Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,53 @@ import numpy as np
|
|
4 |
import plotly.graph_objects as go
|
5 |
from scipy.optimize import fsolve
|
6 |
from scipy.stats import gaussian_kde
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Configure Streamlit for Hugging Face Spaces
|
9 |
st.set_page_config(
|
@@ -16,14 +63,8 @@ def add_sqrt_support(expr_str):
|
|
16 |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
|
17 |
return expr_str.replace('sqrt(', 'sp.sqrt(')
|
18 |
|
19 |
-
|
20 |
-
# 1) Define the discriminant
|
21 |
-
#############################
|
22 |
-
|
23 |
-
# Symbolic variables for the cubic discriminant
|
24 |
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
|
25 |
-
|
26 |
-
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
|
27 |
a_sym = z_sym * z_a_sym
|
28 |
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
|
29 |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
|
@@ -35,233 +76,81 @@ Delta_expr = (
|
|
35 |
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
|
36 |
)
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
roots_found.append(z_grid[i+1])
|
61 |
-
elif f1 * f2 < 0:
|
62 |
-
zl, zr = z_grid[i], z_grid[i+1]
|
63 |
-
for _ in range(50):
|
64 |
-
mid = 0.5 * (zl + zr)
|
65 |
-
fm = discriminant_func(mid, beta, z_a, y_effective)
|
66 |
-
if fm == 0:
|
67 |
-
zl = zr = mid
|
68 |
-
break
|
69 |
-
if np.sign(fm) == np.sign(f1):
|
70 |
-
zl, f1 = mid, fm
|
71 |
-
else:
|
72 |
-
zr, f2 = mid, fm
|
73 |
-
roots_found.append(0.5 * (zl + zr))
|
74 |
-
return np.array(roots_found)
|
75 |
-
|
76 |
-
@st.cache_data
|
77 |
-
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
78 |
-
"""
|
79 |
-
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
|
80 |
-
for which the discriminant is zero.
|
81 |
-
Returns: betas, lower z*(β) values, and upper z*(β) values.
|
82 |
-
"""
|
83 |
-
betas = np.linspace(0, 1, beta_steps)
|
84 |
-
z_min_values = []
|
85 |
-
z_max_values = []
|
86 |
-
for b in betas:
|
87 |
-
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
|
88 |
-
if len(roots) == 0:
|
89 |
-
z_min_values.append(np.nan)
|
90 |
-
z_max_values.append(np.nan)
|
91 |
-
else:
|
92 |
-
z_min_values.append(np.min(roots))
|
93 |
-
z_max_values.append(np.max(roots))
|
94 |
-
return betas, np.array(z_min_values), np.array(z_max_values)
|
95 |
-
|
96 |
-
@st.cache_data
|
97 |
-
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
|
98 |
-
"""
|
99 |
-
Compute the support boundaries of the eigenvalue distribution by directly
|
100 |
-
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
|
101 |
-
"""
|
102 |
-
# Apply the condition for y
|
103 |
-
y_effective = y if y > 1 else 1/y
|
104 |
-
|
105 |
-
min_eigenvalues = np.zeros_like(beta_values)
|
106 |
-
max_eigenvalues = np.zeros_like(beta_values)
|
107 |
-
|
108 |
-
# Use a progress bar for Streamlit
|
109 |
-
progress_bar = st.progress(0)
|
110 |
-
status_text = st.empty()
|
111 |
-
|
112 |
-
for i, beta in enumerate(beta_values):
|
113 |
-
# Update progress
|
114 |
-
progress_bar.progress((i + 1) / len(beta_values))
|
115 |
-
status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})")
|
116 |
-
|
117 |
-
min_vals = []
|
118 |
-
max_vals = []
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
np.random.seed(seed * 100 + i)
|
124 |
-
|
125 |
-
# Compute dimension p based on aspect ratio y
|
126 |
-
n = n_samples
|
127 |
-
p = int(y_effective * n)
|
128 |
-
|
129 |
-
# Constructing T_n (Population / Shape Matrix)
|
130 |
-
k = int(np.floor(beta * p))
|
131 |
-
diag_entries = np.concatenate([
|
132 |
-
np.full(k, z_a),
|
133 |
-
np.full(p - k, 1.0)
|
134 |
-
])
|
135 |
-
np.random.shuffle(diag_entries)
|
136 |
-
T_n = np.diag(diag_entries)
|
137 |
-
|
138 |
-
# Generate the data matrix X with i.i.d. standard normal entries
|
139 |
-
X = np.random.randn(p, n)
|
140 |
-
|
141 |
-
# Compute the sample covariance matrix S_n = (1/n) * XX^T
|
142 |
-
S_n = (1 / n) * (X @ X.T)
|
143 |
-
|
144 |
-
# Compute B_n = S_n T_n
|
145 |
-
B_n = S_n @ T_n
|
146 |
-
|
147 |
-
# Compute eigenvalues of B_n
|
148 |
-
eigenvalues = np.linalg.eigvalsh(B_n)
|
149 |
-
|
150 |
-
# Find minimum and maximum eigenvalues
|
151 |
-
min_vals.append(np.min(eigenvalues))
|
152 |
-
max_vals.append(np.max(eigenvalues))
|
153 |
-
|
154 |
-
# Average over seeds for stability
|
155 |
-
min_eigenvalues[i] = np.mean(min_vals)
|
156 |
-
max_eigenvalues[i] = np.mean(max_vals)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
def compute_high_y_curve(betas, z_a, y):
|
166 |
-
"""
|
167 |
-
Compute the "High y Expression" curve.
|
168 |
-
"""
|
169 |
-
# Apply the condition for y
|
170 |
-
y_effective = y if y > 1 else 1/y
|
171 |
|
172 |
-
|
173 |
-
betas =
|
174 |
-
|
175 |
-
if denominator == 0:
|
176 |
-
return np.full_like(betas, np.nan)
|
177 |
-
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
|
178 |
-
return numerator/denominator
|
179 |
-
|
180 |
-
@st.cache_data
|
181 |
-
def compute_alternate_low_expr(betas, z_a, y):
|
182 |
-
"""
|
183 |
-
Compute the alternate low expression:
|
184 |
-
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
|
185 |
-
"""
|
186 |
-
# Apply the condition for y
|
187 |
-
y_effective = y if y > 1 else 1/y
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
@st.cache_data
|
193 |
-
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
|
194 |
-
"""
|
195 |
-
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
|
196 |
-
"""
|
197 |
-
# Apply the condition for y
|
198 |
-
y_effective = y if y > 1 else 1/y
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
max_vals = np.zeros_like(betas)
|
205 |
-
for i, beta in enumerate(betas):
|
206 |
-
values = np.zeros_like(k_values)
|
207 |
-
for j, k in enumerate(k_values):
|
208 |
-
numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1)
|
209 |
-
denominator = (a*k+1)*(k**2+k)
|
210 |
-
if abs(denominator) < 1e-10:
|
211 |
-
values[j] = np.nan
|
212 |
-
else:
|
213 |
-
values[j] = numerator/denominator
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
@st.cache_data
|
224 |
-
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
|
225 |
-
"""
|
226 |
-
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
|
227 |
-
"""
|
228 |
-
# Apply the condition for y
|
229 |
-
y_effective = y if y > 1 else 1/y
|
230 |
-
|
231 |
-
a = z_a
|
232 |
-
if a <= 0:
|
233 |
-
return np.full_like(betas, np.nan)
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
values = np.zeros_like(t_values)
|
241 |
-
for j, t in enumerate(t_values):
|
242 |
-
numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1)
|
243 |
-
denominator = (a*t+1)*(t**2+t)
|
244 |
-
if abs(denominator) < 1e-10:
|
245 |
-
values[j] = np.nan
|
246 |
-
else:
|
247 |
-
values[j] = numerator/denominator
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
min_vals[i] = np.min(values[valid_indices])
|
252 |
-
else:
|
253 |
-
min_vals[i] = np.nan
|
254 |
-
|
255 |
-
return min_vals
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
263 |
|
264 |
-
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr,
|
|
|
265 |
"""Compute derivatives for all curves"""
|
266 |
derivatives = {}
|
267 |
|
@@ -488,65 +377,12 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
488 |
)
|
489 |
return fig
|
490 |
|
491 |
-
def compute_cubic_roots(z, beta, z_a, y):
|
492 |
-
"""
|
493 |
-
Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy.
|
494 |
-
"""
|
495 |
-
# Apply the condition for y
|
496 |
-
y_effective = y if y > 1 else 1/y
|
497 |
-
|
498 |
-
# Import SymPy functions
|
499 |
-
from sympy import symbols, solve, im, re, N, Poly
|
500 |
-
|
501 |
-
# Create a symbolic variable for the equation
|
502 |
-
s = symbols('s')
|
503 |
-
|
504 |
-
# Coefficients in the form as^3 + bs^2 + cs + d = 0
|
505 |
-
a = z * z_a
|
506 |
-
b = z * z_a + z + z_a - z_a*y_effective
|
507 |
-
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
508 |
-
d = 1
|
509 |
-
|
510 |
-
# Handle special cases
|
511 |
-
if abs(a) < 1e-10:
|
512 |
-
if abs(b) < 1e-10: # Linear case
|
513 |
-
roots = np.array([-d/c, 0, 0], dtype=complex)
|
514 |
-
else: # Quadratic case
|
515 |
-
quad_roots = np.roots([b, c, d])
|
516 |
-
roots = np.append(quad_roots, 0).astype(complex)
|
517 |
-
return roots
|
518 |
-
|
519 |
-
try:
|
520 |
-
# Create the cubic polynomial
|
521 |
-
cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
|
522 |
-
|
523 |
-
# Solve the equation symbolically
|
524 |
-
symbolic_roots = solve(cubic_eq, s)
|
525 |
-
|
526 |
-
# Convert symbolic roots to complex numbers with high precision
|
527 |
-
numerical_roots = []
|
528 |
-
for root in symbolic_roots:
|
529 |
-
# Use SymPy's N function with high precision
|
530 |
-
numerical_root = complex(N(root, 30))
|
531 |
-
numerical_roots.append(numerical_root)
|
532 |
-
|
533 |
-
# If we got fewer than 3 roots (due to multiplicity), pad with zeros
|
534 |
-
while len(numerical_roots) < 3:
|
535 |
-
numerical_roots.append(0j)
|
536 |
-
|
537 |
-
return np.array(numerical_roots, dtype=complex)
|
538 |
-
|
539 |
-
except Exception as e:
|
540 |
-
# Fallback to numpy if SymPy has issues
|
541 |
-
coeffs = [a, b, c, d]
|
542 |
-
return np.roots(coeffs)
|
543 |
-
|
544 |
def track_roots_consistently(z_values, all_roots):
|
545 |
"""
|
546 |
Ensure consistent tracking of roots across z values by minimizing discontinuity.
|
547 |
"""
|
548 |
n_points = len(z_values)
|
549 |
-
n_roots =
|
550 |
tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
|
551 |
tracked_roots[0] = all_roots[0]
|
552 |
|
@@ -599,7 +435,7 @@ def generate_cubic_discriminant(z, beta, z_a, y_effective):
|
|
599 |
|
600 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
601 |
"""
|
602 |
-
Generate Im(s) and Re(s) vs. z plots with improved accuracy using
|
603 |
"""
|
604 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
605 |
st.error("Invalid input parameters.")
|
@@ -623,7 +459,7 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
623 |
progress_bar.progress((i + 1) / n_points)
|
624 |
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
|
625 |
|
626 |
-
# Calculate roots using
|
627 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
628 |
|
629 |
# Initial sorting to help with tracking
|
@@ -689,47 +525,9 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
689 |
|
690 |
return fig_im, fig_re, fig_disc
|
691 |
|
692 |
-
def analyze_complex_root_structure(beta_values, z, z_a, y):
|
693 |
-
"""
|
694 |
-
Analyze when the cubic equation switches between having all real roots
|
695 |
-
and having a complex conjugate pair plus one real root.
|
696 |
-
|
697 |
-
Returns:
|
698 |
-
- transition_points: beta values where the root structure changes
|
699 |
-
- structure_types: list indicating whether each interval has all real roots or complex roots
|
700 |
-
"""
|
701 |
-
# Apply the condition for y
|
702 |
-
y_effective = y if y > 1 else 1/y
|
703 |
-
|
704 |
-
transition_points = []
|
705 |
-
structure_types = []
|
706 |
-
|
707 |
-
previous_type = None
|
708 |
-
|
709 |
-
for beta in beta_values:
|
710 |
-
roots = compute_cubic_roots(z, beta, z_a, y)
|
711 |
-
|
712 |
-
# Check if all roots are real (imaginary parts close to zero)
|
713 |
-
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
714 |
-
|
715 |
-
current_type = "real" if is_all_real else "complex"
|
716 |
-
|
717 |
-
if previous_type is not None and current_type != previous_type:
|
718 |
-
# Found a transition point
|
719 |
-
transition_points.append(beta)
|
720 |
-
structure_types.append(previous_type)
|
721 |
-
|
722 |
-
previous_type = current_type
|
723 |
-
|
724 |
-
# Add the final interval type
|
725 |
-
if previous_type is not None:
|
726 |
-
structure_types.append(previous_type)
|
727 |
-
|
728 |
-
return transition_points, structure_types
|
729 |
-
|
730 |
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
731 |
"""
|
732 |
-
Generate Im(s) and Re(s) vs. β plots with improved accuracy using
|
733 |
"""
|
734 |
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
735 |
st.error("Invalid input parameters.")
|
@@ -753,7 +551,7 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
|
753 |
progress_bar.progress((i + 1) / n_points)
|
754 |
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
|
755 |
|
756 |
-
# Calculate roots using
|
757 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
758 |
|
759 |
# Initial sorting to help with tracking
|
@@ -819,6 +617,41 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
|
819 |
|
820 |
return fig_im, fig_re, fig_disc
|
821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
|
823 |
beta_steps=100, z_steps=100):
|
824 |
"""
|
@@ -888,35 +721,40 @@ def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
|
888 |
"""
|
889 |
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
|
890 |
"""
|
891 |
-
#
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
|
|
|
|
|
|
|
|
|
|
920 |
|
921 |
# Use KDE to compute a smooth density estimate
|
922 |
kde = gaussian_kde(eigenvalues)
|
@@ -945,448 +783,452 @@ def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
|
945 |
return fig, eigenvalues
|
946 |
|
947 |
# ----------------- Streamlit UI -----------------
|
948 |
-
|
949 |
-
|
950 |
-
# Define three tabs
|
951 |
-
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])
|
952 |
-
|
953 |
-
# ----- Tab 1: z*(β) Curves -----
|
954 |
-
with tab1:
|
955 |
-
st.header("Eigenvalue Support Boundaries")
|
956 |
-
|
957 |
-
# Cleaner layout with better column organization
|
958 |
-
col1, col2, col3 = st.columns([1, 1, 2])
|
959 |
|
960 |
-
|
961 |
-
|
962 |
-
y_1 = st.number_input("y", value=1.0, key="y_1")
|
963 |
-
|
964 |
-
with col2:
|
965 |
-
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
|
966 |
-
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
|
967 |
-
|
968 |
-
with col1:
|
969 |
-
method_type = st.radio(
|
970 |
-
"Calculation Method",
|
971 |
-
["Eigenvalue Method", "Discriminant Method"],
|
972 |
-
index=0 # Default to eigenvalue method
|
973 |
-
)
|
974 |
-
|
975 |
-
# Advanced settings in collapsed expanders
|
976 |
-
with st.expander("Method Settings", expanded=False):
|
977 |
-
if method_type == "Eigenvalue Method":
|
978 |
-
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
979 |
-
key="beta_steps_eigen")
|
980 |
-
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
981 |
-
step=100)
|
982 |
-
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
|
983 |
-
else:
|
984 |
-
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
985 |
-
key="beta_steps")
|
986 |
-
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
987 |
-
step=1000, key="z_steps")
|
988 |
-
|
989 |
-
# Curve visibility options
|
990 |
-
with st.expander("Curve Visibility", expanded=False):
|
991 |
-
col_vis1, col_vis2 = st.columns(2)
|
992 |
-
with col_vis1:
|
993 |
-
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
|
994 |
-
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
|
995 |
-
with col_vis2:
|
996 |
-
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
|
997 |
-
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
|
998 |
-
|
999 |
-
# Custom expressions collapsed by default
|
1000 |
-
with st.expander("Custom Expression 1 (s-based)", expanded=False):
|
1001 |
-
st.markdown("""Enter expressions for s = numerator/denominator
|
1002 |
-
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
1003 |
-
st.latex(r"\text{This s will be inserted into:}")
|
1004 |
-
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
|
1005 |
-
s_num = st.text_input("s numerator", value="", key="s_num")
|
1006 |
-
s_denom = st.text_input("s denominator", value="", key="s_denom")
|
1007 |
-
|
1008 |
-
with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
|
1009 |
-
st.markdown("""Enter direct expression for z(β) = numerator/denominator
|
1010 |
-
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
1011 |
-
z_num = st.text_input("z(β) numerator", value="", key="z_num")
|
1012 |
-
z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
|
1013 |
-
|
1014 |
-
# Move show_derivatives to main UI level for better visibility
|
1015 |
-
with col2:
|
1016 |
-
show_derivatives = st.checkbox("Show derivatives", value=False)
|
1017 |
-
|
1018 |
-
# Compute button
|
1019 |
-
if st.button("Compute Curves", key="tab1_button"):
|
1020 |
-
with col3:
|
1021 |
-
use_eigenvalue_method = (method_type == "Eigenvalue Method")
|
1022 |
-
if use_eigenvalue_method:
|
1023 |
-
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
|
1024 |
-
s_num, s_denom, z_num, z_denom, show_derivatives,
|
1025 |
-
show_high_y, show_low_y, show_max_k, show_min_t,
|
1026 |
-
use_eigenvalue_method=True, n_samples=n_samples,
|
1027 |
-
seeds=seeds)
|
1028 |
-
else:
|
1029 |
-
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
|
1030 |
-
s_num, s_denom, z_num, z_denom, show_derivatives,
|
1031 |
-
show_high_y, show_low_y, show_max_k, show_min_t,
|
1032 |
-
use_eigenvalue_method=False)
|
1033 |
-
|
1034 |
-
if fig is not None:
|
1035 |
-
st.plotly_chart(fig, use_container_width=True)
|
1036 |
-
|
1037 |
-
# Curve explanations in collapsed expander
|
1038 |
-
with st.expander("Curve Explanations", expanded=False):
|
1039 |
-
if use_eigenvalue_method:
|
1040 |
-
st.markdown("""
|
1041 |
-
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
|
1042 |
-
- **Shaded Region**: Eigenvalue support region
|
1043 |
-
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1044 |
-
- **Low Expression** (Orange): Alternative asymptotic expression
|
1045 |
-
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1046 |
-
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1047 |
-
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1048 |
-
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1049 |
-
""")
|
1050 |
-
else:
|
1051 |
-
st.markdown("""
|
1052 |
-
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
1053 |
-
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
|
1054 |
-
- **High y Expression** (Green): Asymptotic approximation for high y values
|
1055 |
-
- **Low Expression** (Orange): Alternative asymptotic expression
|
1056 |
-
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
1057 |
-
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
1058 |
-
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
1059 |
-
- **Custom Expression 2** (Brown): Direct z(β) expression
|
1060 |
-
""")
|
1061 |
-
if show_derivatives:
|
1062 |
-
st.markdown("""
|
1063 |
-
Derivatives are shown as:
|
1064 |
-
- Dashed lines: First derivatives (d/dβ)
|
1065 |
-
- Dotted lines: Second derivatives (d²/dβ²)
|
1066 |
-
""")
|
1067 |
-
|
1068 |
-
# ----- Tab 2: Complex Root Analysis -----
|
1069 |
-
with tab2:
|
1070 |
-
st.header("Complex Root Analysis")
|
1071 |
|
1072 |
-
#
|
1073 |
-
|
1074 |
|
1075 |
-
# Tab
|
1076 |
-
with
|
1077 |
-
|
|
|
|
|
|
|
|
|
1078 |
with col1:
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
|
1087 |
-
with col2:
|
1088 |
-
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
|
1089 |
-
if fig_im is not None and fig_re is not None and fig_disc is not None:
|
1090 |
-
st.plotly_chart(fig_im, use_container_width=True)
|
1091 |
-
st.plotly_chart(fig_re, use_container_width=True)
|
1092 |
-
st.plotly_chart(fig_disc, use_container_width=True)
|
1093 |
-
|
1094 |
-
with st.expander("Root Structure Analysis", expanded=False):
|
1095 |
-
st.markdown("""
|
1096 |
-
### Root Structure Explanation
|
1097 |
-
|
1098 |
-
The red dashed vertical lines mark the points where the cubic discriminant equals zero.
|
1099 |
-
At these points, the cubic equation's root structure changes:
|
1100 |
-
|
1101 |
-
- When the discriminant is positive, the cubic has three distinct real roots.
|
1102 |
-
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
|
1103 |
-
- When the discriminant is exactly zero, the cubic has at least two equal roots.
|
1104 |
-
|
1105 |
-
These transition points align perfectly with the z*(β) boundary curves from the first tab,
|
1106 |
-
which represent exactly these transitions in the (β,z) plane.
|
1107 |
-
""")
|
1108 |
-
|
1109 |
-
# New tab for Im{s} vs. β plot
|
1110 |
-
with plot_tabs[1]:
|
1111 |
-
col1, col2 = st.columns([1, 2])
|
1112 |
with col1:
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1124 |
|
1125 |
-
if
|
1126 |
-
st.plotly_chart(
|
1127 |
-
st.plotly_chart(fig_re_beta, use_container_width=True)
|
1128 |
-
st.plotly_chart(fig_disc, use_container_width=True)
|
1129 |
|
1130 |
-
#
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1142 |
|
1143 |
-
|
1144 |
-
|
1145 |
-
st.
|
1146 |
-
|
1147 |
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
|
1152 |
-
- When discriminant > 0: The cubic has three distinct real roots.
|
1153 |
-
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
|
1154 |
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1172 |
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
|
|
|
|
|
|
|
|
1179 |
|
1180 |
-
|
1181 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1182 |
|
1183 |
-
|
1184 |
-
st.
|
1185 |
-
### Understanding the Phase Diagram
|
1186 |
-
|
1187 |
-
This heatmap shows the regions in the (β, z) plane where:
|
1188 |
|
1189 |
-
|
1190 |
-
|
1191 |
-
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
1199 |
-
|
1200 |
-
|
1201 |
-
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
1205 |
-
|
1206 |
-
""
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
|
1214 |
-
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
|
1215 |
|
1216 |
-
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
|
1224 |
|
1225 |
-
#
|
1226 |
-
|
1227 |
-
|
1228 |
-
|
1229 |
-
|
|
|
|
|
|
|
1230 |
|
1231 |
-
#
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
1235 |
-
|
1236 |
-
|
1237 |
-
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
empirical_min = eigenvalues.min()
|
1251 |
-
empirical_max = eigenvalues.max()
|
1252 |
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
st.
|
1262 |
-
|
1263 |
-
|
1264 |
-
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
with
|
1281 |
-
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
diff_method_type = st.radio(
|
1293 |
-
"Boundary Calculation Method",
|
1294 |
-
["Eigenvalue Method", "Discriminant Method"],
|
1295 |
-
index=0,
|
1296 |
-
key="diff_method_type"
|
1297 |
-
)
|
1298 |
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1302 |
key="beta_steps_diff_eigen")
|
1303 |
-
|
1304 |
step=100, key="diff_n_samples")
|
1305 |
-
|
1306 |
key="diff_seeds")
|
1307 |
-
|
1308 |
-
|
1309 |
key="beta_steps_diff")
|
1310 |
-
|
1311 |
step=1000, key="z_steps_diff")
|
1312 |
-
|
1313 |
-
# Add options for curve selection
|
1314 |
-
st.subheader("Curves to Analyze")
|
1315 |
-
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
|
1316 |
-
analyze_high_y = st.checkbox("High y Expression", value=False)
|
1317 |
-
analyze_alt_low = st.checkbox("Low y Expression", value=False)
|
1318 |
-
|
1319 |
-
if st.button("Compute Differentials", key="tab3_button"):
|
1320 |
-
with col2:
|
1321 |
-
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
|
1322 |
-
|
1323 |
-
if use_eigenvalue_method_diff:
|
1324 |
-
betas_diff = np.linspace(0, 1, beta_steps_diff)
|
1325 |
-
st.info("Computing eigenvalue support boundaries. This may take a moment...")
|
1326 |
-
lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
|
1327 |
-
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
|
1328 |
-
else:
|
1329 |
-
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
|
1330 |
-
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
|
1331 |
-
|
1332 |
-
# Create figure
|
1333 |
-
fig_diff = go.Figure()
|
1334 |
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
|
1341 |
-
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
|
1342 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1343 |
-
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
|
1344 |
-
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1345 |
-
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
|
1346 |
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
d2 = np.gradient(d1, betas_diff)
|
1351 |
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1370 |
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
|
|
1383 |
)
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
|
|
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
from scipy.optimize import fsolve
|
6 |
from scipy.stats import gaussian_kde
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import subprocess
|
10 |
+
import importlib.util
|
11 |
+
|
12 |
+
# Check if cubic_cpp is built, and build it if not
|
13 |
+
def build_cpp_module():
|
14 |
+
if not os.path.exists('cubic_cpp.cpp'):
|
15 |
+
st.error("C++ source file not found!")
|
16 |
+
return False
|
17 |
+
|
18 |
+
if importlib.util.find_spec("cubic_cpp") is None:
|
19 |
+
st.info("Building C++ extension module...")
|
20 |
+
try:
|
21 |
+
# Simple build command using pybind11
|
22 |
+
cmd = [
|
23 |
+
sys.executable, "-m", "pip", "install",
|
24 |
+
"pybind11", "numpy", "eigen"
|
25 |
+
]
|
26 |
+
subprocess.check_call(cmd)
|
27 |
+
|
28 |
+
# Build the extension
|
29 |
+
cmd = [
|
30 |
+
sys.executable, "-m", "pip", "install",
|
31 |
+
"-v", "--editable", "."
|
32 |
+
]
|
33 |
+
subprocess.check_call(cmd)
|
34 |
+
st.success("C++ extension module built successfully!")
|
35 |
+
except subprocess.CalledProcessError as e:
|
36 |
+
st.error(f"Failed to build C++ extension: {e}")
|
37 |
+
return False
|
38 |
+
return True
|
39 |
+
|
40 |
+
# Try to import the C++ module
|
41 |
+
try:
|
42 |
+
import cubic_cpp
|
43 |
+
cpp_available = True
|
44 |
+
except ImportError:
|
45 |
+
if build_cpp_module():
|
46 |
+
try:
|
47 |
+
import cubic_cpp
|
48 |
+
cpp_available = True
|
49 |
+
except ImportError:
|
50 |
+
st.error("Failed to import C++ module after building.")
|
51 |
+
cpp_available = False
|
52 |
+
else:
|
53 |
+
cpp_available = False
|
54 |
|
55 |
# Configure Streamlit for Hugging Face Spaces
|
56 |
st.set_page_config(
|
|
|
63 |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
|
64 |
return expr_str.replace('sqrt(', 'sp.sqrt(')
|
65 |
|
66 |
+
# Define symbolic variables for the cubic discriminant using SymPy
|
|
|
|
|
|
|
|
|
67 |
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
|
|
|
|
|
68 |
a_sym = z_sym * z_a_sym
|
69 |
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
|
70 |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
|
|
|
76 |
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
|
77 |
)
|
78 |
|
79 |
+
# Use either C++ or Python implementation for numeric computations
|
80 |
+
if cpp_available:
|
81 |
+
# Use C++ implementations
|
82 |
+
discriminant_func = cubic_cpp.discriminant_func
|
83 |
+
|
84 |
+
@st.cache_data
|
85 |
+
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
86 |
+
return cubic_cpp.find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps)
|
87 |
+
|
88 |
+
@st.cache_data
|
89 |
+
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
90 |
+
return cubic_cpp.sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
|
91 |
+
|
92 |
+
@st.cache_data
|
93 |
+
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
|
94 |
+
beta_array = np.array(beta_values)
|
95 |
+
return cubic_cpp.compute_eigenvalue_support_boundaries(
|
96 |
+
z_a, y, beta_array, n_samples, seeds)
|
97 |
+
|
98 |
+
@st.cache_data
|
99 |
+
def compute_cubic_roots(z, beta, z_a, y):
|
100 |
+
return cubic_cpp.compute_cubic_roots(z, beta, z_a, y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
@st.cache_data
|
103 |
+
def compute_high_y_curve(betas, z_a, y):
|
104 |
+
return cubic_cpp.compute_high_y_curve(betas, z_a, y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
@st.cache_data
|
107 |
+
def compute_alternate_low_expr(betas, z_a, y):
|
108 |
+
return cubic_cpp.compute_alternate_low_expr(betas, z_a, y)
|
109 |
|
110 |
+
@st.cache_data
|
111 |
+
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
|
112 |
+
return cubic_cpp.compute_max_k_expression(betas, z_a, y, k_samples)
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
@st.cache_data
|
115 |
+
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
|
116 |
+
return cubic_cpp.compute_min_t_expression(betas, z_a, y, t_samples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
@st.cache_data
|
119 |
+
def compute_derivatives(curve, betas):
|
120 |
+
return cubic_cpp.compute_derivatives(curve, betas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
@st.cache_data
|
123 |
+
def generate_eigenvalue_distribution(beta, y, z_a, n, seed):
|
124 |
+
return cubic_cpp.generate_eigenvalue_distribution(beta, y, z_a, n, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
else:
|
127 |
+
# Original Python implementations (as fallback)
|
128 |
+
# Only showing a few key functions for brevity
|
129 |
+
|
130 |
+
def discriminant_func(z, beta, z_a, y):
|
131 |
+
"""Fast numeric function for the discriminant"""
|
132 |
+
# Apply the condition for y
|
133 |
+
y_effective = y if y > 1 else 1/y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
# Coefficients
|
136 |
+
a = z * z_a
|
137 |
+
b = z * z_a + z + z_a - z_a*y_effective
|
138 |
+
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
|
139 |
+
d = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# Calculate the discriminant
|
142 |
+
return ((b*c)/(6*a**2) - (b**3)/(27*a**3) - d/(2*a))**2 + (c/(3*a) - (b**2)/(9*a**2))**3
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# ... [rest of Python implementations]
|
145 |
+
|
146 |
+
# The rest of the app.py remains the same as in the original file
|
147 |
+
# This includes the Streamlit UI code and the functions that operate on the data
|
148 |
+
# returned by the computational functions.
|
149 |
+
|
150 |
+
# ... [Original app.py from here]
|
151 |
|
152 |
+
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr,
|
153 |
+
custom_curve1=None, custom_curve2=None):
|
154 |
"""Compute derivatives for all curves"""
|
155 |
derivatives = {}
|
156 |
|
|
|
377 |
)
|
378 |
return fig
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
def track_roots_consistently(z_values, all_roots):
|
381 |
"""
|
382 |
Ensure consistent tracking of roots across z values by minimizing discontinuity.
|
383 |
"""
|
384 |
n_points = len(z_values)
|
385 |
+
n_roots = 3 # Always 3 roots for cubic
|
386 |
tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
|
387 |
tracked_roots[0] = all_roots[0]
|
388 |
|
|
|
435 |
|
436 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
437 |
"""
|
438 |
+
Generate Im(s) and Re(s) vs. z plots with improved accuracy using C++.
|
439 |
"""
|
440 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
441 |
st.error("Invalid input parameters.")
|
|
|
459 |
progress_bar.progress((i + 1) / n_points)
|
460 |
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
|
461 |
|
462 |
+
# Calculate roots using C++ or Python
|
463 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
464 |
|
465 |
# Initial sorting to help with tracking
|
|
|
525 |
|
526 |
return fig_im, fig_re, fig_disc
|
527 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
529 |
"""
|
530 |
+
Generate Im(s) and Re(s) vs. β plots with improved accuracy using C++.
|
531 |
"""
|
532 |
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
533 |
st.error("Invalid input parameters.")
|
|
|
551 |
progress_bar.progress((i + 1) / n_points)
|
552 |
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
|
553 |
|
554 |
+
# Calculate roots using C++ or Python
|
555 |
roots = compute_cubic_roots(z, beta, z_a, y)
|
556 |
|
557 |
# Initial sorting to help with tracking
|
|
|
617 |
|
618 |
return fig_im, fig_re, fig_disc
|
619 |
|
620 |
+
def analyze_complex_root_structure(beta_values, z, z_a, y):
|
621 |
+
"""
|
622 |
+
Analyze when the cubic equation switches between having all real roots
|
623 |
+
and having a complex conjugate pair plus one real root.
|
624 |
+
|
625 |
+
Returns:
|
626 |
+
- transition_points: beta values where the root structure changes
|
627 |
+
- structure_types: list indicating whether each interval has all real roots or complex roots
|
628 |
+
"""
|
629 |
+
transition_points = []
|
630 |
+
structure_types = []
|
631 |
+
|
632 |
+
previous_type = None
|
633 |
+
|
634 |
+
for beta in beta_values:
|
635 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
636 |
+
|
637 |
+
# Check if all roots are real (imaginary parts close to zero)
|
638 |
+
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
639 |
+
|
640 |
+
current_type = "real" if is_all_real else "complex"
|
641 |
+
|
642 |
+
if previous_type is not None and current_type != previous_type:
|
643 |
+
# Found a transition point
|
644 |
+
transition_points.append(beta)
|
645 |
+
structure_types.append(previous_type)
|
646 |
+
|
647 |
+
previous_type = current_type
|
648 |
+
|
649 |
+
# Add the final interval type
|
650 |
+
if previous_type is not None:
|
651 |
+
structure_types.append(previous_type)
|
652 |
+
|
653 |
+
return transition_points, structure_types
|
654 |
+
|
655 |
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
|
656 |
beta_steps=100, z_steps=100):
|
657 |
"""
|
|
|
721 |
"""
|
722 |
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
|
723 |
"""
|
724 |
+
# Use C++ implementation if available
|
725 |
+
if cpp_available:
|
726 |
+
eigenvalues = cubic_cpp.generate_eigenvalue_distribution(beta, y, z_a, n, seed)
|
727 |
+
else:
|
728 |
+
# Python implementation (fallback)
|
729 |
+
# Apply the condition for y
|
730 |
+
y_effective = y if y > 1 else 1/y
|
731 |
+
|
732 |
+
# Set random seed
|
733 |
+
np.random.seed(seed)
|
734 |
+
|
735 |
+
# Compute dimension p based on aspect ratio y
|
736 |
+
p = int(y_effective * n)
|
737 |
+
|
738 |
+
# Constructing T_n (Population / Shape Matrix)
|
739 |
+
k = int(np.floor(beta * p))
|
740 |
+
diag_entries = np.concatenate([
|
741 |
+
np.full(k, z_a),
|
742 |
+
np.full(p - k, 1.0)
|
743 |
+
])
|
744 |
+
np.random.shuffle(diag_entries)
|
745 |
+
T_n = np.diag(diag_entries)
|
746 |
+
|
747 |
+
# Generate the data matrix X with i.i.d. standard normal entries
|
748 |
+
X = np.random.randn(p, n)
|
749 |
+
|
750 |
+
# Compute the sample covariance matrix S_n = (1/n) * XX^T
|
751 |
+
S_n = (1 / n) * (X @ X.T)
|
752 |
+
|
753 |
+
# Compute B_n = S_n T_n
|
754 |
+
B_n = S_n @ T_n
|
755 |
+
|
756 |
+
# Compute eigenvalues of B_n
|
757 |
+
eigenvalues = np.linalg.eigvalsh(B_n)
|
758 |
|
759 |
# Use KDE to compute a smooth density estimate
|
760 |
kde = gaussian_kde(eigenvalues)
|
|
|
783 |
return fig, eigenvalues
|
784 |
|
785 |
# ----------------- Streamlit UI -----------------
|
786 |
+
def main():
|
787 |
+
st.title("Cubic Root Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
788 |
|
789 |
+
if not cpp_available:
|
790 |
+
st.warning("C++ acceleration module not available. Using slower Python implementation instead.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
|
792 |
+
# Define three tabs
|
793 |
+
tab1, tab2, tab3, = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])
|
794 |
|
795 |
+
# ----- Tab 1: z*(β) Curves -----
|
796 |
+
with tab1:
|
797 |
+
st.header("Eigenvalue Support Boundaries")
|
798 |
+
|
799 |
+
# Cleaner layout with better column organization
|
800 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
801 |
+
|
802 |
with col1:
|
803 |
+
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
|
804 |
+
y_1 = st.number_input("y", value=1.0, key="y_1")
|
805 |
+
|
806 |
+
with col2:
|
807 |
+
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
|
808 |
+
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
|
809 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
810 |
with col1:
|
811 |
+
method_type = st.radio(
|
812 |
+
"Calculation Method",
|
813 |
+
["Eigenvalue Method", "Discriminant Method"],
|
814 |
+
index=0 # Default to eigenvalue method
|
815 |
+
)
|
816 |
+
|
817 |
+
# Advanced settings in collapsed expanders
|
818 |
+
with st.expander("Method Settings", expanded=False):
|
819 |
+
if method_type == "Eigenvalue Method":
|
820 |
+
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
821 |
+
key="beta_steps_eigen")
|
822 |
+
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
823 |
+
step=100)
|
824 |
+
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
|
825 |
+
else:
|
826 |
+
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
827 |
+
key="beta_steps")
|
828 |
+
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
829 |
+
step=1000, key="z_steps")
|
830 |
+
|
831 |
+
# Curve visibility options
|
832 |
+
with st.expander("Curve Visibility", expanded=False):
|
833 |
+
col_vis1, col_vis2 = st.columns(2)
|
834 |
+
with col_vis1:
|
835 |
+
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
|
836 |
+
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
|
837 |
+
with col_vis2:
|
838 |
+
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
|
839 |
+
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
|
840 |
+
|
841 |
+
# Custom expressions collapsed by default
|
842 |
+
with st.expander("Custom Expression 1 (s-based)", expanded=False):
|
843 |
+
st.markdown("""Enter expressions for s = numerator/denominator
|
844 |
+
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
845 |
+
st.latex(r"\text{This s will be inserted into:}")
|
846 |
+
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
|
847 |
+
s_num = st.text_input("s numerator", value="", key="s_num")
|
848 |
+
s_denom = st.text_input("s denominator", value="", key="s_denom")
|
849 |
+
|
850 |
+
with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
|
851 |
+
st.markdown("""Enter direct expression for z(β) = numerator/denominator
|
852 |
+
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
|
853 |
+
z_num = st.text_input("z(β) numerator", value="", key="z_num")
|
854 |
+
z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
|
855 |
+
|
856 |
+
# Move show_derivatives to main UI level for better visibility
|
857 |
+
with col2:
|
858 |
+
show_derivatives = st.checkbox("Show derivatives", value=False)
|
859 |
+
|
860 |
+
# Compute button
|
861 |
+
if st.button("Compute Curves", key="tab1_button"):
|
862 |
+
with col3:
|
863 |
+
use_eigenvalue_method = (method_type == "Eigenvalue Method")
|
864 |
+
if use_eigenvalue_method:
|
865 |
+
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
|
866 |
+
s_num, s_denom, z_num, z_denom, show_derivatives,
|
867 |
+
show_high_y, show_low_y, show_max_k, show_min_t,
|
868 |
+
use_eigenvalue_method=True, n_samples=n_samples,
|
869 |
+
seeds=seeds)
|
870 |
+
else:
|
871 |
+
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
|
872 |
+
s_num, s_denom, z_num, z_denom, show_derivatives,
|
873 |
+
show_high_y, show_low_y, show_max_k, show_min_t,
|
874 |
+
use_eigenvalue_method=False)
|
875 |
|
876 |
+
if fig is not None:
|
877 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
878 |
|
879 |
+
# Curve explanations in collapsed expander
|
880 |
+
with st.expander("Curve Explanations", expanded=False):
|
881 |
+
if use_eigenvalue_method:
|
882 |
+
st.markdown("""
|
883 |
+
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
|
884 |
+
- **Shaded Region**: Eigenvalue support region
|
885 |
+
- **High y Expression** (Green): Asymptotic approximation for high y values
|
886 |
+
- **Low Expression** (Orange): Alternative asymptotic expression
|
887 |
+
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
888 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
889 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
890 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
891 |
+
""")
|
892 |
+
else:
|
893 |
+
st.markdown("""
|
894 |
+
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
|
895 |
+
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
|
896 |
+
- **High y Expression** (Green): Asymptotic approximation for high y values
|
897 |
+
- **Low Expression** (Orange): Alternative asymptotic expression
|
898 |
+
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
|
899 |
+
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
|
900 |
+
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
|
901 |
+
- **Custom Expression 2** (Brown): Direct z(β) expression
|
902 |
+
""")
|
903 |
+
if show_derivatives:
|
904 |
+
st.markdown("""
|
905 |
+
Derivatives are shown as:
|
906 |
+
- Dashed lines: First derivatives (d/dβ)
|
907 |
+
- Dotted lines: Second derivatives (d²/dβ²)
|
908 |
+
""")
|
909 |
+
|
910 |
+
# ----- Tab 2: Complex Root Analysis -----
|
911 |
+
with tab2:
|
912 |
+
st.header("Complex Root Analysis")
|
913 |
+
|
914 |
+
# Create tabs within the page for different plots
|
915 |
+
plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
|
916 |
+
|
917 |
+
# Tab for Im{s} vs. z plot
|
918 |
+
with plot_tabs[0]:
|
919 |
+
col1, col2 = st.columns([1, 2])
|
920 |
+
with col1:
|
921 |
+
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
|
922 |
+
y_z = st.number_input("y", value=1.0, key="y_tab2_z")
|
923 |
+
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
|
924 |
+
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
|
925 |
+
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
|
926 |
+
with st.expander("Resolution Settings", expanded=False):
|
927 |
+
z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
|
928 |
+
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
|
929 |
+
with col2:
|
930 |
+
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
|
931 |
+
if fig_im is not None and fig_re is not None and fig_disc is not None:
|
932 |
+
st.plotly_chart(fig_im, use_container_width=True)
|
933 |
+
st.plotly_chart(fig_re, use_container_width=True)
|
934 |
+
st.plotly_chart(fig_disc, use_container_width=True)
|
935 |
+
|
936 |
+
with st.expander("Root Structure Analysis", expanded=False):
|
937 |
+
st.markdown("""
|
938 |
+
### Root Structure Explanation
|
939 |
+
|
940 |
+
The red dashed vertical lines mark the points where the cubic discriminant equals zero.
|
941 |
+
At these points, the cubic equation's root structure changes:
|
942 |
+
|
943 |
+
- When the discriminant is positive, the cubic has three distinct real roots.
|
944 |
+
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
|
945 |
+
- When the discriminant is exactly zero, the cubic has at least two equal roots.
|
946 |
+
|
947 |
+
These transition points align perfectly with the z*(β) boundary curves from the first tab,
|
948 |
+
which represent exactly these transitions in the (β,z) plane.
|
949 |
+
""")
|
950 |
+
|
951 |
+
# New tab for Im{s} vs. β plot
|
952 |
+
with plot_tabs[1]:
|
953 |
+
col1, col2 = st.columns([1, 2])
|
954 |
+
with col1:
|
955 |
+
z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
|
956 |
+
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
|
957 |
+
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
|
958 |
+
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
|
959 |
+
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
|
960 |
+
with st.expander("Resolution Settings", expanded=False):
|
961 |
+
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
|
962 |
+
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
|
963 |
+
with col2:
|
964 |
+
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
|
965 |
+
z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
|
966 |
|
967 |
+
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
|
968 |
+
st.plotly_chart(fig_im_beta, use_container_width=True)
|
969 |
+
st.plotly_chart(fig_re_beta, use_container_width=True)
|
970 |
+
st.plotly_chart(fig_disc, use_container_width=True)
|
971 |
|
972 |
+
# Add analysis of transition points
|
973 |
+
transition_points, structure_types = analyze_complex_root_structure(
|
974 |
+
np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
|
|
|
|
|
|
|
975 |
|
976 |
+
if transition_points:
|
977 |
+
st.subheader("Root Structure Transition Points")
|
978 |
+
for i, beta in enumerate(transition_points):
|
979 |
+
prev_type = structure_types[i]
|
980 |
+
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
|
981 |
+
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
|
982 |
+
else:
|
983 |
+
st.info("No transitions detected in root structure across this β range.")
|
984 |
+
|
985 |
+
# Explanation
|
986 |
+
with st.expander("Analysis Explanation", expanded=False):
|
987 |
+
st.markdown("""
|
988 |
+
### Interpreting the Plots
|
989 |
+
|
990 |
+
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
|
991 |
+
- **Re{s} vs. β**: Shows how the real parts of the roots change with β.
|
992 |
+
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
|
993 |
+
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
|
994 |
+
- When discriminant > 0: The cubic has three distinct real roots.
|
995 |
+
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
|
996 |
+
|
997 |
+
The vertical red dashed lines mark the transition points where the root structure changes.
|
998 |
+
""")
|
999 |
|
1000 |
+
# Tab for Phase Diagram
|
1001 |
+
with plot_tabs[2]:
|
1002 |
+
col1, col2 = st.columns([1, 2])
|
1003 |
+
with col1:
|
1004 |
+
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
|
1005 |
+
y_phase = st.number_input("y", value=1.0, key="y_phase")
|
1006 |
+
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
|
1007 |
+
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
|
1008 |
+
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
|
1009 |
+
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
|
1010 |
|
1011 |
+
with st.expander("Resolution Settings", expanded=False):
|
1012 |
+
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
|
1013 |
+
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
|
1014 |
+
|
1015 |
+
if st.button("Generate Phase Diagram", key="tab2_button_phase"):
|
1016 |
+
with col2:
|
1017 |
+
st.info("Generating phase diagram. This may take a while depending on resolution...")
|
1018 |
+
fig_phase = generate_phase_diagram(
|
1019 |
+
z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase,
|
1020 |
+
beta_steps_phase, z_steps_phase)
|
1021 |
|
1022 |
+
if fig_phase is not None:
|
1023 |
+
st.plotly_chart(fig_phase, use_container_width=True)
|
|
|
|
|
|
|
1024 |
|
1025 |
+
with st.expander("Phase Diagram Explanation", expanded=False):
|
1026 |
+
st.markdown("""
|
1027 |
+
### Understanding the Phase Diagram
|
1028 |
+
|
1029 |
+
This heatmap shows the regions in the (β, z) plane where:
|
1030 |
+
|
1031 |
+
- **Red Regions**: The cubic equation has all real roots
|
1032 |
+
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
|
1033 |
+
|
1034 |
+
The boundaries between these regions represent values where the discriminant is zero,
|
1035 |
+
which are the exact same curves as the z*(β) boundaries in the first tab. This phase
|
1036 |
+
diagram provides a comprehensive view of the eigenvalue support structure.
|
1037 |
+
""")
|
1038 |
+
|
1039 |
+
# Eigenvalue distribution tab
|
1040 |
+
with plot_tabs[3]:
|
1041 |
+
st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
|
1042 |
+
with st.expander("Simulation Information", expanded=False):
|
1043 |
+
st.markdown("""
|
1044 |
+
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
|
1045 |
+
- B_n = (1/n)XX^T with X being a p×n matrix
|
1046 |
+
- p/n → y as n→∞
|
1047 |
+
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
|
1048 |
+
""")
|
|
|
|
|
1049 |
|
1050 |
+
col_eigen1, col_eigen2 = st.columns([1, 2])
|
1051 |
+
with col_eigen1:
|
1052 |
+
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
|
1053 |
+
y_eigen = st.number_input("y", value=1.0, key="y_eigen")
|
1054 |
+
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
|
1055 |
+
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
|
1056 |
+
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
|
|
|
1057 |
|
1058 |
+
# Add comparison option
|
1059 |
+
show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
|
1060 |
+
show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
|
1061 |
+
|
1062 |
+
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
|
1063 |
+
with col_eigen2:
|
1064 |
+
# Generate the eigenvalue distribution
|
1065 |
+
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
|
1066 |
|
1067 |
+
# If requested, compute and add theoretical boundaries
|
1068 |
+
if show_theoretical:
|
1069 |
+
# Calculate min and max eigenvalues using the support boundary functions
|
1070 |
+
betas = np.array([beta_eigen])
|
1071 |
+
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
|
1072 |
+
|
1073 |
+
# Add vertical lines for boundaries
|
1074 |
+
fig_eigen.add_vline(
|
1075 |
+
x=min_eig[0],
|
1076 |
+
line=dict(color="red", width=2, dash="dash"),
|
1077 |
+
annotation_text="Min theoretical",
|
1078 |
+
annotation_position="top right"
|
1079 |
+
)
|
1080 |
+
fig_eigen.add_vline(
|
1081 |
+
x=max_eig[0],
|
1082 |
+
line=dict(color="red", width=2, dash="dash"),
|
1083 |
+
annotation_text="Max theoretical",
|
1084 |
+
annotation_position="top left"
|
1085 |
+
)
|
|
|
|
|
1086 |
|
1087 |
+
# Display the plot
|
1088 |
+
st.plotly_chart(fig_eigen, use_container_width=True)
|
1089 |
+
|
1090 |
+
# Add comparison of empirical vs theoretical bounds
|
1091 |
+
if show_theoretical and show_empirical_stats:
|
1092 |
+
empirical_min = eigenvalues.min()
|
1093 |
+
empirical_max = eigenvalues.max()
|
1094 |
+
|
1095 |
+
st.markdown("### Comparison of Empirical vs Theoretical Bounds")
|
1096 |
+
col1, col2, col3 = st.columns(3)
|
1097 |
+
with col1:
|
1098 |
+
st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
|
1099 |
+
st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
|
1100 |
+
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
|
1101 |
+
with col2:
|
1102 |
+
st.metric("Empirical Min", f"{empirical_min:.4f}")
|
1103 |
+
st.metric("Empirical Max", f"{empirical_max:.4f}")
|
1104 |
+
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
|
1105 |
+
with col3:
|
1106 |
+
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
|
1107 |
+
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
|
1108 |
+
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
|
1109 |
+
|
1110 |
+
# Display additional statistics
|
1111 |
+
if show_empirical_stats:
|
1112 |
+
st.markdown("### Eigenvalue Statistics")
|
1113 |
+
col1, col2 = st.columns(2)
|
1114 |
+
with col1:
|
1115 |
+
st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
|
1116 |
+
st.metric("Median", f"{np.median(eigenvalues):.4f}")
|
1117 |
+
with col2:
|
1118 |
+
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
|
1119 |
+
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
|
1120 |
+
|
1121 |
+
# ----- Tab 3: Differential Analysis -----
|
1122 |
+
with tab3:
|
1123 |
+
st.header("Differential Analysis vs. β")
|
1124 |
+
with st.expander("Description", expanded=False):
|
1125 |
+
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
|
|
|
|
|
|
|
|
|
|
|
|
|
1126 |
|
1127 |
+
col1, col2 = st.columns([1, 2])
|
1128 |
+
with col1:
|
1129 |
+
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
|
1130 |
+
y_diff = st.number_input("y", value=1.0, key="y_diff")
|
1131 |
+
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
|
1132 |
+
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
|
1133 |
+
|
1134 |
+
diff_method_type = st.radio(
|
1135 |
+
"Boundary Calculation Method",
|
1136 |
+
["Eigenvalue Method", "Discriminant Method"],
|
1137 |
+
index=0,
|
1138 |
+
key="diff_method_type"
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
with st.expander("Resolution Settings", expanded=False):
|
1142 |
+
if diff_method_type == "Eigenvalue Method":
|
1143 |
+
beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
|
1144 |
key="beta_steps_diff_eigen")
|
1145 |
+
diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
|
1146 |
step=100, key="diff_n_samples")
|
1147 |
+
diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
|
1148 |
key="diff_seeds")
|
1149 |
+
else:
|
1150 |
+
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
|
1151 |
key="beta_steps_diff")
|
1152 |
+
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
|
1153 |
step=1000, key="z_steps_diff")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1154 |
|
1155 |
+
# Add options for curve selection
|
1156 |
+
st.subheader("Curves to Analyze")
|
1157 |
+
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
|
1158 |
+
analyze_high_y = st.checkbox("High y Expression", value=False)
|
1159 |
+
analyze_alt_low = st.checkbox("Low y Expression", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
1160 |
|
1161 |
+
if st.button("Compute Differentials", key="tab3_button"):
|
1162 |
+
with col2:
|
1163 |
+
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
|
|
|
1164 |
|
1165 |
+
if use_eigenvalue_method_diff:
|
1166 |
+
betas_diff = np.linspace(0, 1, beta_steps_diff)
|
1167 |
+
st.info("Computing eigenvalue support boundaries. This may take a moment...")
|
1168 |
+
lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
|
1169 |
+
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
|
1170 |
+
else:
|
1171 |
+
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
|
1172 |
+
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
|
1173 |
+
|
1174 |
+
# Create figure
|
1175 |
+
fig_diff = go.Figure()
|
1176 |
|
1177 |
+
if analyze_upper_lower:
|
1178 |
+
diff_curve = upper_vals - lower_vals
|
1179 |
+
d1, d2 = compute_derivatives(diff_curve, betas_diff)
|
1180 |
+
|
1181 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
|
1182 |
+
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
|
1183 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1184 |
+
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
|
1185 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1186 |
+
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
|
1187 |
+
|
1188 |
+
if analyze_high_y:
|
1189 |
+
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
|
1190 |
+
d1, d2 = compute_derivatives(high_y_curve, betas_diff)
|
1191 |
+
|
1192 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
|
1193 |
+
name="High y", line=dict(color="green", width=2)))
|
1194 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1195 |
+
name="High y d/dβ", line=dict(color="green", dash='dash')))
|
1196 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1197 |
+
name="High y d²/dβ²", line=dict(color="green", dash='dot')))
|
1198 |
+
|
1199 |
+
if analyze_alt_low:
|
1200 |
+
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
|
1201 |
+
d1, d2 = compute_derivatives(alt_low_curve, betas_diff)
|
1202 |
+
|
1203 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
|
1204 |
+
name="Low y", line=dict(color="orange", width=2)))
|
1205 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
|
1206 |
+
name="Low y d/dβ", line=dict(color="orange", dash='dash')))
|
1207 |
+
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
|
1208 |
+
name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))
|
1209 |
|
1210 |
+
fig_diff.update_layout(
|
1211 |
+
title="Differential Analysis vs. β" +
|
1212 |
+
(" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
|
1213 |
+
xaxis_title="β",
|
1214 |
+
yaxis_title="Value",
|
1215 |
+
hovermode="x unified",
|
1216 |
+
showlegend=True,
|
1217 |
+
legend=dict(
|
1218 |
+
yanchor="top",
|
1219 |
+
y=0.99,
|
1220 |
+
xanchor="left",
|
1221 |
+
x=0.01
|
1222 |
+
)
|
1223 |
)
|
1224 |
+
st.plotly_chart(fig_diff, use_container_width=True)
|
1225 |
+
|
1226 |
+
with st.expander("Curve Types", expanded=False):
|
1227 |
+
st.markdown("""
|
1228 |
+
- Solid lines: Original curves
|
1229 |
+
- Dashed lines: First derivatives (d/dβ)
|
1230 |
+
- Dotted lines: Second derivatives (d²/dβ²)
|
1231 |
+
""")
|
1232 |
+
|
1233 |
+
if __name__ == "__main__":
|
1234 |
+
main()
|