
|
737 |
+
|
738 |
+
beta_values = np.linspace(beta_min, beta_max, beta_steps)
|
739 |
+
z_values = np.linspace(z_min, z_max, z_steps)
|
740 |
+
|
741 |
+
# Initialize phase map
|
742 |
+
phase_map = np.zeros((z_steps, beta_steps))
|
743 |
+
|
744 |
+
# Progress tracking
|
745 |
+
progress_bar = st.progress(0)
|
746 |
+
status_text = st.empty()
|
747 |
+
|
748 |
+
for i, z in enumerate(z_values):
|
749 |
+
# Update progress
|
750 |
+
progress_bar.progress((i + 1) / len(z_values))
|
751 |
+
status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
|
752 |
+
|
753 |
+
for j, beta in enumerate(beta_values):
|
754 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
755 |
+
|
756 |
+
# Check if all roots are real (imaginary parts close to zero)
|
757 |
+
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
758 |
+
|
759 |
+
phase_map[i, j] = 1 if is_all_real else -1
|
760 |
+
|
761 |
+
# Clear progress indicators
|
762 |
+
progress_bar.empty()
|
763 |
+
status_text.empty()
|
764 |
+
|
765 |
+
# Create heatmap
|
766 |
+
fig = go.Figure(data=go.Heatmap(
|
767 |
+
z=phase_map,
|
768 |
+
x=beta_values,
|
769 |
+
y=z_values,
|
770 |
+
colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
|
771 |
+
zmin=-1,
|
772 |
+
zmax=1,
|
773 |
+
showscale=True,
|
774 |
+
colorbar=dict(
|
775 |
+
title="Root Type",
|
776 |
+
tickvals=[-1, 1],
|
777 |
+
ticktext=["Complex Roots", "All Real Roots"]
|
778 |
+
)
|
779 |
+
))
|
780 |
+
|
781 |
+
fig.update_layout(
|
782 |
+
title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
|
783 |
+
xaxis_title="β",
|
784 |
+
yaxis_title="z",
|
785 |
+
hovermode="closest"
|
786 |
+
)
|
787 |
+
|
788 |
return fig
|
789 |
|
790 |
# ----------------- Streamlit UI -----------------
|
791 |
st.title("Cubic Root Analysis")
|
792 |
|
793 |
+
# Define three tabs
|
794 |
+
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])
|
795 |
|
796 |
# ----- Tab 1: z*(β) Curves -----
|
797 |
with tab1:
|
|
|
886 |
- **High y Expression** (Green): Asymptotic approximation for high y values
|
887 |
- **Low Expression** (Orange): Alternative asymptotic expression
|
888 |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
889 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
890 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
891 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
892 |
""")
|
893 |
else:
|
894 |
st.markdown("""
|
895 |
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
896 |
+
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
|
897 |
- **High y Expression** (Green): Asymptotic approximation for high y values
|
898 |
- **Low Expression** (Orange): Alternative asymptotic expression
|
899 |
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
900 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
901 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
902 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
903 |
""")
|
904 |
if show_derivatives:
|
905 |
st.markdown("""
|
|
|
908 |
- Dotted lines: Second derivatives (d²/dβ²)
|
909 |
""")
|
910 |
|
911 |
+
# ----- Tab 2: Complex Root Analysis -----
|
912 |
with tab2:
|
913 |
+
st.header("Complex Root Analysis")
|
914 |
+
|
915 |
+
# Create tabs within the page for different plots
|
916 |
+
plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
|
917 |
+
|
918 |
+
# Tab for Im{s} vs. z plot
|
919 |
+
with plot_tabs[0]:
|
920 |
+
col1, col2 = st.columns([1, 2])
|
921 |
+
with col1:
|
922 |
+
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
|
923 |
+
y_z = st.number_input("y", value=1.0, key="y_tab2_z")
|
924 |
+
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
|
925 |
+
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
|
926 |
+
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
|
927 |
+
with st.expander("Resolution Settings", expanded=False):
|
928 |
+
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points_z")
|
929 |
+
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
|
930 |
+
with col2:
|
931 |
+
fig_im, fig_re = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
|
932 |
+
if fig_im is not None and fig_re is not None:
|
933 |
+
st.plotly_chart(fig_im, use_container_width=True)
|
934 |
+
st.plotly_chart(fig_re, use_container_width=True)
|
935 |
+
|
936 |
+
# New tab for Im{s} vs. β plot
|
937 |
+
with plot_tabs[1]:
|
938 |
+
col1, col2 = st.columns([1, 2])
|
939 |
+
with col1:
|
940 |
+
z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
|
941 |
+
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
|
942 |
+
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
|
943 |
+
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
|
944 |
+
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
|
945 |
+
with st.expander("Resolution Settings", expanded=False):
|
946 |
+
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
|
947 |
+
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
|
948 |
+
with col2:
|
949 |
+
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
|
950 |
+
z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
|
951 |
+
|
952 |
+
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
|
953 |
+
st.plotly_chart(fig_im_beta, use_container_width=True)
|
954 |
+
st.plotly_chart(fig_re_beta, use_container_width=True)
|
955 |
+
st.plotly_chart(fig_disc, use_container_width=True)
|
956 |
+
|
957 |
+
# Add analysis of transition points
|
958 |
+
transition_points, structure_types = analyze_complex_root_structure(
|
959 |
+
np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
|
960 |
+
|
961 |
+
if transition_points:
|
962 |
+
st.subheader("Root Structure Transition Points")
|
963 |
+
for i, beta in enumerate(transition_points):
|
964 |
+
prev_type = structure_types[i]
|
965 |
+
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
|
966 |
+
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
|
967 |
+
else:
|
968 |
+
st.info("No transitions detected in root structure across this β range.")
|
969 |
+
|
970 |
+
# Explanation
|
971 |
+
with st.expander("Analysis Explanation", expanded=False):
|
972 |
+
st.markdown("""
|
973 |
+
### Interpreting the Plots
|
974 |
+
|
975 |
+
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
|
976 |
+
- **Re{s} vs. β**: Shows how the real parts of the roots change with β.
|
977 |
+
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
|
978 |
+
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
|
979 |
+
- When discriminant > 0: The cubic has three distinct real roots.
|
980 |
+
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
|
981 |
+
|
982 |
+
The vertical red dashed lines mark the transition points where the root structure changes.
|
983 |
+
""")
|
984 |
+
|
985 |
+
# Tab for Phase Diagram
|
986 |
+
with plot_tabs[2]:
|
987 |
+
col1, col2 = st.columns([1, 2])
|
988 |
+
with col1:
|
989 |
+
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
|
990 |
+
y_phase = st.number_input("y", value=1.0, key="y_phase")
|
991 |
+
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
|
992 |
+
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
|
993 |
+
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
|
994 |
+
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
|
995 |
+
|
996 |
+
with st.expander("Resolution Settings", expanded=False):
|
997 |
+
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
|
998 |
+
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
|
999 |
+
|
1000 |
+
if st.button("Generate Phase Diagram", key="tab2_button_phase"):
|
1001 |
+
with col2:
|
1002 |
+
st.info("Generating phase diagram. This may take a while depending on resolution...")
|
1003 |
+
fig_phase = generate_phase_diagram(
|
1004 |
+
z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase,
|
1005 |
+
beta_steps_phase, z_steps_phase)
|
1006 |
+
|
1007 |
+
if fig_phase is not None:
|
1008 |
+
st.plotly_chart(fig_phase, use_container_width=True)
|
1009 |
+
|
1010 |
+
with st.expander("Phase Diagram Explanation", expanded=False):
|
1011 |
+
st.markdown("""
|
1012 |
+
### Understanding the Phase Diagram
|
1013 |
+
|
1014 |
+
This heatmap shows the regions in the (β, z) plane where:
|
1015 |
+
|
1016 |
+
- **Red Regions**: The cubic equation has all real roots
|
1017 |
+
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
|
1018 |
+
|
1019 |
+
The boundaries between these regions represent values where the discriminant is zero,
|
1020 |
+
which are the exact same curves as the z*(β) boundaries in the first tab. This phase
|
1021 |
+
diagram provides a comprehensive view of the eigenvalue support structure.
|
1022 |
+
""")
|
1023 |
+
|
1024 |
+
# Eigenvalue distribution tab
|
1025 |
+
with plot_tabs[3]:
|
1026 |
+
st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
|
1027 |
+
with st.expander("Simulation Information", expanded=False):
|
1028 |
+
st.markdown("""
|
1029 |
+
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
|
1030 |
+
- B_n = (1/n)XX^T with X being a p×n matrix
|
1031 |
+
- p/n → y as n→∞
|
1032 |
+
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
|
1033 |
+
""")
|
1034 |
+
|
1035 |
+
col_eigen1, col_eigen2 = st.columns([1, 2])
|
1036 |
+
with col_eigen1:
|
1037 |
+
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
|
1038 |
+
y_eigen = st.number_input("y", value=1.0, key="y_eigen")
|
1039 |
+
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
|
1040 |
+
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
|
1041 |
+
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
|
1042 |
+
|
1043 |
+
# Add comparison option
|
1044 |
+
show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
|
1045 |
+
show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
|
1046 |
+
|
1047 |
+
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
|
1048 |
+
with col_eigen2:
|
1049 |
+
# Generate the eigenvalue distribution
|
1050 |
+
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
|
1051 |
+
|
1052 |
+
# If requested, compute and add theoretical boundaries
|
1053 |
+
if show_theoretical:
|
1054 |
+
# Calculate min and max eigenvalues using the support boundary functions
|
1055 |
+
betas = np.array([beta_eigen])
|
1056 |
+
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
|
1057 |
+
|
1058 |
+
# Add vertical lines for boundaries
|
1059 |
+
fig_eigen.add_vline(
|
1060 |
+
x=min_eig[0],
|
1061 |
+
line=dict(color="red", width=2, dash="dash"),
|
1062 |
+
annotation_text="Min theoretical",
|
1063 |
+
annotation_position="top right"
|
1064 |
+
)
|
1065 |
+
fig_eigen.add_vline(
|
1066 |
+
x=max_eig[0],
|
1067 |
+
line=dict(color="red", width=2, dash="dash"),
|
1068 |
+
annotation_text="Max theoretical",
|
1069 |
+
annotation_position="top left"
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
# Display the plot
|
1073 |
st.plotly_chart(fig_eigen, use_container_width=True)
|
1074 |
+
|
1075 |
+
# Add comparison of empirical vs theoretical bounds
|
1076 |
+
if show_theoretical and show_empirical_stats:
|
1077 |
+
empirical_min = eigenvalues.min()
|
1078 |
+
empirical_max = eigenvalues.max()
|
1079 |
+
|
1080 |
+
st.markdown("### Comparison of Empirical vs Theoretical Bounds")
|
1081 |
+
col1, col2, col3 = st.columns(3)
|
1082 |
+
with col1:
|
1083 |
+
st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
|
1084 |
+
st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
|
1085 |
+
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
|
1086 |
+
with col2:
|
1087 |
+
st.metric("Empirical Min", f"{empirical_min:.4f}")
|
1088 |
+
st.metric("Empirical Max", f"{empirical_max:.4f}")
|
1089 |
+
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
|
1090 |
+
with col3:
|
1091 |
+
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
|
1092 |
+
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
|
1093 |
+
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
|
1094 |
+
|
1095 |
+
# Display additional statistics
|
1096 |
+
if show_empirical_stats:
|
1097 |
+
st.markdown("### Eigenvalue Statistics")
|
1098 |
+
col1, col2 = st.columns(2)
|
1099 |
+
with col1:
|
1100 |
+
st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
|
1101 |
+
st.metric("Median", f"{np.median(eigenvalues):.4f}")
|
1102 |
+
with col2:
|
1103 |
+
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
|
1104 |
+
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
|
1105 |
|
1106 |
# ----- Tab 3: Differential Analysis -----
|
1107 |
with tab3:
|
|
|
1141 |
st.subheader("Curves to Analyze")
|
1142 |
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
|
1143 |
analyze_high_y = st.checkbox("High y Expression", value=False)
|
1144 |
+
analyze_alt_low = st.checkbox("Low y Expression", value=False)
|
1145 |
|
1146 |
if st.button("Compute Differentials", key="tab3_button"):
|
1147 |
with col2:
|
|
|
1189 |
d2 = np.gradient(d1, betas_diff)
|
1190 |
|
1191 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
|
1192 |
+
name="Low y", line=dict(color="orange", width=2)))
|
1193 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1194 |
+
name="Low y d/dβ", line=dict(color="orange", dash='dash')))
|
1195 |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1196 |
+
name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))
|
1197 |
|
1198 |
fig_diff.update_layout(
|
1199 |
title="Differential Analysis vs. β" +
|