euler314 commited on
Commit
51e773e
Β·
verified Β·
1 Parent(s): 5b969e6

Create app.cpp

Browse files
Files changed (1) hide show
  1. app.cpp +461 -0
app.cpp ADDED
@@ -0,0 +1,461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // app.cpp - Modified version of eigen_analysis_corrected.cpp for Streamlit integration
2
+ #include <opencv2/opencv.hpp>
3
+ #include <algorithm>
4
+ #include <cmath>
5
+ #include <iostream>
6
+ #include <iomanip>
7
+ #include <numeric>
8
+ #include <random>
9
+ #include <vector>
10
+ #include <limits>
11
+ #include <sstream>
12
+
13
+ // Function to compute the theoretical max value
14
+ double compute_theoretical_max(double a, double y, double beta) {
15
+ auto f = [a, y, beta](double k) -> double {
16
+ return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
17
+ ((a * k + 1) * (k * k + k)); // Divide by y here
18
+ };
19
+
20
+ // Use numerical optimization to find the maximum
21
+ // Grid search followed by golden section search
22
+ double best_k = 1.0;
23
+ double best_val = f(best_k);
24
+
25
+ // Initial grid search over a wide range
26
+ const int num_grid_points = 200;
27
+ for (int i = 0; i < num_grid_points; ++i) {
28
+ double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
29
+ double val = f(k);
30
+ if (val > best_val) {
31
+ best_val = val;
32
+ best_k = k;
33
+ }
34
+ }
35
+
36
+ // Refine with golden section search
37
+ double a_gs = std::max(0.01, best_k / 10.0);
38
+ double b_gs = best_k * 10.0;
39
+ const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
40
+ const double tolerance = 1e-10;
41
+
42
+ double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
43
+ double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
44
+
45
+ while (std::abs(b_gs - a_gs) > tolerance) {
46
+ if (f(c_gs) > f(d_gs)) {
47
+ b_gs = d_gs;
48
+ d_gs = c_gs;
49
+ c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
50
+ } else {
51
+ a_gs = c_gs;
52
+ c_gs = d_gs;
53
+ d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
54
+ }
55
+ }
56
+
57
+ // Multiply the result by y before returning
58
+ return f((a_gs + b_gs) / 2.0) *y ;
59
+ }
60
+
61
+ // Function to compute the theoretical min value
62
+ double compute_theoretical_min(double a, double y, double beta) {
63
+ auto f = [a, y, beta](double t) -> double {
64
+ return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
65
+ ((a * t + 1) * (t * t + t) * y); // Divide by y here
66
+ };
67
+
68
+ // Use numerical optimization to find the minimum
69
+ // Grid search followed by golden section search
70
+ double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
71
+ double best_val = f(best_t);
72
+
73
+ // Initial grid search over the range (-1/a, 0)
74
+ const int num_grid_points = 200;
75
+ for (int i = 1; i < num_grid_points; ++i) {
76
+ // From slightly above -1/a to slightly below 0
77
+ double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
78
+ if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
79
+
80
+ double val = f(t);
81
+ if (val < best_val) {
82
+ best_val = val;
83
+ best_t = t;
84
+ }
85
+ }
86
+
87
+ // Refine with golden section search
88
+ double a_gs = -0.999/a; // Slightly above -1/a
89
+ double b_gs = -0.001/a; // Slightly below 0
90
+ const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
91
+ const double tolerance = 1e-10;
92
+
93
+ double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
94
+ double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
95
+
96
+ while (std::abs(b_gs - a_gs) > tolerance) {
97
+ if (f(c_gs) < f(d_gs)) {
98
+ b_gs = d_gs;
99
+ d_gs = c_gs;
100
+ c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
101
+ } else {
102
+ a_gs = c_gs;
103
+ c_gs = d_gs;
104
+ d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
105
+ }
106
+ }
107
+
108
+ // Multiply the result by y before returning
109
+ return f((a_gs + b_gs) / 2.0) *y ;
110
+ }
111
+
112
+ int main(int argc, char* argv[]) {
113
+ // ─── Inputs from command line ───────────────────────────────────────────
114
+ if (argc != 5) {
115
+ std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y>" << std::endl;
116
+ return 1;
117
+ }
118
+
119
+ int n = std::stoi(argv[1]);
120
+ int p = std::stoi(argv[2]);
121
+ double a = std::stod(argv[3]);
122
+ double y = std::stod(argv[4]);
123
+ const double b = 1.0;
124
+
125
+ std::cout << "Running with parameters: n = " << n << ", p = " << p
126
+ << ", a = " << a << ", y = " << y << std::endl;
127
+
128
+ // ─── Beta range parameters ────────────────────────────────────────
129
+ const int num_beta_points = 100; // More points for smoother curves
130
+ std::vector<double> beta_values(num_beta_points);
131
+ for (int i = 0; i < num_beta_points; ++i) {
132
+ beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
133
+ }
134
+
135
+ // ─── Storage for results ────────────────────────────────────────
136
+ std::vector<double> max_eigenvalues(num_beta_points);
137
+ std::vector<double> min_eigenvalues(num_beta_points);
138
+ std::vector<double> theoretical_max_values(num_beta_points);
139
+ std::vector<double> theoretical_min_values(num_beta_points);
140
+
141
+ // ─── Random‐Gaussian X and S_n ────────────────────────────────
142
+ std::mt19937_64 rng{std::random_device{}()};
143
+ std::normal_distribution<double> norm(0.0, 1.0);
144
+
145
+ cv::Mat X(p, n, CV_64F);
146
+ for(int i = 0; i < p; ++i)
147
+ for(int j = 0; j < n; ++j)
148
+ X.at<double>(i,j) = norm(rng);
149
+
150
+ // ─── Process each beta value ─────────────────────────────────
151
+ for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
152
+ double beta = beta_values[beta_idx];
153
+
154
+ // Compute theoretical values
155
+ theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta);
156
+ theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta);
157
+
158
+ // ─── Build T_n matrix ──────────────────────────────────
159
+ int k = static_cast<int>(std::floor(beta * p));
160
+ std::vector<double> diags(p);
161
+ std::fill_n(diags.begin(), k, a);
162
+ std::fill_n(diags.begin()+k, p-k, b);
163
+ std::shuffle(diags.begin(), diags.end(), rng);
164
+
165
+ cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
166
+ for(int i = 0; i < p; ++i){
167
+ T_n.at<double>(i,i) = diags[i];
168
+ }
169
+
170
+ // ─── Form B_n = (1/n) * X * T_n * X^T ────────────
171
+ cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
172
+
173
+ // ─── Compute eigenvalues of B ────────────────────────────
174
+ cv::Mat eigVals;
175
+ cv::eigen(B, eigVals);
176
+ std::vector<double> eigs(n);
177
+ for(int i = 0; i < n; ++i)
178
+ eigs[i] = eigVals.at<double>(i, 0);
179
+
180
+ max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
181
+ min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
182
+
183
+ // Progress indicator - modified to be less verbose for Streamlit
184
+ if (beta_idx % 20 == 0) {
185
+ std::cout << "Processing beta = " << beta
186
+ << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
187
+ }
188
+ }
189
+
190
+ // ─── Prepare canvas for plotting ────────────────────────────────
191
+ const int H = 950, W = 1200; // Taller canvas to accommodate legend below
192
+ cv::Mat canvas(H, W, CV_8UC3, cv::Scalar(250, 250, 250)); // Slightly off-white background
193
+
194
+ // ─── Find min/max for scaling ───────────────────────────────────
195
+ double min_y = std::numeric_limits<double>::max();
196
+ double max_y = std::numeric_limits<double>::lowest();
197
+
198
+ for (double v : max_eigenvalues) max_y = std::max(max_y, v);
199
+ for (double v : min_eigenvalues) min_y = std::min(min_y, v);
200
+ for (double v : theoretical_max_values) max_y = std::max(max_y, v);
201
+ for (double v : theoretical_min_values) min_y = std::min(min_y, v);
202
+
203
+ // Add some padding
204
+ double y_padding = (max_y - min_y) * 0.15; // More padding for better spacing
205
+ min_y -= y_padding;
206
+ max_y += y_padding;
207
+
208
+ // ─── Draw coordinate axes ───────────────────────────────────────
209
+ const int margin = 100; // Larger margin for better spacing
210
+ const int plot_width = W - 2 * margin;
211
+ const int plot_height = H - 2 * margin - 150; // Reduced height to make room for legend below
212
+
213
+ // Plot area background (light gray)
214
+ cv::rectangle(canvas,
215
+ cv::Point(margin, margin),
216
+ cv::Point(W - margin, margin + plot_height),
217
+ cv::Scalar(245, 245, 245), cv::FILLED);
218
+
219
+ // X-axis (beta)
220
+ cv::line(canvas,
221
+ cv::Point(margin, margin + plot_height),
222
+ cv::Point(W - margin, margin + plot_height),
223
+ cv::Scalar(40, 40, 40), 2);
224
+
225
+ // Y-axis (eigenvalues)
226
+ cv::line(canvas,
227
+ cv::Point(margin, margin + plot_height),
228
+ cv::Point(margin, margin),
229
+ cv::Scalar(40, 40, 40), 2);
230
+
231
+ // ─── Draw axes labels ────────────────────────────────────────────
232
+ cv::putText(canvas, "Ξ²",
233
+ cv::Point(W - margin/2, margin + plot_height + 30),
234
+ cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
235
+
236
+ // Y-axis label (fixed - no rotation)
237
+ cv::putText(canvas, "Eigenvalues",
238
+ cv::Point(margin/4, margin/2 - 10),
239
+ cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
240
+
241
+ // ─── Draw title ───────────────────────────────────────────────────
242
+ std::stringstream title_ss;
243
+ title_ss << std::fixed << std::setprecision(2);
244
+ title_ss << "Eigenvalue Analysis: a = " << a << ", y = " << y;
245
+ cv::putText(canvas, title_ss.str(),
246
+ cv::Point(W/2 - 200, 45),
247
+ cv::FONT_HERSHEY_COMPLEX, 1.2, cv::Scalar(0, 0, 0), 2);
248
+
249
+ // ─── Draw grid lines ────────────────────────────────────────────────
250
+ const int num_grid_lines = 11; // 0.0, 0.1, 0.2, ..., 1.0 for beta
251
+ for (int i = 0; i < num_grid_lines; ++i) {
252
+ // Horizontal grid lines
253
+ int y_pos = margin + i * (plot_height / (num_grid_lines - 1));
254
+ cv::line(canvas,
255
+ cv::Point(margin, y_pos),
256
+ cv::Point(W - margin, y_pos),
257
+ cv::Scalar(220, 220, 220), 1);
258
+
259
+ // Vertical grid lines
260
+ int x_pos = margin + i * (plot_width / (num_grid_lines - 1));
261
+ cv::line(canvas,
262
+ cv::Point(x_pos, margin),
263
+ cv::Point(x_pos, margin + plot_height),
264
+ cv::Scalar(220, 220, 220), 1);
265
+
266
+ // X-axis labels (beta values)
267
+ double beta_val = static_cast<double>(i) / (num_grid_lines - 1);
268
+ std::stringstream ss;
269
+ ss << std::fixed << std::setprecision(1) << beta_val;
270
+ cv::putText(canvas, ss.str(),
271
+ cv::Point(x_pos - 10, margin + plot_height + 30),
272
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
273
+
274
+ // Y-axis labels (eigenvalue values)
275
+ double eig_val = min_y + (max_y - min_y) * i / (num_grid_lines - 1);
276
+ std::stringstream ss2;
277
+ ss2 << std::fixed << std::setprecision(2) << eig_val;
278
+ cv::putText(canvas, ss2.str(),
279
+ cv::Point(margin/2 - 40, margin + plot_height - i * (plot_height / (num_grid_lines - 1)) + 5),
280
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
281
+ }
282
+
283
+ // ─── Draw the four curves ───────────────────────────────────────────
284
+ // Convert data points to pixel coordinates
285
+ auto to_point = [&](double beta, double val) -> cv::Point {
286
+ int x = margin + static_cast<int>(beta * plot_width);
287
+ int y = margin + plot_height - static_cast<int>((val - min_y) / (max_y - min_y) * plot_height);
288
+ return cv::Point(x, y);
289
+ };
290
+
291
+ // Better colors for visibility
292
+ cv::Scalar emp_max_color(60, 60, 220); // Dark red
293
+ cv::Scalar emp_min_color(220, 60, 60); // Dark blue
294
+ cv::Scalar theo_max_color(30, 180, 30); // Dark green
295
+ cv::Scalar theo_min_color(180, 30, 180); // Dark purple
296
+
297
+ // Empirical max eigenvalues (red)
298
+ std::vector<cv::Point> max_eig_points;
299
+ for (int i = 0; i < num_beta_points; ++i) {
300
+ max_eig_points.push_back(to_point(beta_values[i], max_eigenvalues[i]));
301
+ }
302
+ cv::polylines(canvas, max_eig_points, false, emp_max_color, 3);
303
+
304
+ // Empirical min eigenvalues (blue)
305
+ std::vector<cv::Point> min_eig_points;
306
+ for (int i = 0; i < num_beta_points; ++i) {
307
+ min_eig_points.push_back(to_point(beta_values[i], min_eigenvalues[i]));
308
+ }
309
+ cv::polylines(canvas, min_eig_points, false, emp_min_color, 3);
310
+
311
+ // Theoretical max values (green)
312
+ std::vector<cv::Point> theo_max_points;
313
+ for (int i = 0; i < num_beta_points; ++i) {
314
+ theo_max_points.push_back(to_point(beta_values[i], theoretical_max_values[i]));
315
+ }
316
+ cv::polylines(canvas, theo_max_points, false, theo_max_color, 3);
317
+
318
+ // Theoretical min values (purple)
319
+ std::vector<cv::Point> theo_min_points;
320
+ for (int i = 0; i < num_beta_points; ++i) {
321
+ theo_min_points.push_back(to_point(beta_values[i], theoretical_min_values[i]));
322
+ }
323
+ cv::polylines(canvas, theo_min_points, false, theo_min_color, 3);
324
+
325
+ // ─── Draw markers on the curves for better visibility ──────────────
326
+ const int marker_interval = 10; // Show markers every 10 points
327
+ for (int i = 0; i < num_beta_points; i += marker_interval) {
328
+ // Max empirical eigenvalue markers
329
+ cv::circle(canvas, max_eig_points[i], 5, emp_max_color, cv::FILLED);
330
+ cv::circle(canvas, max_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
331
+
332
+ // Min empirical eigenvalue markers
333
+ cv::circle(canvas, min_eig_points[i], 5, emp_min_color, cv::FILLED);
334
+ cv::circle(canvas, min_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
335
+
336
+ // Theoretical max markers
337
+ cv::drawMarker(canvas, theo_max_points[i], theo_max_color, cv::MARKER_DIAMOND, 10, 2);
338
+
339
+ // Theoretical min markers
340
+ cv::drawMarker(canvas, theo_min_points[i], theo_min_color, cv::MARKER_DIAMOND, 10, 2);
341
+ }
342
+
343
+ // ─── Draw legend BELOW the graph ────────────────────────────────────
344
+ // Set up dimensions for the legend
345
+ const int legend_width = 600;
346
+ const int legend_height = 100;
347
+ // Center the legend horizontally
348
+ const int legend_x = W/2 - legend_width/2;
349
+ // Position legend below the graph
350
+ const int legend_y = margin + plot_height + 70;
351
+ const int line_length = 40;
352
+ const int line_spacing = 35;
353
+
354
+ // Box around legend with shadow effect
355
+ cv::rectangle(canvas,
356
+ cv::Point(legend_x + 3, legend_y + 3),
357
+ cv::Point(legend_x + legend_width + 3, legend_y + legend_height + 3),
358
+ cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
359
+ cv::rectangle(canvas,
360
+ cv::Point(legend_x, legend_y),
361
+ cv::Point(legend_x + legend_width, legend_y + legend_height),
362
+ cv::Scalar(240, 240, 240), cv::FILLED); // Main box
363
+ cv::rectangle(canvas,
364
+ cv::Point(legend_x, legend_y),
365
+ cv::Point(legend_x + legend_width, legend_y + legend_height),
366
+ cv::Scalar(0, 0, 0), 1); // Border
367
+
368
+ // Legend title
369
+ cv::putText(canvas, "Legend",
370
+ cv::Point(legend_x + legend_width/2 - 30, legend_y + 20),
371
+ cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
372
+ cv::line(canvas,
373
+ cv::Point(legend_x + 5, legend_y + 30),
374
+ cv::Point(legend_x + legend_width - 5, legend_y + 30),
375
+ cv::Scalar(150, 150, 150), 1);
376
+
377
+ // Two legend entries per row, in two columns
378
+ // First row
379
+ // Empirical max (red)
380
+ cv::line(canvas,
381
+ cv::Point(legend_x + 20, legend_y + 50),
382
+ cv::Point(legend_x + 20 + line_length, legend_y + 50),
383
+ emp_max_color, 3);
384
+ cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 50), 5, emp_max_color, cv::FILLED);
385
+ cv::putText(canvas, "Empirical Max Eigenvalue",
386
+ cv::Point(legend_x + 20 + line_length + 10, legend_y + 50 + 5),
387
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
388
+
389
+ // Empirical min (blue)
390
+ cv::line(canvas,
391
+ cv::Point(legend_x + 20 + legend_width/2, legend_y + 50),
392
+ cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 50),
393
+ emp_min_color, 3);
394
+ cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 50), 5, emp_min_color, cv::FILLED);
395
+ cv::putText(canvas, "Empirical Min Eigenvalue",
396
+ cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 50 + 5),
397
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
398
+
399
+ // Second row
400
+ // Theoretical max (green)
401
+ cv::line(canvas,
402
+ cv::Point(legend_x + 20, legend_y + 80),
403
+ cv::Point(legend_x + 20 + line_length, legend_y + 80),
404
+ theo_max_color, 3);
405
+ cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 80),
406
+ theo_max_color, cv::MARKER_DIAMOND, 10, 2);
407
+ cv::putText(canvas, "Theoretical Max Function",
408
+ cv::Point(legend_x + 20 + line_length + 10, legend_y + 80 + 5),
409
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
410
+
411
+ // Theoretical min (purple)
412
+ cv::line(canvas,
413
+ cv::Point(legend_x + 20 + legend_width/2, legend_y + 80),
414
+ cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 80),
415
+ theo_min_color, 3);
416
+ cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 80),
417
+ theo_min_color, cv::MARKER_DIAMOND, 10, 2);
418
+ cv::putText(canvas, "Theoretical Min Function",
419
+ cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 80 + 5),
420
+ cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
421
+
422
+ // ─── Draw mathematical formulas in a box ──────────────────────────────
423
+ cv::rectangle(canvas,
424
+ cv::Point(margin + 3, H - 80 + 3),
425
+ cv::Point(W - margin + 3, H - 20 + 3),
426
+ cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
427
+ cv::rectangle(canvas,
428
+ cv::Point(margin, H - 80),
429
+ cv::Point(W - margin, H - 20),
430
+ cv::Scalar(240, 240, 240), cv::FILLED); // Main box
431
+ cv::rectangle(canvas,
432
+ cv::Point(margin, H - 80),
433
+ cv::Point(W - margin, H - 20),
434
+ cv::Scalar(0, 0, 0), 1); // Border
435
+
436
+ std::string formula_text1 = "Max Function: max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)y]";
437
+ std::string formula_text2 = "Min Function: min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)y]";
438
+
439
+ cv::putText(canvas, formula_text1,
440
+ cv::Point(margin + 20, H - 55),
441
+ cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_max_color, 2);
442
+
443
+ cv::putText(canvas, formula_text2,
444
+ cv::Point(W/2 + 20, H - 55),
445
+ cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_min_color, 2);
446
+
447
+ // ─── Draw parameter info ────────────────────────────────────────────
448
+ std::stringstream params_ss;
449
+ params_ss << std::fixed << std::setprecision(2);
450
+ params_ss << "Parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y;
451
+ cv::putText(canvas, params_ss.str(),
452
+ cv::Point(margin, 80),
453
+ cv::FONT_HERSHEY_COMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
454
+
455
+ // ─── Save the image to the output directory ───────────────────────────
456
+ std::string output_path = "/app/output/eigenvalue_analysis.png";
457
+ cv::imwrite(output_path, canvas);
458
+ std::cout << "Plot saved as " << output_path << std::endl;
459
+
460
+ return 0;
461
+ }